A STAIRCASE ILLUMINATOR FOR SIMPLY
CONNECTED ORTHOGONAL POLYGONS

MARILYN BREEN

ABSTRACT. Let S be an orthogonal polygon in the plane bounded by
a simple closed curve. Assume that every two boundary points of $
have a common staircase illuminator whose edges are north and east.
Then S contains a staircase path p9 whose edges are north and east
such that pp illumines every point of S. Without the requirement
that the illuminators share a common direction, the result fails.

1. INTRODUCTION.

We begin with some definitions from [5] and [6]. A set B in the plane
is called a boz if and only if B is a convex polygon whose edges are parallel
to the coordinate axes. A set S in the plane is an orthogonal polygon if and
only if S is a connected union of finitely many boxes. Point g of S is a point
of local nonconvexity (Inc point) of S if and only if, for every neighborhood
N of ¢, NN S fails to be convex. An edge e of S is a dent edge if and only
if both endpoints of e are Inc points of SN H, for H an appropriate closed
halfplane determined by the line of e.

Let X be a simple polygonal path in R? whose edges [v;—1,v:),1 < i < n,
are parallel to the coordinate axes. For points z,y in S, the path A is called
an orthogonal  — y path in S or simply an = — y path in S if and only
if A lies in S and contains the points  and y. In this case A(z,y) will
represent the subpath of A from z to y {ordered from z to y). The path A
is an z — y geodesic if and only if ) is an z — y path of minimal Euclidean
length in S. (Clearly an z — y geodesic need not be unique.) The path A is
called a staircase path (or simply a staircase) if and only if the associated
vectors alternate in direction. That is, for an appropriate labeling, for i odd
the vectors Z;_19; have the same horizontal direction, and for i even the
vectors 7;_17, have the same vertical direction. The edge [vi—, ;] will be
called north, south, east, or west according to the direction of vector T 0.
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Similarly, we use the terms north, south, east, west, northeast, northwest,
southeast, southwest to describe the relative position of points.

For points = and ¥ in set S, we say = sees y (z is visthle from y) via
staircase paths if and only if there is a staircase path in S that contains both
z and y. Point x clearly sees y (y is clearly visible from x) via staircase paths
if and only if, for some neighborhood N of y,z sees each point of NN S
via staircase paths. A set S is staircase convez (orthogonally convez) if and
only if, for every pair z,y in S,z sees y via staircase paths. Similarly, a set
S is starshaped via staircase paths (orthogonally starsheped) if and only if,
for some point p in S, p sees each point of S via staircase paths, and the
set of all such points p is the staircase kernel of S, Ker S. For ) a staircase
path with S N A connected and for z a point in S, is called a staircase
illuminator for x if and only if x sees via staircase paths in S at least one
point of \. When this occurs, we say that A illumines point z. Path A is a
staircase illuminator for set S if and only if A illumines every point of S.

We will use & few standard terms from graph theory. For F = {B,
...,Bn} a finite collection of distinct sets, the intersection graph G of F
has vertex set by,...,b,. Furthermore, for 1 < ¢ < j < n, the points b;, b;
determine an edge in G if and only if the corresponding sets By, B; in F have
a nonempty intersection. A graph G is a tree if and only if G is connected
and acyclic. A sequence vy, ..., v of vertices in G is a walk if and only if
each consecutive pair v;,v;41 determines an edge of G,1 <i<k—-1. A
walk vq,...,Vx is a path if and only if its points are distinct. Finally, for
By, ..., Bn a collection of distinct boxes in R?, we say that their union is
a chain of boxes (relative to our ordering) if and only if the intersection
graph of {By,..., By} is the path b, ...,b, (where b; represents the set B;
in the intersection graph, 1 < 7 < n). That is, relative to our labeling, for
1<i<j<kB;nNB; #0if and only if j = i+ 1. As Victor Chepoi
(8] has observed, every simply connected orthogonal polygon S may be
represented as a union of boxes whose intersection graph is a tree. An
appropriate decomposition into boxes occurs if we use a horizontal cut at
each point of local nonconvexity of S.

Many results in convexity that involve the usual idea of visibility via
straight line segments have analogues that use the notion of visibility via
staircase paths. (See [3]-[7].) For example, the familiar Krasnosel’skii the-
orem [12] in the plane states that, for S nonempty and compact in R?, S
is starshaped via segments if and only if every three points of S are visible
(via segments in S) from a common point. In the staircase analogue [4], for
S a simply connected orthogonal polygon in the plane, S is starshaped via
staircase paths if and only if every two points of S are visible (via staircase
paths in S) from a common point. Notice that, in the staircase version, the
Helly number three is reduced to two. Moreover, in an interesting study
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concerning rectilinear spaces, Chepoi (8] has generalized the planar result
to any finite union of boxes in R? whose corresponding intersection graph

is a tree.

