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Abstract

A decomposition 2 of a graph H by a graph G is a partition of the
edge set of H such that the subgraph induced by the edges in each
part of the partition is isomorphic to G. The intersection graph I(2)
of the decomposition 2 has a vertex for each part of the partition
and two parts A and B are adjacent iff they share a common node
in H. If I(9) = H, then 2 is an automorphic decomposition of H.
If n(G) = x(H) as well, then we say that 9 is a fully automorphic
decomposition. In this paper, we examine the question of whether
a fully automorphic host will have an even degree of regularity. We
also give several examples of fully automorphic decompositions as
well as necessary conditions for their existence.

1 Introduction

All graphs in this paper are finite, undirected, simple graphs with no iso-
lated vertices. We will use notation consistent with [3, 9]. In particular,
for any graph G, n(G) denotes the the number of vertices in G and ¢(G)
denotes the number of edges in G. As usual, K, and P, will denote, respec-
tively, the complete graph and the path on n-nodes. However, the degree of
a vertex v in a graph G will be denoted by deg(v). For all other undefined
graph theory terminology, refer to West {9].

A decomposition 9 of a graph H (called the host) is a partition of the
edge set of H. The subgraphs of H induced by the parts of the partition are
the blocks of the decomposition [3]. By definition, blocks are edge-disjoint
but in general, they may share common nodes. The intersection graph
I(9) of the decomposition 2 has a vertex for each block and two vertices
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are adjacent iff they share a common node. To help separate the levels of
abstraction, the term “vertex” will be used for vertices of the intersection
graph and the term “node” will be used for vertices of the host graph and
its blocks.

A decomposition 2 is automorphic iff the host H and I(2) are iso-
morphic [2]. A decomposition is cyclic iff the host H is (isomorphic to) a
graph with node set Z,, (the integers modulo n) in which the translations
T — z +t are automorphisms of H carrying blocks into blocks.

We restrict ourselves to the case where all blocks of the decomposition
are isomorphic to a single graph G. This graph is the prototype for the
decomposition. A decomposition 2 with prototype G is said to be a G-
decomposition of H [3]. In this case, we say that G is a divisor of H. If
there is an automorphic decomposition of H, then H is an automorphic
host. Similarly, if there is an automorphic G-decomposition of H, then G
is an automorphic divisor of H [2].

The paper by Beeler and Jamison [2] gives several results concerning
automorphic decompositions. Here d(H) denotes the average degree of H.

Theorem 1.1 (2] If 9 is an automorphic G-decomposition of H, then (i)
e(H) = n(H)e(G); (ii)) The average degree of H is d(H) = 2¢(G); (i)
n(G) < x(H), where x(H) is the chromatic number of H.

In this paper, we consider the case of an automorphic G-decomposition
of H such that x(H) = n(G). Such a decomposition will be referred to
fully automorphic. Analogous definitions will be used for fully automorphic
divisor and fully automorphic host.

Decompositions and colorings are related concepts (sf. [3]). Hence it
is important to clarify that the notion of an automorphic decomposition is
completely different from that of an automorphic coloring. Given a graph
G, an automorphic edge (vertez)-coloring of G is a proper edge (vertex)-
coloring such that each automorphism of the graph preserves the coloring
(6]

One of the primary questions raised in (2] was whether all automorphic
hosts are regular of even degree. This question is the primary motivation
behind the introduction of fully automorphic decompositions. This paper
will investigate the possible structure of fully automorphic decompositions
and provide several examples. We will also prove that certain classes of
fully automorphic hosts are regular of even degree.
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2 Necessary conditions and regularity results

In this section, we give several necessary conditions for the existence of a
fully automorphic decomposition. To facilitate this discussion, we prove
four additional necessary conditions for automorphic decompositions in the
following lemma.

Lemma 2.1 In addition to the conditions of Theorem 1.1, the following
are necessary for the existence of an automorphic G-decomposition of H:

(i) o(H)n(G) < n(H), where a(H) is the independence number of H;

(i) For any node v € V(H), at most w(H) G-blocks meet at v, where
w(H) is the clique number of H;

(iii) The average number of G-blocks that meet at any node of H is n(G);
(iv) n(G) < w(H).

Proof.

(i) Since 2 is automorphic, /(2) must have an independent set of size
o(H). Thus we must have a(H) independent G-blocks. Each block
requires n(G) distinct nodes in H, so a(H)n(G) < n(H).

(ii) If more than w(H) G-blocks meet at any node of H, then these blocks
form a clique of order greater than w(H) in I(2), a contradiction.

(iii) Let b be the average number of G-blocks that meet at a node of H.
Each block has n(G) distinct nodes of H. The total number of blocks
is n(H) by Theorem 1.1. Thus n(H)b/n(G) = n(H), or equivalently,
b =n(G).

