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Abstract

A modular k-coloring, k > 2, of a graph G without isolated ver-
tices is a coloring of the vertices of G with the elements in Z; (where
adjacent vertices may be colored the same) having the property that
for every two adjacent vertices in G the sums of the colors of their
neighbors are different in Z;. The minimum k for which G has a
modular k-coloring is the modular chromatic number me(G) of G. It
is known that 2 < mc(T') < 3 for every nontrivial tree T. We present
an efficient algorithm that computes the modular chromatic number
of a given tree.
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1 Introduction

The field of graph coloring is one of the most popular research areas in
graph theory. Among the most studied vertex colorings are, of course,
proper colorings. In a proper coloring of a graph G, a color is assigned to
each vertex of G so that adjacent vertices are assigned distinct colors. Hence
a proper coloring distinguishes the two vertices in every pair of adjacent
vertices and the minimum number of colors required of a proper coloring of
G is the well-known chromatic number x(G). A coloring c of the vertices of a
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graph G, which may or may not be proper, is called neighbor-distinguishing
if every two adjacent vertices of G are distinguished from each other in some
manner by c. Therefore, proper colorings are neighbor-distinguishing.

In (2] new neighbor-distinguishing colorings of graphs that need not be
proper were introduced. For a vertex v of a graph G, let N(v) denote the
neighborhood of v (the set of vertices adjacent to v). For a graph G without
isolated vertices, let ¢ : V(G) — Z; (k > 2) be a vertex coloring of G where
adjacent vertices may be colored the same. The color sum a(v) of a vertex
v of G is defined as the sum in Z; of the colors of the vertices in N(v), that

is,
o(v) = E c(u).
uEN(v)

The coloring c is called a modular k-coloring of G if o(u) # o(v) in Z for
every pair u, v of adjacent vertices of G. A coloring ¢ is a modular coloring
of G if ¢ is a modular k-coloring of G for some integer ¥ > 2 and the
modular chromatic number mc(G) of G is the minimum k for which G has
a modular k-coloring.

If ¢ is a modular k-coloring of a graph G, then o(u) # o(v) in Zj for
every pair u, v of adjacent vertices of G. Thus the coloring c* of the vertices
of G defined by ¢*(v) = o(v), v € V(G), is a proper vertex coloring of G
with at most k colors. This implies that the chromatic number of G is a
lower bound for mc(G).

Observation 1.1 [2] For every graph G without isolated vertices, mc(G) >
x(G)-

By Observation 1.1, it follows that me(T") > 2 for every nontrivial tree
T. Furthermore, a sharp upper bound of mc(T") was presented in [2].

Theorem 1.2 [2] For every nontrivial tree T, 2 < mc(T) < 3.

A caterpillar is a nontrivial tree the removal of whose leaves results in a
path. In [1] modular colorings of trees were further studied and a complete
characterization of caterpillars having modular chromatic number 2 was
presented.

To illustrate these concepts, let us look at the two trees T and T™ in
Figure 1. Both are caterpillars of order 10 having diameter 7 and a coloring
from V(T) to Z; as well as a coloring from V(T*) to Z3 are given, where
each vertex is labeled by its color followed by the corresponding color sum.
Since the second coordinates of the labels of every two adjacent vertices in
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Figure 1: Modular colorings of trees

T are different, this is a modular 2-coloring of T'. Similarly, the coloring
of T given here is a modular 3-coloring of 7*. Then by Observation 1.1
the modular chromatic number of T equals 2. To see that me(T*) = 3,
assume, to the contrary, that there exists & modular 2-coloring c of T*. By
the symmetry of the tree, we may assume that o(u) = o(v) = o(w) = 1.
If ¢(z) = c(y), then o(v) = 2¢(z) # 1, which is impossible. Otherwise,
o(u) = c(z) # c(y) = o(w), another contradiction. Therefore, such a
coloring ¢ does not exist and we conclude that me(7™*) = 3. In fact, it was
shown in [1] that T* is the tree of smallest order having modular chromatic
number 3.

