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Abstract

We study samples I' = (T'y,...,'n) of length n where the letters
T'; are independently generated according to the geometric distribu-
tion P(T; =i) = pg*~ !, for 1< j<n, withp+g=1land0<p<1.
An up-smooth semple I is a sample such that "4y —T; < 1, We find
generating functions for the probability that a sample of n geometric
variables is up-smooth, with or without a specified first letter. We
also extend the up-smooth results to words over an alphabet of &
letters and to compositions of integers. In addition we study smooth
samples T of geometric random variables, where the condition now
is|Tiy1 — T4 < 1.

1 Introduction

Let X denote a geometrically distributed random variable, i. e. P{X =
k} = pg*~! for k € N and ¢ = 1 — p. The combinatorics of n geometrically
distributed independent random variables X}, ..., X, has attracted recent
interest, especially because of applications in computer science, for example
see [1, 2, 7, 8]. In particular, Prodinger [8] studied the number of left-to-
right maxima for samples (I'y,,...,I'y) with T'; independently generated
according to the geometric distribution.
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Consider now the sample I' = (T';,...,Is) of length n where P(T'; =
i) =pgi~l,for1<j<n,withp+g=1and 0 <p < 1. An up-smooth
sample I' is a sample such that I';+; — I'; < 1. For instance, when n = 3 we
have the following samples starting with a 1: 111, 112, 121, 122 and 123
which occur with respective probabilities p®, g, p%q, p¢® and p®¢3. Thus
the probability that a sample of length 3 with first letter 1 is up-smooth is
p3(1 + 29 + ¢ + ¢®). Also the probability that a sample of length 3 with
arbitrary first letter is up-smooth is

i+1 j+1
et poart 142q+2¢%2+43

i=1

In this paper we find generating functions for the probability that a
sample of n geometric variables is up-smooth, with or without a specified
first letter. The up-smooth condition can be thought of as an extension
of the idea of smooth words, where the corresponding restriction is |T';4+1 —
T';] € 1. The smooth restriction has been studied for words over an alphabet
of k letters in [5], for set partitions in [6] and for compositions of integers in
[4]. In Section 3 we extend the up-smooth results to words over an alphabet
of k letters and to compositions of integers. Samples of geometric variables
with the original smooth condition have not been previously considered,
and these are studied in Section 4.

2 Results

Let f(u) be the generating function related to n geometrically distributed
random variables, with last part marked by the variable u, and the whole
thing satisfying the up-smooth condition.

The adding-a-new-slice technique of Flajolet and Prodinger [3] works
here: Let fn(u) be such that [uf]f,(u) is the probability that a word of
length n to be an up-smooth with rightmost letter equals <. Then fi(u) =
Y i>1Pg " ut = 72, and we have the replacement rule

1—-qu?
2
i 2, ... ii+l o _PY _ Pqu i
u' — pu+pqu’ +--- + pg'u T—qu 1_qu(qu).
Consequently,
2
_ pu_ _ pqu
Frni() = Fa(D 7 e = P algu). 21)
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Now define

F(z,u):= an(u)z".

n>1

Then

z z u?z
F(z,u) = ﬁ + F(z,1)5 _p‘;u - f'; o Fau). (2.2)

By iteration we get

z]p](_.l)J_luZ]—lqj(J—l)

F(z,u) = (14 F(z,1)) _ , (2.3)
; HZ:].(]' - q‘u)
which implies that
1
1+ F(z,1) = = - 2.4
" L= SEEEGE 9

Now consider the case where the first part of the geometric word is i.
Corresponding to the above, we will now use the notation f,, ; and Fi(z,u).
Then f1,; = pg*~'u* and we find

s . 2
Fi(zu) = g~z + Fi(s D)7 E - {’-"_“—q%F,-(z, qu).  (25)

By iteration we obtain

—1)i=12i=1gi(i=1)

27

Fi(z,u) = Fi(2,1) -
; ;c=1(1 - qku)

23 pd (—1)~1y2i=2+igi® ~2+ij

% el CEPh)

J21

(2.6)

From this we can state the following result.

Theorem 1 We have
2ipi(=1)3=1gi7 -2i+is

Fi(2) := Fi(2,1) = PR e . 2.7)

2 (—1)-1g3G-1)
1 21'21 99);
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In particular we have the following interesting identity concerning Fj(z).