A similar situation occurs in results involving clear visibility and Inc
points. By [2, Theorem 1}, a nonempty compact connected set S in R? is
starshaped via segments if and only if every three of its Inc points are clearly
visible (via segments in .S) from a common point. In a staircase analogue in
[6], for S a simply connected orthogonal polygon in R2, S is starshaped via
staircase paths if and only if every two points belonging to its dent edges
are clearly visible (via staircase paths in S) from a common point. Again
in [7, Lemma 3] (stated in Result B of this paper), the number two plays an
important role, this time to guarantee that a subset of a simply connected .
orthogonal polygon S lie in a subset of S that is starshaped via staircase
paths.

In this paper, we consider a variation of the starshaped set problem.
Instead of showing that an orthogonal polygon S is starshaped, the idea
is to show that S has a staircase illuminator. Some related results using
segment visibility appear in a paper by Bezdek, Bezdek, and Bisztriczky [1).
Among their results is the following theorem: For S a smooth domain in
R?, if every three points of S are illumined (via segments) by some translate
in S of segment T, then S contains an illuminator that is a translate of 7.
A related result for staircase visibility appears in [3]: Let S be a simply
connected orthogonal polygon in the plane, and let T be a horizontal (or
vertical) segment such that 7" NS is connected for every translate T of T'.
If every two points of S are illumined (via staircase paths) by a translate
of T, then some translate of T illumines every point of S. Here we seek
a corresponding result for staircase illuminators in S, independent of the
translation requirement.

Throughout the paper, ¢/ S and bdry S will denote the closure and the
boundary, respectively, for set S. Readers may refer to Valentine [14],
to Lay [13], to Danzer, Griinbaum, Klee [9), and to Eckhoff [10] for dis-
cussions concerning Helly-type theorems, visibility via segments, and star-
shaped sets. Readers may refer to Harary [11] for information on 1ntersec-
tion graphs, trees, and other graph theoretic concepts.

2. THE REsuLTS.

We will use the following theorems. The first is from [6, Theorem 4],
the second from (7, Lemma 3].

Result A. Let S be a simply connected orthogonal polygon in the plane.
If every (point of each) dent edge of S is clearly visible via staircase paths
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from point p in S, then p sees via staircase paths every point of S. That
is, pe Ker S.

Result B. Let S be a simply connected orthogonal polygon in the plane,
and let A C S. If, for every pair a,b in A,e and b see a common point
of S via staircase paths, then A lies in an orthogonal polygon in S that is
starshaped via staircase paths.

To begin, we establish a preliminary lemma. The following definition
will be useful.

Definition 1. Let S be an orthogonal polygon in the plane bounded by
a simple closed curve (and hence simply connected). For each dent edge
D of S, let Ep, E}, denote the two distinct edges in bdry S adjacent to D.
Select a corresponding neighborhood Np of D such that Np is closed and
convex, with NpN bdryS C DUEpUE}. Let A=U{NpnNbdryS:D a
dent edge of S}.

Lemma 1. Let S, A denote the sets in Definition 1. If point p in S sees
each point of A via staircase paths in S, then pe KerS.

Proof. We will show that every (point of each) dent edge of S is clearly
visible via staircase paths in S from point p. Let D be any dent edge
of S, with Np the corresponding neighborhood in Definition 1, with L =
Lp the associated line, and with Lj, L the corresponding open halfplanes
determined by L. For an appropriate labeling of L, and Ly, EpUE}, C clLa.
Since p sees each point of A via staircase paths in S,p ¢ La, so pe LU L;.
If pe L, then certainly each point of D is clearly visible from p via staircase
paths in S. It remains to consider the case for pe L.

Without loss of generality, assume that line L is vertical, with L; (and
hence p) east of L. (See Figure 1.) Let D have endpoints dy, dj, where dp is
strictly north of dfy. If p is strictly east of any point of D, the result is clear,
so (again without loss of generality) assume that p is strictly northeast of
dp. If there exists a p — dg staircase meeting L only at dy, again the result
is clear. We assert that this must occur: Otherwise, every p — dp staircase
p, dp) meets L at some first point cy strictly north of do. Select staircase
Jo(p, do) so that the associated ¢y = ¢, is as close to dp as possible. Observe
that we may choose points ¢, d strictly east of cp,dp, respectively, with d
south of c, so that ¢ is on the last segment of Ao(p,co) and d is in NpN S.
For any such pair ¢,d,[c,d] € S. In turn, this implies the existence of a
dent edge D2 C [co, do), where the two edges adjacent to D, lie in LU L;.
However, for the south vertex cj of D, there exist points of A near ¢} that
are not visible from p via staircase paths in S. Of course, this contradicts
our hypothesis and establishes our assertion. That is, set S contains a p—dp
staircase path that meets L only at dp.
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Therefore, point p clearly sees each point of D via staircase paths in S.
Since this is true for every dent edge D, we may use Result A to conclude
that p sees via staircase paths in S every point of S. That is, pe KerS,
finishing the proof.

