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Abstract

Whist tournament designs are known to exist for all v = 0,1
(mod 4). Much less is known about the existence of Z-cyclic whist
designs. Previous studies [, 6] have reported on all Z-cyclic whist
designs for v € {4,5,8,9,12,13,16,17,20,21,24,25}. This paper is
a report on all Z-cyclic whist tournament designs on 28 players, in-
cluding a detailed summary of all known whist specializations related
to a 28 player Z-cyclic whist design. Our study shows that there
are 7,910,127 Z-cyclic whist designs on 28 players. Of these designs
2,568,510 possess the Three Person Property, 240,948 possess the
Triplewhist Property and none possess the Balancedwhist Property.
Introduced here is the concept of the mirror image of a Z-cyclic whist
design. In general, utilization of this concept reduces the computer
search for Z-cyclic whist designs by nearly fifty percent.

keywords: Whist Tournaments, Z-Cyclic Designs, Triplewhist Designs, Three
Person Whist Designs, Balanced Whist Designs.

1 Introduction

Definition 1.1 A whist tournament on v players, denoted Wh(v), is
a (v,4,3) (near) resolvable BIBD. Each block, (a,b,c,d), of the BIBD is
referred to as a whist game (alt. table) in which the partnership {a,c} op-
poses the partnership {b,d}. The whist conditions require that every player
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is a partner of every other player exzactly once and is an opponent of every
other player ezactly twice. The (near) resolution classes of the BIBD are
called the rounds of the Wh(v).

In 1897, E. H. Moore [13] introduced whist tournament designs into the
mathematical literature. Moore’s paper contains references to specific whist
designs for v = 4, 8,12, 16, 20, 24, 28, 32, 36 and provides formulae for Wh(4")
where n is any positive integer and Wh(3p + 1) where p is any prime of the
form p =1 (mod 4). In the 1970s it was established that Wh(v) exist for
allv =0,1 (mod 4) [1]. If v = 4n then the Wh(v) consists of 4n—1 rounds
and every player plays in exactly one game of each round. If v = 4n + 1,
the Wh(v) consists of 4n + 1 rounds and every player plays in exactly one
game in all but one round in which the player sits out. In this study we
focus on the special case v = 4n = 28. In particular, the goal is to produce
all whist designs on 28 players that possess the property of being Z-cyclic.

1.1 Z-Cyclic Whist Tournaments

Definition 1.2 A whist design is said to be Z-cyclic if the players are
elements in Z,,UC wherem =v,C =0 whenv=1 (mod 4) andm = v—1,
C = {o0} whenv=0 (mod 4). It is also required that the rounds be cyclic.
That is to say, the rounds can be labeled, Ry, Ry,..., in such a way that
R4, is obtained by adding +1 (mod m) to every element in R;. When co
is present one defines co +1 = co.

Since the collection of rounds of a Z-cyclic Wh(v) forms a cyclic set it
follows that the entire design is obtainable from any one of its rounds.
This representative round is called the initial round. For v = 4n it is
conventional to take the round in which co and 0 are partners as the initial
round. For v = 4n + 1 the initial round, conventionally, is that for which
0 sits out. These conventions will be adhered to in this study. Since the
early 1990s a considerable amount of information has appeared that relates
to the existence of Z-cyclic Wh(v). In spite of this activity there are still
many open questions regarding this type of whist design.

Example 1.1 Using the method of symmetric differences 1] one can verify

that the following seven games form the initial round of a Z-cyclic Wh(28).
(00,24,0,5), (20,19,21,10), (23,13,25,2), (7,1,17,14),
(6,18,9,11), (8,26,12,4), (16, 3,22,15).
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2 Preliminaries

Definition 2.1 Let G be an abelian group of order 2k+1, with k a positive
integer. Let eq denote the identity in G . The set of unordered pairs
S = {(zi,:) : zi,y:s € Gyi = 1,2,...,k} is said to be a starter in G
if and only if the following are true: (1) U¥{zi, %} = G\ {ec}; and (2)

Us{£(yi — 2:)} = G\ {ec}-

Since the order of appearance of an element within a set is unimportant,
a starter is considered to be the same starter if the pairs are rearranged.
Two starters S;, Sz in the same group G are considered to be different if
there is at least one instance wherein (a,b) € Si, (a,¢) € S with b # c.
The next two theorems are well known and their proofs will be omitted.