5 23 pi (=1)i—1g3G—1)

_ j21 (9i9)i-1

Fi(z) = = Zipi (—1)i-1gaG—1)
j21 (@:9);

pz
= T . (2.8)
—pz + Tt PGz
-pqz + 3
pg°z
I+ —"
-pg?z + —

The continued fraction expression follows from the Lemma below.

Lemma 2 The generating function Fy(z) is given by

pZ
N 1
AR paz
—pqz + 7
pg’z
1+ ——
_pq z+_

Proof Let m be any up-smooth geometric word over alphabet N with its
first letter equal to 1. If in the word = the letter 1 occurs exactly m times,
then 7 can be decomposed as 7 = 17017 ... 17(™) where 7() is any
up-smooth word over alphabet {2,3,...} with its first letter 2. Note that
each up-smooth word ajaz - - - a, over alphabet {2,3,...} with ¢; =2 can
be mapped to an up-smooth word (a; —1)(a2—1) - - - (an — 1) over alphabet
{1,2,3,...} with a; — 1 = 1, it follows that the generating function for the
number of directed smooth word ajaz - - ay, over alphabet {2,3,...} with
a1 = 2 is F1(gz). Therefore

_ . SN = pz(1 + Fi(qz))
Fl(z)—ngl(p (A +F@)" = T a T RE
which is equivalent to
Fi(2) = T (2.9)

—PEt 14 Fi(gz)
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We iterate this equation an infinite number of times to complete the proof.
a

2.1 Asymptotics

From Theorem 2.1, each F;(z) has a simple dominant pole at the least
positive root of the denominator of F(z) := F(z,1), which we denote by
a=a,. So

Rla) ~ {5
o
with some constant A; , given by
1.,
Aig = — lim (z - a)Fi(2), (2.10)

from which
(2" Fi(2) ~ Aiga™™. (2.11)

The next lemma will help us to find a relationship between the con-
stants A; = A; g, for i > 1. Let Fj,;,(2) be the generating function for all
geometric up-smooth samples (I'1,I'2, ..., ') of length n such that T'; = 4;
for j =1,2.

Lemma 3 The generating functions Fi(z) satisfy the recurrence relation
Fi(2) =pg"'2(1 + Fia(2) + Fi(2) + -+ + F1(2)),

foralli>1.

Proof Each sample I' = (I'1,T'2,...,I) of length n starting with ¢ has
a second letter § with 1 < 7 < i+ 1, or else consists of the single letter i.

Thus, by the definitions we have

i+1 i+1
Fi(2)=pg™ 2+ ) F;(2) =pg" "2+ pg" 12 F;(2),

which completes the proof. O By substituting the asymptotic expression

(2.11) into Lemma 2.3 we find that for i > 1,

A.-o:‘l
Ay = F —-(A1+A2+"'+Ai). (212)
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For example, using (2.12) with i = 1,2, 3 gives

-4[&) (&) G ) (@) =)
ap apq apq apq ap
By subtraction we can rewrite (2.12) as

1 .
Aip1 = ;’F(A, —qAi—1), 121, (2.13)

where we define Ap = apg~'A;.

Proposition 3.1 For alli > 2,

~2)-1 _ (opg®)
(G

A;
Ai—l - (O‘Pq

(apqi—.':l ) -1_

(opgi-4)-1 — - -
(apg)~! - (J.,ﬁ)z-)'rl

Proof From (2.13) we obtain that

A1 11
Aimy opg=?  apgi? rA::;’

for all ¢ > 2. Applying the above recurrence with using the initial condition
that A;/Ap = g/(ap), we get the desired result. O

Note that the ratio f_‘; is given by a finite continued fraction. Actually,
if we rewrite (2.13) in different way as

Aiy 1 apg?

.

. A
A: q I::T
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Applying this infinite number of times we obtain that the ratio -‘%;;i’- is

given by infinite continued fraction as

A _ o1 apg'~!
A; o apg'
7" g1 — epdt

Thus all the constants A; can be expressed in terms of A; which can be
numerically calculated for each ¢ using (2.10), see Figure 1.