(iv) Follows immediately from (ii) and (iii). ]

Theorem 2.2 Suppose that 2 is a fully automorphic G-decomposition of
H. In addition to the conditions of Theorem 1.1 and Lemma 2.1, we require:

(1) n(G) = w(H) = n(H)/a(H) = x(H);
(i) In 2D there are n(G) G-blocks meeting at any node of H;

(iii) If G is not the disjoint union of Py’s, then 6(H) > n(G) + 1, where
0(H) is the minimum degree of H;
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(iv) H is not complete.
Proof.

(i) Note that n(G) < w(H) < x(H) and n(G) < 287 < x(H) by
Theorem 1.1. Further, in a fully automorphic G-decomposition of H
we have that n(G) = x(H). From this it follows that:

n(G) = w(H) = n(H)/o(H) = x(H).

(i) By Lemma 2.1, we have that at most x(H) G-blocks meet at any node
of H. On average, n(G) blocks meet at any node of H by Lemma 2.1.
We have n(G) = w(H) by (i). Thus, there are no nodes of H that
have more than n(G) blocks. Thus, at any node of H, we have n(G)
G-blocks.

(iii) Assume that G is not the disjoint union of P’s. Take u € V(H)
such that degg(u) = 6(H). If 6(H) = n(G), then there is a G-block,
A € 9, representing u in I(9) that intersects exactly n(G) other
blocks. Let & be the set of G-blocks that share a common node with
A. For each node v of A we must choose n(G) — 1 distinct blocks
to intersect A at v. Since |#B| = n(G), we have n(G) choices for
each node of A, where each choice leaves out a distinct element of
B. If we use n(G) different choices, then each pair of elements of
2 share a common node with A. This would result in a clique of
size n(G) + 1 > w(H), a contradiction. Thus, we can make at most
n(G) — 1 different choices for each node of A. Thus, A shares the
same node set with at least n(G) — 2 other blocks. Hence, n(G) — 1
copies of G share the same node set. It follows that the most edges
that this set of shared nodes can have is n(G)(n(G) — 1)/2. Thus:

(@) - 1e(6) < G ZD) , () < 29

However, this implies that G has an isolated node or G is the disjoint
union of P;’s. In either case, we have a contradiction.

(iv) Note that complete graphs of even order do not have automorphic
decompositions by [2]. Hence, we need only consider complete graphs
of odd order, say H = Ks,41. Hence n(G) = 2rn+ 1 and e(G) =
e(K2n4+1)/n(Kan+1) = n. Since each edge covers at most two distinct
nodes, G must contain an isolated node, a contradiction. "

In (2], Beeler and Jamison provided regularity results for a certain class
of automorphic G-decompositions. In the following theorems, we establish
similar results regarding fully automorphic decompositions.



Corollary 2.3 Suppose that H admits a fully automorphic G-decomposition.

(i) If G is a d-regular graph, then H must be n(G)d-regular;

(i) If the smallest distinct elements of the degree sequence of G are 1 and
a, where a > 2¢(G) — n(G) + 1, then H must be 2¢(G)-regular.

Proof.

(i) Theorem 2.2 implies that n(G) G-blocks meet at every node of H.
Since G is d-regular, each of these blocks contribute d edges. Thus,
each node of H is incident with n{G)d edges.

(i) If G is the disjoint union of P’s, then the result follows from (i).
Otherwise, it follows from Theorem 2.2 that §(H) > n(G) + 1. The-
orem 2.2 also implies that exactly n(G) G-blocks meet at any node
of H. Since the smallest elements of the degree sequence of G are 1
and a, it follows that the smallest admissible degrees for nodes of H
are n(G) and n(G) — 1 + a. Since §(H) > n(G) + 1, it follows that
0(H) 2 n(G) — 1 + a. However, a > 2¢(G) — n(G) + 1 implies that
0(H) > 2e(G). Since H has no nodes of degree lower than 2¢(G), it
follows from Theorem 1.1 that H is 2e(G)-regular. [ ]

Theorem 2.4 If H admits a fully automorphic Py-decomposition, then H
18 6-regular.

Proof.  Since Py is not a disjoint union of Pp’s and H admits a fully
automorphic Py-decomposition, it follows from Theorem 2.2 that §(H) > 5.
Since d(H) = 6 by Theorem 1.1, we need only show that H has no nodes

of degree five.