Theorem 2.1 Let G be an abelian group such that |G| = 2k+1. Then the
set PS = {(zi, ~x;) 1 ;i # eq,i = 1,2,...,k} with U'f{x,-, -z;} = G\{ec}
18 a starter in G.

It is typical, in combinatorics literature, to refer to PS as the patterned
starter in G.

Theorem 2.2 Let G be an abelian group such that |G| = 2k + 1. Let
S = {(zi,y:) : ¢ = 1,2,...,k} be a starter in G. Then the set $* =
{(=zi,—y:) :i=1,2,...,k} is also a starter in G.

Corollary 2.3 Let G and S be as in Theorem 2.2. If S is not the patterned
starter in G then S and S* are different starters.

Proof: Since S is not the patterned starter there must be at least one (indeed
more than one) pair in S, say (z;,y:) such that y; # —z;. Now —z; must
belong to some (unordered) pair in S. Without loss of generality assume
that (z;,y;) € S is such that z; = —z;. Note that y; # —y; for otherwise
{£(y; — z;)} = {£(yi — z;)} which contradicts that S is a starter in G.
Thus (~z;, —y;) € S* and (—=z;,y;) € S with y; # —y;. [ |

The starter S* will be referred to as the mirror image of the starter
S. Theorem 2.2 and its corollary provide a simple proof of the following
theorem.

Theorem 2.4 Let G be an abelian group such that |G| = 2k + 1. The
number of different starters in G is odd.

Remark 2.5 Let G, S and S* be as in Theorem 2.2. Take a circle of
arbitrary radius and attach the elements of G to its circumference in such
a way that = and —z are at opposite ends of a horizontal chord of the
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circle. eg can be placed at the center or at the “north (alt. south) pole”
of the circle. After erasing the circle, consider the elements of G as the
vertices of a complete graph G on 2k+1 vertices. Any starter in G is then a
near perfect matching for G. Using the north-south diameter of the original
circle as a mirror it is easy to see that the near perfect matching S* is the
mirror image of the near perfect matching S and vice-versa. Clearly the
near perfect matching PS is its own mirror image. Several nice illustrations
can be found at [3].

Theorem 2.6 Let G = Zop4y and let S = {(zs,%:) : i =1,2,...,k} be a
starter in Zoky1- If u is a unit in Zgyyy then the set S* = {(uz;,uy;) 1 i =
1,2,...,k} is also a starter in Zor41.

Proof: (1) Suppose that U'f{u:z:i,uy,-} # Zak+1 \ {0}. Clearly, this latter
inequality implies that for some pair ¢, j at least one of the following must
be true: (i) uz; = uz;; (ii) uz; = uy;; (i) vy = uzj; (iv) vy = wy;. In
each case multiplication by »~1 leads to a contradiction that S is a starter in
Zok+1. Suppose, now, that U'f{:i:(uy,- —uz;)} # Zok+1 \ {0}. Thus, it must
follow that one or more of the following is true: (1) uy; — uz; = 0 for some

i; (2) uy; — uz; = uy; — uzx; for some i, j; or (3) uy; — uz; = —(uy; — uz;)
for some %,j. In any of (1), (2), (3) multiplication by u~! produces a
contradiction to the fact that S is a starter in Zog4;. I

Corollary 2.7 Let G = Zakyy and let S be a starter in Zog41. Ifz isa
unit in Zokya, T # 7! such that (1,z) € S, then S and 5= are different
starters in Zok+1-

