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Abstract
Let G be a graph and let f be a positive integer-valued function
defined on V(G) such that 1 < a £ f(z) < b < 2a for every « €
V(G). Ift(G) 2 &, | V(G) |2 £ +1 and f(V(G)) is even, then G
has a f-factor.
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1 Introduction

The graphs considered in this paper will be simple graphs. Let G be a graph
with vertex set V(G) and edge set E(G). Denote by dg(z) the degree of
a vertex z in G. Let g and f be two integer-valued functions defined on
V(G) such that 0 < g(x) < f(z) for all z € V(G). Then a (g, f)-factor
of G is a spanning subgraph F of G satisfying g(z) < dp(z) < f(z) for
all z € V(G). If g(z) = f(z) for all z € V(G), then a (g, f)-factor is
called an f-factor. Let a and b be two integers such that 0 < a < b. If
g9(z) = a and f(x) = b for all x € V(G), then a (g, f)-factor is called an
[a, b]-factor. If @ = b = k, then an [a, b]-factor is called a k-factor. Denote
by 6(G) and A(G) the minimum and maximum degree of a vertex in G,
respectively. For A C V(G), denote by Ng(A) the set of neighbors in G
of vertices in A. If A and B are disjoint subsets of V(G), then eg(A, B)
denotes the number of edges that join a vertex in 4 and a vertex in B.
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If A = {z}, then eg(z, B) denotes the number of edges that join z and
a vertex in B. The number of connected components of G is denoted by
w(G). Let S,T C V(G) and SNT = 0. If C is a component of G— (SUT)
such that Y. f(z) +ec(C,T) =1 (mod 2), then we say that C is
zeV(C)
an odd component of G — (S|JT) and we denote by h(S,T) the number
of odd components of G — (S|JT). For a subset S of V(G), we denote
by G — S the subgraph obtained from G by deleting the vertices in S
together with edges incident with vertices in S. In the following we write
fF(W) = 2 f(z) and f(@) = O for any W C V(G). In particular, we

set dg- s(T) E dg-s(z) for S,T C V(G) and SO\T = 0. For any

z € V(G), we set Na(:c) denote the neighborhood of z, and denoted by
Ng(A) the neighbors union of z € A. We also set Ng{A4] = No(4)J A.
The notion of toughness was introduced by Chvétalf2]:

t(G)

maz{t|S|=>t - w(G-S) if w(G-S)2=>2}
min{azlég_—_l-s—) |w(G—S) > 2}

if G is complete, and t(G) = oo if G is complete.

Notations and definitions not given here can be found in [1].

Many authors have investigated (g, f)-factors and f-factors [4,5,6].
There is a well-known necessary and sufficient condition for a graph G to
have an f-factor which was given by Tutte.

Theorem A. [7] (1) A graph G has an f-factor if and only if

8(8,T) = f(5) + dg-s(T) - f(T) - h(5,T) 2 0

for any disjoint subsets S and T of V(G), where h(S,T) denotes the
number of odd components C of G — (SUT).

(2) 6(S,T) = f(V(G)) (mod 2).

Hikoe Enomoto et.al investigated the relationship between toughness
and existence of factors(3,4], gave the following well known result.

Theorem B. [3] Suppose | V(G) |> k+ 1, k | V(G) | even, and
t(G) = k. Then G has a k-factor.

In this paper, we generalized the above Theorem and obtain the follow-
ing result.

Theorem 1 Let G be a graph and let f be a positive integer-valued
function defined on V(G) such that 1 <a< f(r) £b < 2a for every
z e V(G). Ift(G) > &, | V(G) |2 & +1 and f(V(G)) is even, then G has
a f-factor.
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2 proof of Theorem 1

Let G be a graph satisfying the hypothesis of Theorem 1, we prove the the-
orem by contradiction. Suppose that G has no f-factors. Then §(S,T) < 0
for some disjoint subsets S and T of V(G) by Theorem A. We take S and

T such that
8(S,T) = f(S) +de-s(T) - g(T) - h(5,T) < 0 (1)

and subject to this, | T | is as small as possible. This means that T = §;
or 6(S,T) > O for any proper subset T of T'. At first, we prove the following

lemma.
Lemma 1. Choose S and T as the above. If T # 0, then A(G[T)]) <

b—2.
Proof. We prove that eg(z,T—z) < b—2foranyz € T. Pt T' =T~z
since (S, T) is a pair as above, §(S,T’) > 0. Hence by Theorem A,

2 > 68,T)-6S8,T)
dg-s(z) — f(z) + h(S,T") - h(S,T)
dg-s(z) —b+h(S,T") — k(S,T).

v

Since h(S,T") > h(S,T) — ec(z,G — (SUT))
ec(z,T') = de_s(z) - ec(z,G — (S| JT)) < b-2.

