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Abstract

In this paper, we consider a variation of toughness, and prove
stronger results for the existence of [a,b]-factors. Furthermore, we
show that the results are sharp in some sense.
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1 Introduction

The graphs considered here will be finite undirected graph without multiple
edges and loops. Let G be a graph. We use V(G) and E(G) to denote its
vertex set and edge set, respectively. For a vertex z € V(G), we write
Ng(z) for the set of vertices of V(G) adjacent to = and use §(G) for the
minimum degree of G. For a subset S of V(G), We use G — S to denote
the subgraph of G induced by V(G) —S. A vertex z is often identified with
the set {x}.

Let g and f be two integer-valued functions defined on V(G). A span-
ning subgraph F of G is called a (g, f)-factor if g(z) < dr(z) < f(z) holds
for all z € V(G). A (g, f)-factor is called an [a,b]-factor or a k-factor if
g(z) =a and f(z) =bor f(z) =g(z) =k for all z € V(G).

Other terminologies and notations not defined here can be found in [1].

The notion of toughness was first introduced by Chvatal in [2]. If G is
complete, define ¢{(G) = co. If G is not complete,
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The following results are well known to us.
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Lemma 1.1[3] Let G be a graph. Ift(G) > k, |V(G)| = k+1 and
k|V(G)| is even, then G has a k-factor.

Lemma 1.2(7] Let G be a graph. Ift(G) > a—1+ ¢, then G has an
[a, b]-factor.

In [4], a variation of toughness was introduced: If G is complete, define
7(G) = 00. If G is not complete,

Obviously, 7(G) > t(G). The following results are the improvement of
Lemma 1.1 with the order of G large enough.

Lemma 1.3[4] Suppose 7(G) > 1 and |V(G)| is even. Then G has a
1-factor.

Lemma 1.4[4] Suppose 7(G) > 2 and |V(G)| > 3. Then G has a
2-factor.

Lemma 1.5(5] Suppose 7(G) > k, k|V(G)| is even, and |V (G)| > k*—1.
Then G has a k-factor.

We discuss the relationship between 7(G) and the existence of [a, b]-
factors, and improve Lemma 1.2 with given assumption.

Theorem 1.6 Let G be a connected graph with |[V(G)| > 3 and b > 1.
Then G has a (1,b)-factor if 7(G) > }.

Theorem 1.7 Let G be a graph with [V(G)| >ab—a and2 < a < b.
If7(G) > a—1+4%, then G has a (a, b]-factor.

The proof of these two theorems will be given in next section and the
following lemmas are needed.

Lemma 1.8(8] A graph G has a (g, f)-factor if and only if for any two
nonadjacent subsets S,T C V(G),

f(8) = 9(T) + de-s(T) — h(U) 20,

where h(U) is the number of components C of U = G — (SUT) such that
f(z) = g(z) for all z € V(C) and f(V(C)) + ec(V(C),T) = 1( mod 2).

Lemma 1.9(6] Let G be bipartite or f(z) < g(z). Then G has a (g, f)-
factor if and only if for any subset S C V(G),

f(8) = 9(T) + de-s(T) 20,
where T = {z|z € V(G) — S,dg-s(z) < g(z) — 1}.
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The result in Theorem 1.6 is sharp. To see this, consider G; = K,, V
(mb + 1)K where "V” means join and m is an arbitrary positive integer.
It is easy to find out that 7(G) = zB— = % and B|S| — (G - S) =
m-(bm+1)=-1 <01fsetS V+ Kp). ByLemmalQGl has no
(1, b)-factor but 7(G) = }.

To see Theorem 1.7 is sharp in some sense, we construct the following
graph Gz. V(G2) = AU B U C whereA, B,C are disjoint with |A| =
|[B] = (nb+ 1)(a — 1) and |C| = n(a — 1). Both A and C are cliques
in G2, while B is isomorphic to (nb + 1)K,—;. Other edges in G; are a
perfect matching between A and B and all the Pairs between B and C.
Let X = (A—u)UvUC where u € A and v € B is matched to u in G,.
Then | X| = (nb+n +1)(a — 1) and w(G — X) — 1 = nb + 1. This follows
that

(nb+n+1)(a-1) a-—1
T(G) = BT 1 <a—1+—T—.