Corollary 1. Let S, A denote the sets in Definition 1. If every two
points of A see a common point of S via staircase paths in S, then S is
starshaped via staircase paths.

Proof. By Result B, A lies in an orthogonal polygon in S that is star-
shaped via staircase paths. For p in the associated kernel, p sees each point
of A via staircase paths in S. Hence by Lemma 1 above, pe KerS, and S
is starshaped via staircase paths.

We will use this result in the following form:

Corollary 1’. Let S, A denote the sets in Definition 1. If S is not
starshaped via staircase paths, then there exists a pair of points a,a’ in
A such that a and o’ see no common point of S via staircase paths in S.
Certainly a and o’ are associated with two distinct dent edges of S.

We are ready to establish our main result.

Theorem 1. Let S, A denote the sets in Definition 1, and let d denote
one of the two permissible directions for staircase paths, either north and
east (south and west) or north and west (south and east). If every two
points of A have a common staircase illuminator in the direction d, then S
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contains a staircase path pp in the direction d such that yp illumines every
point of S.

Proof. For convenience, assume that the direction d is north and east
(south and west). To begin, orient the boundary of S in a clockwise direc-
tion. In an obvious way, this orientation assigns to each edge of bdry S a
unique direction north, south, east, or west.

Assume that S is not staircase starshaped, for otherwise the result is
trivial. Hence by Corollary 1/, A contains pairs of points @, a’ that see no
common point of S via staircase paths in S. Further, every such a,a’ are
associated with two distinct dent edges in S. For every such pair a, @/, select
a corresponding northeast illuminator A for a and o’. (That is, each edge of
) is north or east.) We assume that ) is minimal in the sense that no proper
subset of )\ is a staircase illuminator for a and a’. Moreover, since S is an
orthogonal polygon, we may select A so that, from all such illuminators, A
has minimal length, say m(a,a’). In this way, for each such pair a,a’, we
associate a positive number m(a,a’). The set of all the selected numbers
m(a,a’) is finite and contains a largest member, say mp. For my, select a
corresponding ag, by in A and an associated shortest northeast illuminator
Ao for ag, bg whose length is mg.

Relative to our orientation along bdry S, the two dent edges associated
with ap and bg either have the same direction, opposing directions, or con-
secutive directions (one east or west, one north or south). Because the
arguments for these various possibilities are quite similar, we restrict our
attention to the case in which the dent edges have opposing directions. For
convenience, assume that one dent edge, say n, is north while the other,
say 8, is south. Assume also that the line of n is east of the line of s and
that A, oriented from southwest to northeast, begins at a point southwest
of s (and of ag) and ends at a point southeast of n (and of bp). Then every
minimal illuminator A\ for ag,bp also will begin southwest of s (and of ag)
and will end southeast of n (and of bp). (See Figure 2.) Let T denote the
union of all such minimal illuminators for ag, bg.

We make some preliminary observations about T'. It is easy to see that
T is a staircase convex orthogonal polygon. Further, T' is bounded on the
west by an edge of T. The south endpoint v of this edge is a point of T’
furthest west as well as a point of T furthest south. Similarly, T is bounded
on the east by an edge of T'. The north endpoint w of this edge is a point
of T furthest east as well as a point of T furthest north. Finally, these
observations are independent of the particular orientation of the dent edges
associated with ap and bg. They follow from the minimality of the paths A
used to define T'.

Next, using horizontal cuts (or using vertical cuts) at every point of
local nonconvexity of S, in an obvious way we subdivide S into boxes whose
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corresponding intersection graph is a tree. Let B denote this collection of
boxes. By comments in [5, Lemma 1], for s,¢ in S and for § = 4(s,t) any
s—t geodesic in S, there is a unique shortest chain of boxes in B containing
. Thus any point s of S not in T lies in a (unique) shortest chain C, of
boxes in B from T to s, beginning in a box that intersects T and ending in
a box that contains s. Each point u in such a chain we reach from ' via a
geodesic dy joining u to a closest point of T'. The path 4, leaves T along an
edge of &, that is north, south, east, or west. Moreover, a minimal chain
of boxes C,, containing &, will be a subchain of C,. For future reference,
let d,, denote a geodesic from ap to a closest point of T°, ordered from T
to ag, and let C,, represent the corresponding shortest chain of boxes in B
containing d(ap). Similarly, define 6(by) and Cs,.