In this work we present an efficient recursive algorithm that determines
the modular chromatic number of any given tree. We refer to the book 3]
for graph theory notation and terminology not described in this paper.

2 Preliminary Results

Although modular colorings and modular chromatic numbers were orig-
inally defined only for graphs without isolated vertices in (2], we define
mc(K) = 1. Furthermore, for every integer k > 2 assigning any integer to
that isolated vertex v in K results in a modular k-coloring of the graph
with o(v) = 0.

2.1 Root Adjusted Colorings and Signatures of Trees

For a rooted tree T, let us denote its root by vr. Let ¢: V(T') — Z; be a
2-coloring of a rooted tree T. For an integer a € Zs, the a-root adjusted
color sum g4(v) of a vertex v is defined by

_Jo(w)+a ifv=vr
9a(v) = { o(v) otherwise.
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The coloring c is called an a-root adjusted modular 2-coloring (or simply o-
adjusted coloring) of T if 04 (u) # 0« (v) in Z3 for every pair u, v of adjacent
vertices in T'. Hence,

¢ is a modular 2-coloring of T' if and only if =0 (1)

unless T is trivial.

The signature sig(T') of a rooted tree T is the set of ordered triples of
integers in Zy such that (o, 8,7) € sig(T) if and only if there exists an
a-adjusted coloring of T with ¢(vr) = 8 and o4(vr) = 7. When it is clear,
we may express each element (o, 8,7) in sig(T) simply as o 8 «. Note that
for every rooted tree T'

sig(T)) € {000, 001,010,011,100,101,110,111} = Z3.

For example, let us determine the signatures of rooted trees K; and K.
Recall that any coloring ¢ of K is a modular 2-coloring regardless of the
color assigned to vk, and o(vk,) = 0. Therefore, oa(vk,) = a for each
a € Z;. That is, (o, 8,7) € sig(K;) if and only if & = and so

sig(K,) = {000,010,101,111}. (2)

For K3, let V(K3) = {vk,,v} and suppose that ¢ is a 2-coloring of Kj.
Then for each o € Z; observe that g4(v) = 0(v) = ¢(vk,), implying that ¢
is an a-adjusted coloring of K3 if and only if o (vk,) # c(vk,). Hence,

sig(K2) = {001,010,101,110}. (3)

By (1) it follows that a rooted tree T has a modular 2-coloring if and
only if (0, 8,7) € sig(T') for some B3, € Z3. That is, to determine whether
a given nontrivial rooted tree has modular chromatic number 2 or not it
suffices to compute its signature. In the following subsection we discuss a
way to find signatures of larger rooted trees.

2.2 Two Graph Operations on Trees

Before turning our attention to rooted trees of order at least 3 and their
signatures, we introduce some additional graph operations and notation.
For a rooted tree T, let z + T be the tree obtained from T by adding a
new root z and joining x to the root v of T'. Also, for two rooted trees S
and T, let S + T be the rooted tree obtained from S and T by identifying
the roots of S and T and the new root vs,r is that vertex belonging to
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both § and T. (Thus, S+ T =T + S for every two rooted trees S and T'.
Also, Ky + T =T for every rooted tree T.) For example, both = + K and
Ky + Ky are isomorphic to P3, where = + K is rooted at one of the two
end-vertices while K 4+ K is rooted at the vertex of degree 2.

The following two lemmas allow us to determine sig(z+T') and sig(S+T")
once we know sig(S) and sig(T") of rooted trees S and T.

Lemma 2.1 Let T be a rooted tree. Then (a,B,7) € sig(T) if and only if
(B+v+1,0,7v+1) €siglz+T).

Proof. Suppose first that c is an a-adjusted coloring of T' with c(vr) = 8
and o4 (vr) = . Define the coloring ¢’ : V(z + T') — Z; by ¢/(z) =  and
c/(v) = c(v) for every v € V(T') and consider the corresponding color sum
o' (v) of each vertex v € V(z + T). Observe that

oy = J Clor)=clvr)=8 ifv=x
o'(v) = { aa(:) otherwise.