Proof: The starter S~ contains the pair (1,2~1). |

Remark 2.8 Note that the set of partner pairs in a Z-cyclic Wh(v), after
removal of the pair {00,0} (if present), must be a starter in Z,, where
m is as defined in Definition 1.2. Consequently, the basic approach of
our attempt to find all Z-cyclic Wh(v) for a specific v has been to find all
possible (different) starters in Z,, and to determine which, if any, of these
starters can be arranged into the initial round of a Z-cyclic Wh(v). Of
course this latter arrangement process must be ezhaustive so as to allow for
the possibility that a given starter could give rise to many different Wh(v).
For such counting purposes it is important that one has criteria and/or
conventions that enable one to establish that two given whist designs, both
on v players, are either the same or different. Two conventions used here
are the following: (1) within any round of @ Wh(v) a change in the order
in which the games are written does not produce a new whist tournament;
(2) within any game of a Wh(v) an interchange of the N-S, E-W pairs does
not produce a new whist tournament.
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It is also important to indicate that although an interchange of N-S, E-W
pairs within one or more games of 8 Wh(v) does not produce a different
whist tournament, such manipulations may very well uncover the fact that a
given whist tournament possesses some additional feature (see, for example,
the triplewhist materials below). The following theorem and its corollary

are proven in [5).

Theorem 2.9 Letv=0,1 (mod 4). Set n = |v/4). Let IR denote the n
games of the initiol round of a Z-cyclic Wh(v). If x is a unit in the ring Z,
then IR is the set of n games (zai, zb;, z¢;, zd;), i = 1,...,n where the
(@i, bi,ciyd;) are the games in IR and the multiplication is taken modulo
m. If, however, 0o is involved, say a; = oo then Ta; = 0co. The games IR
form the games in the initial round of a Z-cyclic Wh(v). Furthermore, this
latter Z-cyclic Wh(v) possesses all specializations that the original Z-cyclic
Wh(v) possessed.

Corollary 2.10 Let v =0,1 (mod 4). Set n = |v/4]. Let IR denote the
n games of the initial round of a Z-cyclic Wh(v). Let z be the partner of 1
in this initial round. If x is a unit in the ring Z,, such that z # z~! then
IR is the initial round of a Z-cyclic Wh(v) that is different from that
of the original Z-cyclic Wh(v).

Corollary 2.11 Letv=0,1 (mod 4). Set n = |v/4]|. Let IR denote the
n games of the initial round of a Z-cyclic Wh(v). Define —IR to be the
set of n games (—a;, —b;, —ci, —d;), i = 1,...,n where the (a:, b;, ¢;,d;) are
the games in IR and the additive inverse is taken modulo m. If, however,
00 is tnvolved, say a; = oo then —a; = oo. The games —IR form the
games in the initial round of @ Z-cyclic Wh(v). If the starter associated
with the partner pairs of the initial round of the original whist design is
not the patterned starter then this latter whist design is different than the
original whist design. Furthermore, this latter Z-cyclic Wh(v) possesses all
specializations that the original Z-cyclic Wh(v) possessed.

Proof: Set z = —1 in Theorem 2.9. If S denotes the starter associated with
the partner pairs for the original initial round then the starter associated
with the partner pairs of the new initial round is S*. Since S is not the
patterned starter these two starters are different via Corollary 2.3. Thus
there exists a pair (a,b) € S and a pair (a,c) € S* such that b # ¢
Consequently the game containing player a in the original initial round is
different than the game containing a in the new initial round.

Combining the materials of this section leads to the following theorem.

Theorem 2.12 Let S be a starter in Zoy41 such that S is not the patterned
starter. If k is an odd integer, k = 2n — 1 then 2k +1 =4n -1, X =
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Zgn—1 U {00} and if k is an even integer, k = 2n then 2k +1 = 4n + 1,
X =Z4n+1. (a) S can be arranged into the initial round of a Z-cyclic whist
design on v = | X| players if and only if S* can be arranged into the initial
round of a Z-cyclic whist design on v = |X| players. (b) If u is a unit in
Zok 41 such that (1,u) € S then S can be arranged into the initial round of a
Z-cyclic whist design on v = | X| players if and only if 5% can be arranged
into the initial round of a Z-cyclic whist design on v = | X| players.