We join to T certain members of B to obtain a new set S’: Recall that
T is staircase convex. Join to T all boxes of B that meet T. Certainly in
the resulting union T3, all points of T; see some point of T via staircase
paths in 77. Next, join to 7} all boxes of B that meet T3 such that, in the
resulting union 7>, all points of T see some point of T via staircase paths
in T». By an obvious induction, in finitely many steps we obtain a subset
S’ of S such that S’ is the union of T with at least some of the boxes in
our collection B, each point of S’ sees some point of T via staircase paths
in 8, and S’ is maximal. By our construction, both ag and by are in S".

We assert that S = S. Suppose on the contrary that some box P of
B intersects S’ but cannot be joined to S’ by the scheme described above.
Then for some point p in P, no orthogonal path in S (in S’ U P) from T
to p is a staircase path. That is, any geodesic 6, =6 in SUP from T to p
requires two incompatible directions, either both north and south or both
east and west. Thus the addition of P to §’ introduces a dent edge of S as
a dent edge of S’UP. We will consider various cases below. Without loss of
generality we may assume that pe A, that § connects p to a closest point of
T, and that & is ordered from T to p. Observe that d cannot pass through
Ch, or even a subchain of Cy, for, with such a configuration, points p and ap
would require a corresponding staircase illuminator of length greater than
the length of Ap. By a parallel argument, § cannot pass through C,, or a
subchain of C,,.

Case 1. Suppose that the first edge of J is north. (See Figure 2.) There
are four possibilities for §: Edges of § may alternate north and east, then
end in a south edge at p. Edges of § may alternate north and west, then
end in a south edge at p. Edges may alternate north and west, then end
in an east edge at p. Or edges may alternate north and east, then end in
a west edge at p. However, any of these four configurations would make it
impnssible for p and hy to share an appropriate northeast illuminator in S.
"I'hus Case 1 cannot occur.
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Case 2. If the first edge of § is south, a similar argument shows that it
is impossible for p and ag to share an appropriate northeast illuminator in
S. Hence Case 2 cannot occur.

Case 3. If the first edge of é is east, then it is impossible for p and by to
share an appropriate illuminator. Again, this case cannot occur.

Case 4. Assume that the first edge of J is west. (Again see Figure 2.)
As above, there are four possibilities for §. If edges of § alternate west and
north, then end in a south edge at p, the points p and by cannot share an
appropriate northeast illuminator in S.

If edges of § alternate west and south, then end in a north edge at p,
any minimal northeast illuminator for p and &g has length strictly greater
than the length of A\g. That is, m(p, bp) > m(eo,bo) = mo, contradicting
our choice of mg as maximal. Hence this configuration cannot occur.

If edges of § alternate west and north, then end in an east edge at p,
or if edges of § alternate west and south, then end in an east edge at p,
again m(p, bp) > m(ao, bo) = mo, a contradiction. We conclude that Case

B0 5@%&@
5

5

Figure 2.

Therefore, our supposition is false. Every box of B has been joined to
T to produce S, and S’ = S, the desired result. Thus every point of S sees
some point of T vie staircase paths in S.

Finally, we select a staircase illuminator pp for S,uo € T'. As noted in
our preliminary observations, there is a unique point v of T" that lies both
furthest west and furthest south. Similarly, there is a point w of T furthest
east and furthest north. Let po be any northeast staircase in T joining v
to w. Since each point of S sees some point of T' via staircase paths in S,
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it is easy to show that each point of S sees some point of ug via staircase
paths in S, and po satisfies the theorem, finishing the proof.

In conclusion, it is interesting to observe that we cannot weaken the
hypothesis of Theorem 1 to require only that every two points of S have a
common staircase illuminator. Consider the following example.

Example 1. Let S denote the orthogonal polygon in Figure 3. Every
two points of S have a common staircase illuminator (either northeast or
northwest). Notice that any staircase illuminator for points a and ¢ is
northeast, while any staircase illuminator for points b and ¢ is northwest.
However, points a, b, ¢ have no common staircase illuminator in S.

05
=

Figure 3

Of course, if we replace the number two by the number four, we have
the following variation of Theorem 1.

Theorem 1’. Let S, A denote the sets in Definition 1. If every four
points of S have a common staircase illuminator, then S contains a staircase
path that illumines every point of S.

Proof. 1t is easy to see that the hypothesis of Theorem 1 is satisfied.
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