Therefore, ¢’ is a (8 + - + 1)-adjusted coloring of = + T since Oppy1(T) =

B+(B+y+1l)=7+1 7&0‘/,9+7+1(UT)'
Conversely, if ¢ is a (8 ++ -+ 1)-adjusted coloring of z+ T with ¢(z) = o

and 0g4q41(z) = v + 1, then ¢(vr) = 0p4y4+1(z) — (B+ 7+ 1) = B and
0p+v+1{(vr) = 7. It is then straightforward to verify that c restricted to
V(T) is an a-adjusted coloring of T possessing the desired property. (]

Lemma 2.2 Let Ty and T be rooted trees.
(a) If (ai, B,7) € sig(Ts) fori= 1,2, then (a1 +0a+7, B,7) € sig(T1+T2).

(b) If (o, B,7) € sig(T1 + Tz), then there ezist two integers a1, a0 € Zg
such that o = o1 + ag + 7y and (a, B,7) € sig(Ti) fori=1,2.

Proof. For i = 1,2 suppose that ¢; is an a;-adjusted coloring of T; with
ci(vr,) = B and o4,(v,) = 4. Construct T = T} + T, and define ¢ :
V(T) — Z; such that ¢ restricted to V(T;) equals c; for i = 1,2. Then the
corresponding color sum o(v) of each vertex v € V(T) is

_Jy—a)+(r-m)=ar+a; fv=vp
o) = { Oa,(v) ifveV(T) - {vr},i=1,2.

Therefore, ¢ is an (1 + a2 + )-adjusted coloring of T with ¢(vr) = 8 and
aal+02+‘7('uT) =9.
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Next suppose that ¢ is an a-adjusted coloring of T = T} + T2 with
c(vr) = B and oa(vr) = 7. For i = 1,2 let ¢; be the restriction of c to

V(T:) and oz = N; + v, where Ni = ¥ e n(ur,) Gi(¥) = Luen(or,) (V)
Observe that

ar+as+7=(N1+No+a)+a+y=0s{vr)+a+0a(vr) =a.

Furthermore, 04, (vr;) = N; + o = < and so one can verify that c; is an
a;-adjusted coloring of T; with the desired property for i =1, 2. =

For example, since K2 = z + Kj, we can derive (3) from (2) and
Lemma. 2.1 (or derive (2) from (3) and Lemma 2.1).

Figure 2 shows eleven rooted trees S; (1 < ¢ < 11), where the roots are
represented by hollow vertices. Observe that for each S; with 2 < i < 11

S) e Ss
Sz o—e Se

S3 o—e—o S7

W

Sy o—o—o—e SB

Figure 2: Rooted trees S; (1 <i<11)

either (i) there exists S;, 1 < j < i — 1, such that S; = 2 4+ S; or (ii) there
exist Sj, and Sj,, 1 < j1,72 < i —1, such that S; = Sj, + Sj;. Therefore,
the signatures of these rooted trees can be recursively determined using
Lemmas 2.1 and 2.2 with (2), which we summarize in (4).

sig(S1) = {000,010,101,111}  sig(S7) = {010,110}
sig(Sz) = {001,010,101,110}  sig(Ss) = {001,011}

sig(Ss) = {000,001,010,011} sig(Ss) = {000, 100} @
sig(S4) = {000,001,100,101}  sig(Sio) = {}
sig(Ss) = {001,101} sig(S11) = {101,111}

sig(Se) = {000, 010}

We saw earlier that a rooted tree T has a modular 2-coloring if and
only if (0, 3,7) € sig(T') for some integers 8,7 € Zz. Therefore, mc(S;) =2
for 2 < i < 9 while neither Sj¢ nor S;; has modular chromatic number 2.



Of course, this is not surprising since both S)o and S;; are isomorphic to
the tree T* in Figure 1, which is the unique smallest tree having modular
chromatic number 3.