Parts (a) and (b) of Theorem 2.12 provide separate strategies for our com-
puter approach. In each case the interpretation is that given one solution
a second solution is obtained with minimal effort.

Example 2.1 Let S denote the set of initial round partner pairs in the Z-
cyclic Wh(28) of Example 1.1. An application of Part (a) of Theorem 2.12
yields the initial round of a Z-cyclic Wh(28) exhibited in (a) below. Setting
u = 14 in Part (b) of Theorem 2.12 yields the initial round of a Z-cyclic
Wh(28) exhibited in (b). (a)
(0,3,0,22), (7,8,6,17),  (4,14,2,25), (20,26,10,13),
(21,9,18,16), (19,1,15,23), (11,24,5,12).

(b)
(00,21,0,10), (13,11,15,20), (19,26,23,4), (14,2,7,1),
(12,9,18,22), (16,25,24,8), (5,6,17,3).

3 Whist Designs with Special Properties

From time to time over the past 115 years additional requirements have
been imposed upon the structure of whist designs. For a complete listing
of these specialized structures see [5]. Here we focus only on the structures
that make sense when v = 0 (mod 4). Thus we mention whist designs
that possess one or more of the following: (1) the triplewhist property;
(2) the three person property; (3) the patterned starter property; (4) the
balanced whist property. A complete analysis of the Z-cyclic Wh(28)s that
possess the patterned starter property (that is to say, the set of initial
round partner pairs form the patterned starter) can be found in [8] and
will not be discussed here. Our exhaustive computer search led to the
conclusion that no Z-cyclic Wh(28) possesses the balanced whist property
(for the definition see [10]). Consequently our discussion of the balanced
whist property is confined to the following theorem.

Theorem 3.1 There does not exist a Z-cyclic Wh(28) that possesses the
balanced whist property.

Note that Theorem 3.1 supplies an answer to a question posed in [10].
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3.1 Triplewhist Designs

In a whist game (a, b, c, d) the opponent pairs {a, b}, {c,d} are called first
kind opponents and the opponent pairs {a,d}, {b,c} are called second
kind opponents.

Definition 3.1 [13] A whist tournament on v players is said to be a
triplewhist tournament, TWh(v), if every player opposes every other
player ezactly once as an opponent of the first kind (and, hence, ezactly
once as an opponent of the second kind).

It is known that TWh(v) do not exist for v € {4,5,9, 12,13} and do exist
for all other v = 0,1 (mod 4) except, possibly, v = 17 [2]. The Wh(28)
given above in Example 1.1 is a triplewhist tournament (as are those of
Example 2.1). We commented earlier that for counting purposes an in-
terchange of partner positions does not produce a different whist design.
On the other hand such transformations might show that a whist design
possesses a particular property. For example, if, in Example 1.1, the game
(23,13,25,2) had been given as (25, 13, 23,2) then the triplewhist property
would not be evident.

3.2 Whist Designs Having The Three Person Property

Definition 3.2 [7] A whist tournament on v players is said to be a three
person whist tournament, 3PWh(v), if the intersection of any two
games is at most 2.

Certainly the 3P Property is intrinsic to the design. Consequently a whist
design either has this property or it does not. A difference criterion for a
Z-cyclic Wh(v) to have the 3P Property is presented in [9]. The TWh(28)
presented in Example 1.1 possesses the Three Person Property.