Suppose to the contrary that H has a node of degree five. This means
that there is a Pj-block A that intersects exactly five others, say B;, Bs,
Bs, By, and Bs. At every node of A, exactly three of these blocks must
intersect A. For convenience, we denote these blocks by their indices. At
most, we can have a clique of order four, and one of these blocks is A. Thus
at most three of the B; mutually intersect. Further, since at most four of
these combinations are used, at least two pairs of blocks never appear on
a node of A. Without loss of generality, suppose that the pairs 12 and 13
never appear on a node of A. We cannot allow any two of 234, 235, and
245 as this would result in a clique of size n(G) + 1. Thus, we have 145
and 345 as well as one of 234, 235, or 245. Hence either B, or Bs intersect
A three times. Without loss of generality, assume Bs intersects A three
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times. Hence Bg and A share a common node set. It follows that any other
P4-block may share at most one node with A, otherwise that block will
share at least one edge with either A or Bs. However, By shares two nodes
with A, a contradiction. [ |

3 Constructions using valuations

Let G be a graph with e(G) = q. If z € Zy,, define |z|, = min{z,n —z}. A
Z,,-labeling of G is an injective map f : V(G) = Z,. A Zn-valuationisa Z,-
labeling f of G for which the induced edge labeling f*(zy) := |f(z)— f(¥)|n
is injective and n/2 does not appear as an edge label. A Z,-valuation

is closed if f*(G) = f*(E), where: f*(E) = {f*(zy) : zy € E} and
(G ={lf(@) = fW)ln : z,y € Viz # y} [1].

Rosa [8] introduced several important types of valuations, including
graceful labelings. A graceful labeling on G is a Zag41-valuation in which
all of the vertex labels come from {0, 1, ...,q}. Note that a graceful labeling
is a closed Z,-valuation for all n > 2¢ + 1. An extensive list of graphs that
admit graceful and related labelings can be found in [4].

Let S be a set of numbers in Z,,, all between 1 and n/2, inclusive. The
circulant Cy,(S) has vertex set Z, and edge set {zy: z,y € V,|z—y|, € S}.

The following theorem constructs an infinite class of automorphic de-
compositions using circulants and valuations.

Theorem 3.1 (2] G is a cyclic automorphic divisor of Cp(S) zﬁ' there ez-
ists a closed Zn-valuation f on G such that S = f*(E).

Using Theorem 3.1 and the results of [5] and [7] yields examples of fully
automorphic decompositions. For completeness, we list the relevant results
from these papers.

Theorem 3.2 [5] Let G = Cr(a,b) be a connected circulant with |a|, #
|bln. Then:

(i) x(G) =2 if and only if a and b are odd and n is even;

(i) x(G)=4if3tn, n#5 and b= 22a (mod n) or a = £2b (mod n);
(#i) x(G) =4 if n =13 and b = 50 (mod 13) or a = £5b (mod 13);
(iv) x(G) =5 ifn=>5;
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(v) x(G) = 3 in all other cases.

Theorem 3.3 [7] Let G = Cr(a,b, a+b) be a connected 6-regular circulant,
wheren > 7 and a, b, and a+b are pairwise distinct positive integers. Then:

G x(G)=Tifand onlyifn=17;
(it) x(G) = 6 if and only if G = C1,(1,2,3);

(i) x(G) =5 if and only if G = Cp(1,2,3) and n # 7,11 is not divisible
by 4 or G is isomorphic to one of the following circulants: C13(1,3,4),
Cf17(1’ 3, 4); Cls(la 3, 4); C’19(1, 77 8); 025(1, 31 4): 026(1a 7, 8):

033(1’ 6, 7): 037(1’ 10) 11);

() x(G) = 3 if and only if 3|n and 3t a,b,a + b;
(v) x(G) = 4 in all other cases.

From these two results and Theorem 3.1, the following corollary is im-
mediate.

Corollary 3.4 The following graphs H have a fully automorphic G- de-
composition: (i) H & Can, G & Py; (i) H = Cs,(a,2a), G = P3, and
3ta,2a; (i) H = Csn(a,b,a +b), G= K3, and 31 a,b,a + b.

Other than the trivial cases (i.e., a cycle or a complete graph), the chro-
matic number of circulants has been understudied, except for the results of
Heuberger [5] and Meszka et al. [7]. Those results suggest that the order of
the host is a multiple of the order of the prototype in a fully automorphic
decomposition. This is also suggested by the following result.

Lemma 3.5 If Ciyi(S) is a circulant such that for alla € S, kta and m
is sufficiently large, then x(Cmi(S)) < k.

Proof. Let V(Crmi(S)) = {0,1,...,mk—1}. We claim that the color classes
are the congruence classes modulo k. Since k { a for all a € S, it follows
that no two elements in a congruence class share a common edge. Thus we
need at most k colors. [ |

This implies that if k|n and &k { a for all a € S, then at most k colors
are required for C,(S). This observation leads us to study p-modular valu-
ations. A (closed) p-modular Zpy-valuation of G is a (closed) Zpi-valuation
of G such that for all uv € E(G), pt|f(u) — f(v)]pk-
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Corollary 3.6 Let G be a graph with n(G) = p and take f to be a closed p-
modular Zy-valuation of G with S = f*(E(G)). Then H = Cpi(S) admits
o fully automorphic G-decomposition.