2.3 Signature-closed Sets of Trees

Let S be a nonempty set of rooted trees. We say that S is signature closed
if (i) for every T € S there exists S € S such that sig(S) = sig(z + T)
and (ji) for every pair T1,T; € S there exists S € S such that sig(S) =
sig(T1 + T2). It can be verified by Lemmas 2.1 and 2.2 with (4) that the
set 8* = {51,52,...,511} of the eleven rooted trees shown in Figure 2 is
signature closed. Table 1 shows that each member in §* satisfies (i); while
Table 2 shows that every pair of members in S* satisfies (ii). Note that only

+]8 S2 S3 Si Ss Se Sy Ss Se S Su
z (S S S S S¢ Ss S So Su Swo Sr

Table 1: S;, §; € &* such that sig(z + S;) = sig(S;)

+ [S1 S2 S3 S¢ S5 S¢ Sr Sz Se Sw Su
Si [S1 S22 S35 Si Ss Se S: Sz S S Sn
Sa S2 S2 Ss Ss St St S5 S0 S Ss
Ss S$1 S S S¢ S Su SS9 Sw Ss
Sa Ss S5 Se S Ss So S0 Ss
Ss S5 S S0 S5 S0 Swo Ss
Se S Sr S0 Ss S Sw
Sz S7 S0 S S0 Swo
Ss S11 S0 Swo Ss
S Se S0 Sw
S10 S0 Swe
Su Su

Table 2: S;, S, Sk € S* such that sig(S; + S;) = sig(Sk)

the entries in the upper right half of Table 2 are shown since S+T =T+ S5
for every two rooted trees S and T in general. Note also that S* is a
minimal signature-closed set containing the trivial tree.

We make another observation here. Consider an unrooted tree T' 22 Ps.
Then there are three rooted trees T}, T3, and T3 that are isomorphic to T,
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namely T\ = z + S4, T2 = Ss, and T3 = S3 + S3. By Tables 1 and 2 we see
that sig(Ty) = sig(T3) = sig(S1) # sig(Ss) = sig(T2), that is, it is possible
that two rooted trees have different signatures and are isomorphic to each
other when unrooted. In general, if T is an unrooted tree of order n > 2
with V(T) = {v1,v2,...,vn}, then there are n rooted trees Th,T3,...,T,
each of which is isomorphic to T and v, = v; for 1 £ ¢ < n. Then observe
that T is modular 2-colorable if and only if T; is modular 2-colorable for
each i, 1 € i € n. Therefore, to determine whether a given unrooted tree
T is modular 2-colorable or not, it suffices to root T at any vertex and
compute the signature of the resulting rooted tree.

3 The Main Result and Algorithm

As mentioned before, our goal is to be able to obtain the signature of a
given rooted tree. In order to do this, we state another useful lemma,
which provides us with the means to modify a rooted tree without altering
its signature. The proof is omitted since it is an immediate consequence of
Lemmas 2.1 and 2.2.

Lemma 3.1 Suppose that Ty and T, are rooted trees with sig(Ty) = sig(T3).
Then (a) sig(z + T1) = sig(z + T2) and (b) sig(S + T1) = sig(S + Tz) for
every rooted tree S.

Theorem 3.2 For a given rooted tree T, there exists a rooted tree S € S*
such that sig(S) = sig(T).

Proof. We proceed by induction on the order n of T. If n = 1, then
T = 8; € 8* and the result is immediate. For an integer n > 1, suppose
that for every rooted tree T" of order at most n there exists S’ € §* such
that sig(S’) = sig(T”). Now let T be a tree of order n + 1 rooted at the
vertex vr. If vr is an end-vertex, then there exists a rooted tree T” of order
n such that T = z+T". Let §’ € S* such that sig(S’) = sig(T”). Since S* is
signature closed, there exists S € S* with sig(S) = sig(z + S’). Therefore,
Lemma 3.1(a) implies that sig(S) = sig(z + §') = sig(z + T") = sig(T).
Otherwise, there exist two rooted trees T' and T" such that T = T" 4+ T"
and observe that the order of each of 7' and T is at most n. Let 5/, S” € &*
such that sig(S’) = sig(T”) and sig(S”) = sig(T"). Since & is signature
closed, sig(S) = sig(S’ + S”) for some S € S*. Hence, sig(S) = sig(S’ +
S") = sig(T' + T") = sig(T') by Lemma 3.1(b), completing the proof. =



The proof of the preceding theorem is constructive and readily yields the
following recursive algorithm which, when given a rooted tree T, returns a
tree § € &* with sig(S) = sig(T).