4 A Summary of the Computer Search

Our computer search process was to find all possible starters for Zy; and
then subject each starter to all meaningful permutations (see Remark 2.8)
to see which, if any, of these permutations resulted in the initial round of
a Z-cyclic Wh(28). Theorem 2.12 enabled us to minimize the computer
search. In previous studies [5, 6] Part (b) of Theorem 2.12 was used exclu-
sively, however, the present opinion is that utilization of Part (a) is more
efficient. In either case the methodology is to determine an exhaustive ap-
proach that fixes a (partner) pair in a starter, determine all starters that
contain this fixed pair and determine whether or not the pairs of each such
starter can be arranged to form the games of the initial round of a Z-cyclic
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whist design. For Part (b) the exhaustive set of fixed pairs is given by
{(1,z) : 2 £ z < 26} and for Part (a) the exhaustive set of fixed pairs is
given by {(z,y) : £(y — z) = {13,14}}. The results of both approaches
are presented in our detailed summary. Notice that for Zy7 the approach
for Part (a) involves fewer cases. Indeed, Part (a) reduces the number of
cases to consider by nearly fifty percent. Once the totality of Wh(28) de-
signs was obtained, they were permuted and analyzed for the presence of
the triplewhist property and/or three person property. This latter process
terminated as soon as the specialization was discovered or if the program
ran to completion without success.

In the table below the starter data appears in the column St(28) and in-
dicates that the line item corresponding to z represents the total number
of starters in Zg7 that contain the pair (1,z). If r is a unit in Zy7 and
z # z~! then the corresponding line item is doubled when summing the
column entries (see Corollary 2.10). It is to be noted that the totals re-
ported here agree with those presented in [4] and on the website [3]. Our
presentation, however, provides a finer analysis than that found in [4] or
at [3]. The number of corresponding whist designs (i.e. the initial round
of the Wh(v) contains a game in which 1 and = are partners) appear in
the column Wh(28) and the numbers that appear in this column are to
be treated as in the St(28) column. The column 3P shows the number of
WHh(28) that possess the three person property. These numbers are to be
counted as in the other two columns.
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z z=0 || St(28) Wh(28) 3P

2 14 4946702 309439 90701
3 DNE 5128885 315210 | 103203
4 7 5127697 315461 103716
5

6

8

11 5170611 321560 | 106041
DNE || 5133987 315892 | 104402

17 5156963 320000 | 105413
9 DNE || 5127691 314825 | 102663
10 19 5130387 3155682 | 102534
12 DNE || 5138363 317230 | 103945
13 25 5124153 312969 | 102994
15 DNE || 5112367 313297 | 102327
16 22 5135903 317120 | 104020
18 DNE [ 5129851 316278 | 103325
20 23 5168467 321581 | 105684
21 DNE [ 5126265 315197 | 103353
24 DNE || 5138871 314335 | 103310
|26 26 5144579 320439 | 99776

[Totals 128102625 || 7910127 | 2568510 |

In the following table the column Span Pair indicates an unordered pair
that is fixed in the starter and the column St(28) indicates the totality of
starters that contain that pair. The column Mirror Pair gives the mirror
image of the span pair. The columns Wh(28) and 3P have the same inter-
pretation as in the table above. With the exception of the entries for the
span pair 7 — 20 all column entries are to be doubled.
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Span Pair | Mirror Pair St(28) ‘Wh(28) 3P
1 - 14 13 — 26 4946702 || 300439 | 90701
2 — 15 12 - 25 5126265 || 315197 | 103353
3 — 16 11 — 24 5138363 || 317230 | 103945
4 - 17 10 — 23 5170611 || 321560 | 106041
5 — 18 9 — 22 5127601 | 314825 | 102663
6 — 19 8 — 21 5133987 || 315802 | 104402
7 — 20 7 — 20 5144579 || 320439 | 99776 |
1 - 15 12 — 26 5112367 || 313297 | 102327 |
2 — 16 11 — 25 5156963 || 320000 | 105413
3 — 17 10 — 24 5138871 || 314335 | 103310
4 — 18 9 — 23 5120851 || 316278 | 103325
5 — 19 8 — 22 5168467 | 321581 | 105684

6 — 20 7 — 21 5128885 || 315210 | 103203
Totals 128102625 || 7910127 | 2568510

The next two tables report on the number of Z-cyclic Wh(28) that possess
the triplewhist property and the number of TWh(28) that possess the three

person property. The descriptions are as above.

