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Abstract

A signed graph (digraph) T is an ordered tripe (V, E, o) (respec-
tively, (V,A,0)), where |Z| := (V,E) (:= (V,.4)) is a graph (di-
graph), called the underlying graph (underlying digraph) of L, and ¢
is a function that assigns to each edge (arc) of || a weight +1 or
—1. Any edge (arc) e of T is said to be positive or negative according
to whether o(e)=+1 or o(e) = —1. A subset D C V of vertices of
L is an absorbent (respectively, a dominating set) of T if there exists
a marking 1 : V — {4+1,~1} of T such that every vertex u of = is
either in D or

Ow)ND#0 and o(u,v) = p(u)p(v) ¥ v € Ox)N D,
(respecti\{ely,
I(w)ND#0 and o(u,v) = p(u)u(v) V ve I(u)ND),

where O(u) (I(u)) denotes the set of vertices v of £ that are joined by
the outgoing arcs (u,v) from u (incoming arcs (v,u) at u). Further,
an absorbent (dominating set) of T that is independent is called a
kernel (solution) of £. The main aim of this paper is to initiate a
study of absorbents and dominating sets in a signed graph (signed di-
graph), extending the existing studies on these special sets of vertices
in a graph (digraph).
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1 Introduction

The notion of domination is as old as survival of life on this planet. The
theory of evolution of terrestrial life species holds the tenet, “survival of the
fittest”. Prey-predator mathematical models address various intricate real-
world problems involved in the understanding of this complex phenomenon
most effectively. A discrete structure called a signed digraph, denoted Zo =
(V, Ao, 0), for describing some of the basic components of this important
problem in Ecology of the Planet Earth may be constructed as follows: Let
V be the set of various life species striving to exist in an ecosystem, where
the fact that a species s; preys on the species 3; is represented by the arc
(84,8;) € Ao and the fact that the population of s; at a given time of our
observation is directly or inversely proportional to the population of s; at
time to is represented by the value of oo(s;, 8;) being +1 or -1 respectively;
the arc (s;, s;) is then said to be positive or negative accordingly. The signed
digraph X so defined would then provide us the dynamic structure of
interdependent survival of the species in the ecosystem as observed at time
to. One of the principal questions in ecology is concerned with conservation
of ecosystems for the general well being of the life on the planet. It is
hence tantamount to consider the problem of maintaining stability of the
life space Tp in the ecosystem. Here arises the notion of dominance: a
nonempty subset D of V(Zy), the set of species existing in the ecosystem
under observation at time tp, is a dominating set of Xy if every species s is
either in D or there exists a compatibility function p: V(Zo) — {-1,+1},
called a marking of X, such that

I(s)ND #0 and go(s,s') = p(s)u(s’) ¥V ' € I(s)nD, (1)

where I(u) denotes the set of vertices v of X that are joined by the incoming
arcs (v,u) at u, or of in-neighbors of u for short. Here, the value of u(u) is
interpreted as the increase or decrease in the population of the given species
u according to whether it is +1 or —1. In particular, if oo(u, v) = +1 for all
arcs (u,v) € Ap then the above definition reduces to the standard definition
of a dominating set of a digraph as in [7]; it is important to be noted here
that the study of even this particular case is scanty as seen from the existing
literature and hence needs to be studied carefully.

Hence, the main aim of this article is to identify principal directions of
study of the notion of domination in signed graphs and signed digraphs. In
signed digraphs, there is another notion, called absorbent, akin to that of
domination and these two concepts coincide in the case of signed graphs.



2 Domination in Signed Graphs

For all terminology and notation in the theory of digraphs and the theory of
graphs, not specifically given here, we refer the reader to the good old stan-
dard text-books by Harary et al. [5] and Harary 6], respectively. However,
unless mentioned otherwise, graphs considered here could be infinite.

As treated by Chartrand [4] (respectively, Harary et al. [5]), signed
graph (signed digraph) ¥ is an ordered tripe (V, E, o) (respectively, (V, A, 7)),
where |Z| := (V,E) (:= (V,A)) is a graph (digraph), called the underly-
ing graph (underlying digraph) of T, and o is a function that assigns to
each edge (arc) of |Z| a sign ‘+' or ‘~’, which are some times treated as
weights +1 and -1, respectively. Any edge (arc) e of T is said to be pos-
itive or negative according to whether o(e) = + or o(e) = —; hence, the
set of positive edges (arcs) of L is denoted E+(X) (respectively, A*(X))
and E~ () := E'\ E+(Z) (respectively, A~(Z) := A\ A*+(Z)). Further, &
is said to be homogeneous (heterageneous) if all (not all) edges, or arcs if
L is a signed digraph, are of the same sign; in particular, ¥ is said to be
all-positive (all-negative) if the set of its negative (positive) edges or arcs
is empty. Additional notation and terminology used above are drawn from
the still developing, yet standardized, literature as may be easily tracked
from the dynamic survey being continually updated by Zaslavsky [15].