Ifwelet S=C and T = B, b|S| — a|T| +dg-s(T) = bn(a—1) —a(a —
1)(nb+ 1)+ (a — 1)%(nb+1) = —(a — 1) < 0. G has no [a, b] factor. It
is easy to see 7(G) can be made arbitrarily close to a — 1 + 21 when n is
large enough.

Unfortunately, we doubt the condition |V (G)| > ab — a is not sharp for
a>1.

2 Proof of Theorems

Proof of Theorem 1.6. Suppose that G has no [1, b]-factor. There exists
a subset S of V(G) such that

bS] — i(G — S) < -1,

where i(G — S) denoted by isolated vertices in G — S. Clearly, S = 0.
Otherwise, i(G — @) = i(G) > 1, contradicts the assumption. Thus w(G —
S) 2 G — 8S) 2 b|S|+1 = 2. Therefore

sl . I8l _1

T(G)Sw(G—S)—l “bS|+1-1" b’

a contradiction. m|

Proof of Theorem 1.7 Suppose, by the contrary, G has no [a,b]-
factors. There exists S of V(G) such that

6(5,T) = b|S| — a|T| + de-s(T) < -1, (1)



where T = {z]z € V(G) — S,dg-s(z) < a — 1}. Choose S satisfying (1)
and make |S| as large as possible. Let U = V(G) — (SUT). Then

(i) [INe(y)NT|<a—1foranyyeT.

(ii) [INe(2))NT| <b—1for any z € U.

Since 0 < b|S U 2| — a|T| + dg—(sux(T) < 6(5,T) + b ~ ec(2,T), we
have eg(2,T) < b—1, that is [Ng(z)NT| <b—1forany z € U.

Let G* be the graph obtained from G by joining each vertex of S to all
the other vertices. Then |V(G*)| = |V(G)|, 7(G*) = 7(G) and G* has no
[@, b]-factor. Obviously,

(iii) Ng-(z) =V(G*) —z forany z € S.

(iv) b|S| — a|T| + dg--s(T) — w(U) < -1.

Set Gop = G*,So = S,To = T and Up = U. We shall construct sub-
graphs G; with 7(G;) > a — 1+ 272 inductively. Define

8; = b|S;| — a|T| + dg--s(T3) — w(Us),

and
Bi = min dg--s(y).

(Later, we shall show that T; # 0.) Clearly, 8; <a—1. If |[V(Gi)| < a +1,
then stop. otherwise, choose y; € T; such that dg._s(¥;) = Bi, and define
v = dg,-s,(yi). Obviously, B; > v:. If |S;| < @ —1 —;, then stop. Other-
wise, choose any subset S! of S; with |S!| = a—1—7;. Set T{ = Ng-(v:)NT;,
Ul = Ne-(y:) NU;, Siy1 =8 =S, T =Ti — (T V), Uin = U; = U
and Giy1 = G; — (S: U T‘/ Uy; U U:) Then V(GH.]) =84 UTia Ui
and |S}| + |T{| +|U]| =a - 1.

Claim 1 7(Gi) > a— 1+ &L,

If 7(G;) < a—1+ 232, then G; is not complete and there exists a subset
X of V(G;) such that w(G;—X) > 2 and |X| < (a—1+23)(w(G:i—X)-1).
By (iii), X 2 S;. Set

Y =UZNSIUT{uU))u X.
Then Y 2 S. Thus yo, %1, ,¥i—1 are isolated vertices in G* —Y and
wG@ -Y)2i+w(Gi-X)>2
On the other hand,
Yl = ia-1)+|X]
< i(a—1)+(a—1+a—;1-)(w(G.~—X)—l)

a—1
)

< (a—1+9—;-1-)(w(G"—Y)—1)+i(a.—1)—i(a—1+

< (@-1+ e -Y) 1),
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which contradicts to 7(G*) > a — 1+ 231,
Claim 2 6,'.‘.1 < 4;.