We now continue to prove Theorem 1.

When a = b = 1, by Theorem B we know that G has a 1-factor. It is
obvious that a complete graph K, has a f-factor if and only if n > % > b+1
and f(V(G)) is even. A graph is connected if and only if its toughness is
positive. Hence we may assume that b > 2, so G is connected. Suppose
G has no f-factor. Then there exists a pair (S,T) satisfying the above
assumption. Let U = V(G)—(SUT), {Ch,+, C.,} be the set of components
of U, where w = w(U). We may assume that ['(z) = V(G) — {z} for all
z € S, and that every C; is complete. Furthermore, let N = eg(T,U), M =
eg(T\T),s=| S|andt =| T |. Since a < f(z) < b for every z € V(G),
then

0> 6(S,T) F(S) + N +2M — f(T) — h(S,T)

> as+N+2M — bt —w. 2)

Let S; be a maximal independent subset of T and Ty = T — S;. For
2<i<b-1letS; be a maximal independent subset of T;_; and T} =
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T;—1—S;. Since A(G[T]) < b—2 by Lemma 1. A(G[T;]) < b—i—2. Hence
Ty—2 is independent, Sy—; = Ty—2, and Ty =@

First we show the following claims.

Claim 1. T #90

Otherwise T =0. If S =T = @, then 0 > §(S,T) = —h(S,T). Since
G is connected, h(S,T) = 1 and 6(S,T) = —1. This is a contradiction by
the assumption that f(V(G)) is even and Theorem A(2). So S # @. when
w <1, then

(S, TYy=as—h(S,T) 2 as—w20.

This contradicts the assumption. When w > 2, since G is b%/a-tough,
| S|> 8w. Thena| S |> b%w > w. Namely, 6(S,T) > as —w > 0. We also
get the “desired contradiction. Therefore, T # 0.

Claim 2. dg_s(z) < b for allz € T.

If dg-s(z) = b+ 1 for some z € T, since f(z) < b for every z € V(G)
and h(S,T) < h(S,T — {z}) + 1, then

6(S,T - {=}) f(S) +de-s(T — {z}) - f(T - {z}) - h(S5,T - {z})
f(S)+de-s(T)-b—-1-f(T)+b-(R(S,T)-1)
8(S,T) <0.

IR PAN

This is a contradiction to the choice of S and T. So dg—gs(z) < b for all
zeT.

Claim 3. | S |>b.

Since G is %-tough, the minimum degree of G §(G) > 2b. By Claim 2,
it follows that

| S|+b>]| S| +de—s(z) = 6(G) > 2b

forallz €T, unplymg |S|>0.

Claim 4. M > z | T5 .