10Fseee tor
s
.....
08} Ce. 08
.
0.6 .. 06
.
04f ‘. 04
.
a2p ¢ (3]
.
a2 04 06 08 02 04 06 o8

Figure 1: The functions o' and Ay, for 0 < g < 1.

3 Extensions to words and compositions

In this section we present two extensions of the main results of the previous
section, to up-smooth words over the alphabet [k] and to compositions of

n.

3.1 Up-smooth words

Let Wi(y;7) be the generating function for the number up-smooth words
Tmy - -+ My of length n over alphabet [k] = {1,2,...,k} such that m; =i,
Define Wi(y, 2) = S, Wi(y; )22,

Lemma 4 Forallk >0,
e ()

Vet (25)
where Uy is the k-th Chebyshev polynomials of the second kind.

Wi(y,0) =
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Proof Extending the proof of Lemma 2 to the case of up-smooth words
over the alphabet [k], (2.9) gives that the generating function Wi (y,O0)
satisfies v
Wi(y,0) = ————, Wo(y,0)=0
Wet(v:0)+1 y

Now the proof proceeds by induction on k. Since U_;(t) = 0 and Up(t) =1
then the lemma holds for ¥ = 0. Assume that the lemma holds for £ — 1
and let us prove it for k. Let t = ﬁ, by the above recurrence and the

induction hypothesis we have

Yy _ __y(Uk(t) + Uk—2(t))
—y (1 —y)Uk(t) — yUr—2(t)’

Wk(y,O) = T
Zk=2(t) +1
Uk(t)

Using the fact that the Chebyshev polynomials of the second kind satisfy
the recurrence relation

Ui (t) = 2tUx—1(t) — Ur-2(2), (3.1)
we obtain
Uk-1(¢) Ug-1(t)
Wi(y,0) = VY = ,
k(. 0) Ur(t) — gUk-1(t)  Uk1(?)
which completes the proof. o

Similar arguments as in the proof of Lemma 2 for the case up-smooth
words lead to

-2
Wi(y,z) = y——-(l + Wk(y,0)) + yz ——Wk(y i
j=2

which is equivalent to

Zky
1— sz(y’ 1)

zk
Wi(y,2z) = y———Wk(y,0)+( z)Wk(y,Z)—

In order to solve this function equation we use the kernel method. In other
words, if we substitute y = z(1 — z) then we obtain that

Wy 1) = g (:(1 = ) = (1= W21 - 2), ).

58



Hence, by Lemma 4 we have

Wi(2(1 - 2),1)
1 1 1
L+ 1 Uk (2;7:(1—2)) (1 = 2)Uk-1 (227:(1-:))
=7 zk+l 1
Uks1 (227:(1-:))

Using the fact that

U 1 U 1 zk+l
2Uk41 (———2 ) —z)) — (1 — 2)Ux—1 (-———2 '_—_z(l—z)) = _—z(l'-—z)kH’

which can be proven by induction on k by using (3.1), we obtain the fol-
lowing result.

Theorem 5 The generating function for the number of up-smooth words
of length n over the alphabet (k] is given by
1

\/?7k+lUk+1 (fl/-;),

where Uy is the k-th Chebyshev polynomials of the second kind.

Wi(y,1) +1=

The above theorem and Lemma A.1 in [6] give that

Wk(yi 1) +1

’ii 1)7 sin?(j/(k + 2))
Tkt 2)\/"c 1= 2y/fycos(ym/(k +2))

k+1

s+1
= 30 25 S (1Y sind g/ (k + 2)) cos” G/ (k + 2T,
20 i=1

which, by finding the coefficient of y™, implies the following result.

Theorem 6 The number of up-smooth words of length n over the alphabet
(k] is given by

22n+1+k k+1
— .E( —1)7 sin®(jn/(k + 2)) cos®* 5 (jm/(k + 2)).
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3.2 Up-smooth compositions

A composition © = w7y --- T, of 1 is a word over alphabet N such that
w1 + T2+ - + Tm = n. Let Fi(z,z) be the generating function for the
number of up-smooth compositions of n with m parts and first part equal

to i, that is,
Red= % ¥ @
nm20 T=iwg " Tm

where the internal sum is over all up-smooth compositions imy - - mm of n
with m parts. Replacing pg~! by z* in Theorem 1 amd Lemma 2, we
obtain the following results.