Span Pair | Mirror Pair || TWh(28) 3P
1 - 14 | 13 — 26 9228 2824
2 — 15 12 — 25 9498 3064
3 - 16 11 — 24 0546 3161
4 - 17 | 10 — 23 0855 3302
5 — 18 9 — 22 9620 3074
6 — 10 8 — 21 9785 3262
7 — 20 7 — 20 0162 2852
1 - 15 12 — 26 0636 3148
2 — 16 11 — 25 9737 3153
3 - 17 10 — 24 9780 3236
4 — 18 9 — 23 9775 3290
5 — 10 8 — 22 9907 3280

6 — 20 7 — 21 0526 3200

[ Totals 240048 | 78858
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T z~" || TWh(28) | 3P

2 14 9228 2824
3 DNE 9526 3209
4 7 9737 3226
5 11 9855 3302
6 DNE 9785 3262
8 17 9737 3153
9 DNE 9620 3074
10 19 9704 3160
12 DNE 9546 3161
13 25 9467 3094
15 DNE 9636 3148
16 22 9675 3242
18 DNE 9775 3290
20 23 9907 3280
21 DNE 9498 3064
24 DNE 9780 3236
26 26 9162 2852

Totals 240948 78858 |

5 Z-cyclic 3° Frames

Definition 5.1 [11] A frame is a group divisible design, GDD\ (X, G, B)
such that (1) the size of each block is the same, say k, (2) the block set
can be partitioned into a family F of partial resolution classes and (3) each
F; € F can be associated with a group G; € G so that F; contains every
point in X \ G; ezactly once.

Frames are powerful tools that can be used to construct resolvable and near
resolvable designs [11]. G. Ge and L. Zhu, in their excellent paper [12], pro-
vide theorems which demonstrate how frames can be utilized to construct
Z-cyclic whist designs. If the block size of a frame is k = 4 then the
blocks are considered to be whist games. If the collection of blocks has the
property that every pair of elements (players) from distinct groups appear
together in exactly 3 blocks and within these 3 blocks they appear exactly
once as partners then the frame is called a whist frame and is denoted by
WhFrame. Note that the notation WhFrame(h") refers to a frame whose
element set, X, contains hw elements, whose blocks are of size 4 and has w
groups each of size h. Each partial resolution class is then called a round
of the WhFrame. If the blocks of a WhFrame satisfy any additional condi-
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tions such as every pair of players from distinct groups meet exactly once
as opponents of the first kind (and, hence, exactly once as opponents of
the second kind) then the notation for the frame will reflect this property.
Thus one speaks of TWhFrames, BWhFrames, etc. It is also possible to
define a Z-cyclic WhFrame [12].

Definition 5.2 Suppose X = Z,,,m = hw and Z,, has a subgroup H of
order h. Suppose there is a WhFrame(h") that has a special round R,
called the initial round of the frame, whose elements form a partition of
X\ H and is such that it, together with all the other rounds can be arranged
in a cyclic order, say Ry, R, ... so that R;, can be obtained by adding +1
modulo m to every element in R; then the frame is said to be Z-cyclic.

It is sometimes possible to generate a (Z-cyclic) WhFrame(h") directly
from a (Z-cyclic) Wh(v).

Example 5.1 Consider the Z-cyclic Wh(28) whose initial round is given
by the following seven games.

(00,9,0,18),  (25,20,26,22), (8,1,11,14), (5,3,16,15),
(19,24,23,7), (12,4,17,10), (6,21,13,2).

If, in Definition 5.2, we set X = Zy7, H = {0,9,18}, h = 3 and w = 9 then
the initial round of a Z-cyclic WhFrame(3°) can be constructed from the
above Wh(28) by removing the game (00,9, 0,18).