b|Si+1] — a|Ti41] + de—s(Tit1) — w(Uigr)

b1Si| — bl Si| — o|Ti| + a|T; U ys| + dg--5(T3) — dg-—s(T{ Uys)
—w(Us) + |Uj|

6 —bla — 1) + (a — B)(|Ti| + 1)(% - |TY))
6i—(a—Bi—1)b—|T{)) — b+ 1)(Bi — %) — (b—a)

d;

it1

In

A

since w(Ui41) 2 w(U;) —|U{|. Moreover, if 8; > v;, then 6;11 < &;— (b+1).
If 641 = 6; — (b—a), then B; = 4; = a — 1. Note that Claim 2 implies that
5;'(50S—1 and6i5—2fori21.

Claim 3T; # 0.

Suppose T; = @, then w(U;) = w(G; — S;) > 2. Otherwise, w(U;) < 1.
Fori>1, =2 > é; = b|S;| — w(U;) > —1, a contradiction. Since —1 > §
and Ty = @, then Sy # @. Thus —1 > 6 = b|Sp| —w(Up) > b—-1>0, a
contradiction too. Therefore |S;] > (a — 1+ %51)(w(U;) — 1) by Claim 1.
Hence

6 = bSi| —w(Ui)
> ba~1+222)w(U) = 1) - w(U)
= (ba—b+a—-2)w(lU;)—(ba—b+a—1)
2 (b+1)(a-1)-2>0,

which is a contradiction.

For some m, either |V(Gn)| <a+1or|Sp|<a—1—v,.

Suppose |S;,| < a—~1-1,, and let X = Ng,, (ym)- Then y, is an isolat-
ed vertex in Gy, — X. Since 7(Gm) 2 a— 1+ 221 | X| = |Sp|+m <a-—1
and X = V(Gp) — ym. This means that |V(G,,)| = |X| +1 < a. Then we
consider |V(Gn)| < a+1 in the following.

Claim 4 G,, is complete.

Suppose Gy, is not complete. Then there exists a subset Y C V(G,)
such that w(G,, —Y) > 2. Hence |Y| < |G| —w(Gp = Y) < a —1.
Therefore a — 1 + “—;1 <7(Gm) £ m% < a— 1. This is impossible.

Claim 5 |V (Gr)| # a + 1.
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If [V(Gnm)| = a + 1, then m # 0 and G, is an a-factor itself.

-2 Om = b|Sm| — a|Trm!| + de~—s(Trn) — w(Up)

a|Sm| = a|Tm| + dg -5 (Tm) — R(Unm) + (b — a)| S|
+h(Um) — w(Un)

0+ h(Up) —w(Uy)

-1,

v IV

v v

since w(Up,) < 1. This is a contradiction.
Then |V(Gnm)| < a, let 8 = fBm.

Casel f<a-—2.
By the proof of Claim 2,

biy1 < Si—(a-Bi-10b-|T})-(b—a)
S Ji—(a—ﬂi—l)(b-ﬂ.-)—(b—a)
< §i—(@-B-1)(-B)—(b-a),

for 0 <1 < m—1. Hence
Om < 0o —m(a— B8 —1)(b- B).

On the other hand,

Sm = bS] = a|Tm| + dg-—5(Tm) — w(Unm)
2 (ﬂ - a)ITm[ - |Um|
> (B-a)(B+1—|Un|)—|Unl
= (B—a)(B+1)—(B—a+1)|Un|
> (B-a)(B+1).
Hence o+ (B-a)B+1)  B+1
5 -
M@ DE-p) “a-p-1- "
Therefore,

|V(G*)| = ma + |[V(Gm)| £ a* —a < ab—a.

Contradicts the assumption.

Case2f=a-1.
Then |V(Gm)| = B8+ 1 = a. This is possible only if Sm = @ and
|V(Gm)| = a, and then

bm 2 (8 = a)|Tm| — [Un| = =(1Tim| + [Un|) = —a.
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By Claim 2, m < 8 — 6,n < —1 + a. Hence
[V(G*)| = ma +|V(Gn)| € a® < ab—a.

Contradicts the assumption too. This completes the proof of Theorem. O
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