Theorem 7 The generating function for the number of up-smooth compo-
sitions of n with m parts and first part equal to i is given by

z.ig_lzj-lzjz-j-ﬁj
ZJZI TiT)j-1 (3 2)
zi(=1)i-1zi% * *
1- j>1 (=i);
Theorem 8 The generating function for the number of up-smooth compo-
P

sitions of n with m parts and first part equal to 1 is given by
Tz

Fi(xt z) =

Fl(:z:,z) = 1
—-zz+ =22
1+ 1
—1:22+ 5
Tz
1+
_x3z+ —

4 Smooth geometric words

Let c(m) be the probability that a geometric word = with m letters is
smooth (i.e. |mi41 —mi| < 1,foralli=1,2,...,m—1), and let C(z) denote
the generating function of the numbers c(m),

C(z) = Z c(m)z™.

m>0
For example,
o0 i+1 341
e@)=>_pd > pdt D pdT=p(1+29).
i=1 j=max(L,i—1) k=max(1,j—1)



In this section we obtain a formula for C(z). The adding-a-new-slice tech-
nique does not work in this case, so we use a different approach.

Let 7 be a geometric sample and denote by parts;(w) the number of
occurrences of the integer ¢ as a part of 7. Then each sample 7 with m
parts and parts; (7) = d can be represented as

7@17M71 .. 7@ with d >0,

where 77 is a geometric word over the alphabet {2,3,...}. We refer to this
representation as the d-minimal part decomposition. The contribution to
the generating function C(z2) of the 0-minimal part decomposition is C(gz),
and the contribution of a d-minimal part decomposition, d > 1, gives

(p2)*E(gz)B(q2)(EB(g2))*",

where E(z) (respectively B(z), EB(z)) is the generating function for the
number of geometric samples 7 with m parts such that 70 (respectively, O,
(0m0) is a smooth sample. Clearly, by the reversal operation 7y -« - T, —
Tm -+ - M1, we have that B(z) = E(z). Thus C(z) satisfies the relation

_ pz(E(qz))?

C(z) =C(qz) + T=pzEB(ga)’ (4.1)
Next we find a relationship between the generating functions E(z) and

EB(z). By rewriting the d-minimal part decomposition of a smooth sample

m such that 70 is also a smooth sample, 7 can be represented as

@171, .. 7r(d_1)17r(d)0,

with d > 0 and 7@ = §. Now we consider the function E(z). The 0-
maximal part decomposition contributes just 1 (the empty word), while
the d-minimal part decomposition, d > 1, gives (pz)?E(qz)(EB(gz))%~!.

Hence E
pZ (qz) (4.2)

E(z) =1+ 1_—1)—255(?5

Also for EB(z), we rewrite the d-minimal part decomposition for a
smooth geometric word 7 such that 070 is also a smooth word, and obtain
a representation of 7 in the form

017 (M1 ... gld-D17(d)g,

with d > 0 and 7(® = 7(?) = @. Thus the contribution of the 0-minimal part
decomposition is 1, that of the 1-minimal part decomposition is pz (the word
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1), and that of a d-minimal part decomposition, d > 2, is (pz)¢(EB(gz))¢~!.
Thus

(pz)°EB(qz) _ pz

EB(2)=1+pz+ 1— pzEB(qz) - 1-p2EB(gz)’

(4.3)

On applying the relation (4.3) an infinite number of times, we obtain the
following result.

Lemma 9 The generating function EB(z) is given by

pZ
p2q2?
2.3
pegs2?
1-pgz— 25,2
1-pg?z — —E1

EB(z)=1+

1—-pz-—

1-pgdz—"".
Using Lemma 9 together with (4.2) we find an explicit formula for E(z).

Lemma 10 The generating function E(z) is given by

() i
E(z)=1 +Z p7q £
=1 H a.,,(z)
where
2i-1,
- Pq
aij(z) =1-pg"! - 2 20+1,2
1 — paiz — p’q
Pq ) P2gTFe,2
1-pgitiz— ORI )

1-— pqt+2 z — P_q___
Then Lemma 10 together with (4.1) and (4.2) gives the following result
for the function C(z).

Theorem 11 The generating function C(z) is given by
[o ]

C(z) =1+ E(g’z)(E(g'2) - 1),
=1

where E(z) is given in Lemma 10.
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