According to the deﬁmtlon of M, we know

M= Y eaS:S)) _EeG(s,, U S)—Z(S,,T)
1<i<j<b-1 i=1 j=itl

Since S; is a maximal independent subset of T};_1, eg(Sj, z) > 0 for any

z € T;. Hence ec(S;,T3) 2| T; | andMZZE::lej |. SoMZZijﬂ"j | -

Claim 5. s+ | T} | +ec(U, S1) —w > £ | 51 |
Let Uy = {u € U | eg(u,S1) > 0}, Ly = {C; | ec(Ci,S1) > 0},
and Ly = {Ci | eg(ui, $1) =1 for some u; € V(C;)}. We may assume
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= {C], ey wa} and Ls = {Cl, “',sz }(OJ2 fw; £ w). Foreach C; € L,
choose u; € C; such that eg(u;, S1) = 1. Let Uy = {u; | 1 < i < ws} and
Us = Uy —U,. Then | Uy |< eq(U,S1)—- (w1 —ws) =eg(U, S1) — (w1 —ws)
and | U; |= wq. Hence | Us |< eq(U, Sl) —w;. Let G = G- (SUT1 UUs).
Smce S1isan mdependent set , vertices in S belong to different component
of G'. Hence w(G') >| Sl | +w w1 First consider the case w(G ) > 2.
Then | SUT1UUs |2 Lw(C) = E(| 81 | +w — w1) because we have
assumed that G is %i-tough On the other hand, | SUTLUUs |[< s+ | T |
+ea(U, S1) — wi. Therefore,

b? b2
s+ | T | +ec(U,S1) —w > -;(l S1|+w—wy) 2 ;IS;|+w—w1

and the claim follows.

Next we consider the case w(G =1 Then| S |=0o0r | S |=1,
because | §) | +w — w; < w(G'). Assume that the claim does not hold.
Thens+|T1|+ea(USl) w< = " | S1|. If| S1 |=0, then T = . So

=0and s—w< 0. Ifw(G- S)>2 then we have | S |=s > Tw,whjch

is 1mposs1ble This implies w < 1 and | S |= 0, which contradicts Claim
3. Hence we may assume | S; |[=1 for any choice of S;. This implies that
G[T) is complete. Furthermore, w(G') = 1 means that U C I'e(S1). - In
particular, eg(U S1) > w and then s+ | T |< % Lid | S1 |— = Smce w > 2,
|SUT |> -;w(U) > 22 However, | SUT |=s+ | Th | + | Sil<k 2 +1,a
contradiction.

\ Claim 6. For2<i<b-1, s+eg(T-Ti—1,S:)+ | Ti | +ec(U, S:) >
LS|

® IfS; =0, then T; = 0. and the claim holds. Suppose S; # 0, and let
X: =Ta(S:) (T -Ti-1),Y: =Te(S:))NU and G; = G —T'¢(S;). Then
S; is a set of isolated vertices in G;. Flrst consider the case w(G;) > 2.
Then | Te(S:) |=| SUX; UY:UT: |> Ew(Gi) > £ | S; |. On the other
hand, | SUX; UY:UTi |< s+ec(T - T._l,S)+eG(U S;)+ | T; |. Hence
the claim follows in this case. Next we consider the case w(G;) = 1, which
implies that | S; |= 1 and V(G) = I'c(S;)|J S;. Suppose that the claim
does not hold. Then

b2
| Ta(S:) I< s+ eg(T —Ti-1,S:)+ | Ti | +ec(U, Si) < ’
This contradicts the assumption that | V/(G) |> "7: +1. So the claim follows.
By Claim 5 and Claim 6,

2
%< (b-1)s+§:|n|+2ec(r T_1,5)+Zec,~(vs, ) —w

i=1 i=2
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b-2
< (b-1s+) |Ti|+M+N-uw, )
i=1
since z | Si |=|T |=t,Ti—2 =0, Z(T—T,_l,S;) = M and E ec(U, S;) =
N. By (2) and (3), we get =

b-2
—(as+N+2M w)<—t<(b Ds+ ) |Ti|+M+ N —w.

i=1

Then
as+ (b—a)N +2(b—a)M < (b—a)w

If a = b, then we get a contradiction by Claim 3. If a # b, we may have

< w. (4)

as
b—
By (4) and Claim 5, we get

as b2
N+2M+b___a'<3+|T1'+eG(U’SI)-';|Sl"

By Claim 4, M 2| T) |. Since N > eg(U, S1) and b < 2a, we get
2
M< —b— | S1].
a

This is a contradiction. So the Theorem is proved.

When a = b = k, we can get Theorem B from Theorem 1.

corollary 1. Let G be a graph. If G is k-tough, | V(G) |[> k+1 and
k| V(G) | is even, then G has a k-factor.

Remark. when a = b = k, the condition that G is k-tough is sharp.
Since there exists a (k — €)-tough(e is an any real positive number) graph
G with k | V(G) | even and | V(G) |2 k+1 wh1ch has no k-factor. But we
do not know whether the condition that G is 7-tough can be improved.
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