Case 1. If T € S*, then return S =T.

Case 2. If T ¢ 8*, then T is nontrivial and N(vr) is nonempty.

Subcase 2.1. If vr has only one child v, let T/ be the subtree of T rooted
at v. Recursively find S’ € §* with sig(S5’) = sig(T”). Return S € S* with
sig(S) = sig(z + 9').

Subcase 2.2. If vr has n children vy,vs,...,v, wWhere n > 2, then let
T’ be the tree obtained from T by deleting the subtree rooted at v, and
let T” be the tree obtained from T by deleting the subtrees rooted at
V1,V2,...,Un_1. Recursively find §’,5” € S§* such that sig(S’) = sig(T")
and sig(S”) = sig(T"). Return S € §* with sig(S) = sig(S’ + S”).

Theorem 3.3 Given a rooted tree T the algorithm returns a tree S € S*
with sig(S) = sig(T). The running time of the algorithm is linear in the
number of vertices of the tree T.

Proof. The proof of Theorem 3.2 guarantees that the algorithm termi-
nates correctly. The number of recursive calls is at most the number of
vertices in the tree. During each call either T is identified as a member of
S* or a table look-up is used to produce the tree in S*. So each call can be
performed in constant time and so the running time is linear in the number
of vertices of the tree. ]

4 Existence of 3-Modular Colorings of Trees

We note in closing that Theorem 3.2 can be modified to show that for every
tree T there exists a modular 3-coloring of T and so mc¢(T') < 3, which gives

an alternative proof of Theorem 1.2.
Let ¢ : V(T') — Zj be a k-coloring of a rooted tree T. For an integer
« € Zg, the a-root adjusted color sum o4 (v) of a vertex v is defined by

_f oW +a fv=uvr
oa(v) = { o(v) otherwise.

The coloring ¢ is called an a-root adjusted modular k-coloring (or simply an
(o, k)-adjusted coloring) of T if 04(u) # 04(v) in Zj for every pair u,v of
adjacent vertices in T'. Hence, ¢ is a modular k-coloring of T if & = 0 but
the converse does not hold in general. (Recall that the converse does hold
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for k = 2, which is stated in (1).) The k-signature sigy(T) of T is the set of
ordered triples of integers in Z; such that (a, 8,7) € sigi(T') if and only if
there exists an (a, k)-adjusted coloring of T with c(vr) = B and o4 (vT) = 7.
If S is a nonempty set of rooted trees, then & is k-signature closed if (i) for
every T € S there exists S € S such that sig,(S) = sigi(z + T) and (ii) for
every pair T1,T; € S there exists S € S such that sig, (S) = sigi(T1 + T3).
Note that a rooted tree T' has a modular k-coloring if and only if
(0, 8,) € sig(T) for some integers 8,7 € Zi. In particular, T has a mod-
ular 3-coloring if and only if (0, 3,7) € siga(T) for some integers 3,7 € Z3.
It turns out that the set S3 = {54, 52, S3} is 3-signature closed, where
81, S3, and S3 are the first three rooted trees in Figure 2. Also, it can be
verified that
010 € sigg(S;) for1 <i<3. (5)

By an argument similar to the one used in the proof of Theorem 3.2, we
can show that for an arbitrary rooted tree T there exists a tree S € Sz such
that sigg(S) = sigg(T’). Then by (5) it follows that S is modular 3-colorable
and so is T, that is, mc(T) < 3.
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