This latter example clearly indicates that any Z-cyclic Wh(28) whose initial
round contains either the game (00,9, 0, 18) or the game (0, 18,0,9) can be
used to construct a Z-cylic WhFrame(3°). Any such Z-cyclic Wh(28) will be
referred to as a frame-producing Wh(28). On the other hand, adjoining
the game (00, 9,0, 18) to the initial round of a Z-cyclic WhFrame(3°) pro-
duces the initial round of a Z-cyclic (frame-producing) Wh(28). Trivially,
then, we have the following theorem.

Theorem 5.1 There erists a Z-cyclic frame-producing Wh(28) if and only
if there exists a Z-cyclic WhFrame(3%).

It is worthwhile noting that although Zg; has a subgroup of order 9, namely
H = {0,3,6,9,12,15,18,21,24}, it is impossible to construct a Z-cyclic
WhFrame(9%). Theorem 5.1 together with the fact that we have con-
structed all Z-cyclic Wh(28) designs enables us to determine all Z-cyclic
WhFrames(3°) via a simple search procedure. The results are as follows.
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z z=' || WhFr(3%)
2 14 361
3 DNE 310
4 7 282
5 11 361
6 DNE 306
8 17 404
9 DNE 0
10 19 0
12 DNE 310
13 25 312
15 DNE 306
16 22 330
18 DNE 0
20 23 361
21 DNE 310
24 DNE 306
26 26 404

[ Totals [ 7404

Span Pair | Mirror Pair || WhFY(3%)
1 - 14 13 — 26 361
2 -15 12 — 25 310
3 - 16 11 — 24 310
4 — 17 10 —- 23 361
5 — 18 9 — 22 0
6 — 19 8 - 21 306
7 - 20 7 - 20 404
1 -15 12 — 26 306
2 - 16 11 — 25 404
3 - 17 10 - 24 306
4 — 18 9 — 23 0
5 —-19 8 — 22 361
6 — 20 7 - 21 310
Totals 7404
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6 Orbits

It is well known that in the ring Z,, n a positive integer, the set of units
is a multiplicative group with 1 as identity. For Zy7 the group of units is a
cyclic group, of order 18, with generators 2, 5, 11, 14, 20,23. We denote this
group by U(27). Each u € U(27) induces a mapping, Py of Z27 onto itself
defined by ®,(z) = y where uz =y (mod 27). The set of all 7,910,127 Z-
cyclic Wh(28) will be denoted by Wh(28). The action of 1/(27) on Wh(28),
via the maps ®,,, induces a partition of Wh(28). The cells of this partition
will be called orbits. There are 439,453 such orbits. All but 3 of these
orbits are of order 18. The remaining 3 orbits are of order 9. Illustrations
of Z-cyclic Wh(28) that have these orbit orders are given below.

Example 6.1 An orbit of order 9 is generated by a Z-cyclic Wh(28) that
is invariant (in accordance with Remark 2.8) under the action of the sub-
group of order 2, {1,26}. The initial round of a Z-cyclic Wh(28) that
generates an orbit of order 9 is given by the following 7 tables.

(0,6,0,21), (1,13,26,14), (10,12,17,15), (4,5,23,22),
(2,9,25,18), (8,11,19,16), (3,7,24,20).

Note that this Wh(28) is a ZCPS-Wh(28).

Example 6.2 Any orbit of order 18 is generated by a Z-cyclic Wh(28)
that is not invariant under the action of any subgroup of ¢/(28). The initial
round of such a design is given by the following 7 tables.
(00,2,0,13), (1,22,14,23), (5,8,7,17), (6,20, 16, 26),
(4,9,11,12), (10,21,18,25), (3,19,15,24).

Of course, the triplewhist property and the three person property are in-
variant under the maps ®,,. It is also the case that the sub-group {0,9, 18}
is invariant under these maps thus the orbit generated by any frame pro-
ducing Wh(28) consists entirely of frame producing Wh(28). It so happens
that every Triplewhist orbit is of order 18 and every orbit containing frame
producing Wh(28)s is of order 18. Consequently there are 13,386 Triple-
whist orbits and 393 orbits containing frame producing Wh(28) designs.
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