Proof. By Theorem 3.1, if f is a closed p-modular Zp,-valuation, it will
induce a cyclic automorphic G-decomposition 2 of H = Cpr(S). Further,
x(H) < p by Lemma 3.5. Since 2 is automorphic, we have that x(H) > p
by Theorem 1.1. Thus, it follows that x(H) = p. [ |

Previously we have used the chromatic number to derive regularity re-
sults. However, we can use automorphic decompositions to determine the
chromatic number. While this does not give the chromatic number of all
circulants, it does give the chromatic number of many circulants where the
colorability was unknown.

We now give a method for constructing closed p-modular valuations on
K.

Theorem 3.7 The complete graph, K,, has a closed p-modular Zpy-valu-
ation for sufficiently large k.

Proof. It suffices to construct the required valuation. Let V(K,) =
{vo,...,up—1} with f(v;) = a;. Suppose that a; < a; for i < j. Further,
assume that a; = ¢ (mod p). Note that if a;4; > 2a; for all 4, then the
differences will all be distinct, provided the modulus is large enough. By
choosing pk > 2m where m is the largest edge label induced by f, we
obtain the required order. Since all differences are distinct and each vertex
label is from a different congruence class modulo p, we have constructed the
required p-modular Zpx-valuation. Since any valuation on K, is trivially
closed, this is a closed p-modular Z-valuation. [ ]

Using Theorem 3.7 and Corollary 3.6, the following proposition is im-
mediate.

Proposition 3.8 For suitably chosen S and sufficiently large k, Cpr(S)
has a fully automorphic K,-decomposition.

We can use the notion of graceful labelings to give additional examples
of fully automorphic divisors.

Theorem 3.9 Let G be a connected graph of order p, and let f a graceful
labeling on G. It follows that f is a closed p-modular valuation on G iff G

s a tree.



Proof. If G is not a tree, then e(G) > n(G). Since f is a graceful
labeling on G, then the edge labels induced by f are {1,2,...,e(G)}. Since
e(G) 2 n(G), it follows that there is an edge labeled n(G) = p, contrary to
the definition of p-modular valuation.

If G is a tree, then e(G) = p— 1. Since f is a graceful labeling, no
edge is labeled with an element larger than p — 1. It follows that no edge
is labeled with a multiple of p. By definition, f is a closed Zzp_;-valuation
on G. Thus, f is a closed p-modular Zs,_;-valuation on G. ]

The following proposition is an immediate consequence of Theorem 3.9
and Corollary 3.6.

Proposition 3.10 If G is a graceful tree of order p, then Cpi(1,...,p — 1)
has a fully automorphic G-decomposition for k > 1.

4 Open Questions

There are three main questions related to this study that warrant further
exploration. First, under what conditions is a graph a fully automorphic di-
visor? Similarly, what graphs obtain a closed p-modular valuation? Finally,
is every fully automorphic host regular of even degree?

Acknowledgements The author would like to thank the anonymous
referee for their comments regarding the final revision of this paper.

References

(1] Robert A. Beeler and Robert E. Jamison. Valuations, rulers, and cyclic
decompositions of graphs. Congr. Numer. 183 (2006), 109-127.

[2] Robert A. Beeler and Robert E. Jamison. Automorphic decomposi-
tions of graphs. Graphs Combin. 27 (2011), no. 2, 149-160.

[3] Juraj Bosék. Decompositions of Graphs, volume 47 of Mathematics and
its Applications (East European Series). Kluwer Academic Publishers
Group, Dordrecht, 1990. Translated from the Slovak with a preface by
Stefan Znsm.

(4] Joseph A. Gallian. A dynamic survey of graph labeling. Electron. J.
Combin. 5 (2010) Dynamic Survey 6.

95



(5] Clemens Heuberger. On planarity and colorability of circulant graphs.
Discrete Math. 268 (2003), no. 1-3, 153-169.

[6] Giuseppe Mazzuoccolo. The NP-completeness of automorphic color-
ings. Discuss. Math. Graph Theory 30 (2010), no. 4, 705-710.

[7] Mariusz Meszka, Roman Nedela, and Alexander Rosa. Circulants and
the chromatic index of Steiner triple systems. Math. Slovaca 56 (2006),
no. 4, 371-378.

[8] A. Rosa. On certain valuations of the vertices of a graph. In Theory of
Graphs (Internat. Sympos., Rome, 1966), pages 349-355. Gordon and
Breach, New York, 1967.

[9] Douglas B. West. Introduction to Graph Theory. Prentice Hall Inc.,
Upper Saddle River, NJ, second edition, 2001.

96