Definition 2.1. Let X = (V, E, ¢) be any signed graph. A subset D CV
of vertices of ¥ is a dominating set of T if there exists a marking p: V —
{1, -1} of ¥ such that every vertex u of ¥ is either in D or

N@)ND#@ and o(uww) = p(u)u(v) V ve N@u)nD. (2)

Note that if ¥ is an all-positive signed graph, which is then essentially
a graph in the standard sense, then Definition 1, restricted to finite graphs,
reduces to that of a dominating set as treated in Haynes et al. [7] because,
with the all-positive marking p*, which assigns +1 to each vertex of &
satisfies (2). Thus, we have the following very first elementary observation:

Proposition 2.2.  The set Dg of all dominating sets of a signed graph
% is contained in the set Dig; of all dominating sets of its underlying graph

|Z].
Proposition 2.2 raises the following natural open question:
Problem 2.3. Determine the signed graphs T such that
Dg = Digy. (3)

Note that there do exist signed graphs T that do not satisfy (3). For
example, take a 4-cycle (or, the so-called ‘quadrilateral’) in which three



edges are negative; in this signed graph I, no independent dominating
set (or, the so-called kernel) of its underlying quadrilateral Cs =: |Z] is a
dominating set of Z.

Hence, one can develop the theory of domination in signed graphs, start-
ing from scratch as in [11] and develop it on similar lines as in [7]; of course,
one can expect quite different notions and results in such a theory that
would not perhaps be available in the usual theory of domination in graphs
as indicated by the example of the signed quadrilateral mentioned above.
Towards this end, apart from the usual questions in the theory of domina-
tion in graphs, a number of additional questions might arise. For example,
notice that in a procedure to mark the vertices of V' \ D so as to satisfy
the condition of Definition 1 some vertices in D can be marked arbitrarily.
This observation raises the following open question.

Problem 2.4. Determine the signed graphs in which there exists a min-
imal dominating set that allows no freely markable vertez.

Next, the example of the signed quadrilateral given above signals the
following interesting open problem:

Problem 2.5. Determine the signed graphs in which there ezists no
kernel.

Note that Problem 2.5 is ‘interesting’ because every graph has a kernel,
viz., any maximal independent set (cf.: [3])! Thus, Problem 3 is a parallel to
the well known, yet unsolved, problem of determining the digraphs having
no kernel (cf.: Berge [3]); I wonder, if there is a relation between the two!
A signed graph (signed digraph) in which there exists no kernel will be
referred to as kernel-free signed graph (signed digraph).

By a subsigraph of a signed graph I we shall mean a signed graph %’
such that

V() CV(E), EE)CE®) and ¢ :=0lgsy,

where o|g(z) denotes the restriction of the ‘signature’ o of ¥ to the edges
of ¥'. Further, given a set S of vertices in ¥, the subsigraph induced by
S, denoted (S), is the subsigraph with S as its vertex set and having all
the edges of X that join any two vertices in S. We shall say that a given
signed graph £, is embedded (or, embeddable) in a signed graph X, written
$; < T, if there exists an induced subsigraph of X, that is isomorphic to
T;. We have the following some what negative result.

Theorem 2.6.  Every signed graph can be embedded as an induced sub-
sigraph of a signed graph possessing a kernel.



Proof. Let ¥ be any signed graph and let &+ denote the signed graph
obtained by augmenting one new positive pendent edge at each vertex of
3. Then, the set of new vertices so augmented form a kernel of £+ due to
the all-positive marking u* of =+, ]

Theorem 2.2 is a ’'negative result’ in the sense that it implies there
is no “forbidden subgraph characterization” of a signed graph possessing a
kernel. Therefore, it becomes important to explére specific classes of signed
graphs that possess kernels. ‘

We have the following four main results tow:ard this end, besides addi-

tional open problems arising thereof.

Theorem 2.7. If T is a signed graph such that |Z| has a kernel D
having the property that the set E} of positive edges containing the vertex
u is empty for every u € D then D € Dy (i.e., D is a kernel of T).

Proof.  Let D satisfy the hypothesis of the theorem. Then, let x be the
marking of £ which marks every vertex of D as positive and every vertex of
V(Z)\D as negative. By a well known theorem of Berge [3] (Proposition 2,
p.309), D is a minimal dominating set of |£| (and hence V(Z)\ D is a
dominating set of [Z|, by virtue of a theorem of Ore [9]), whence condition
(2) holds for every v € V(Z)\ D and the result follows by Definition 2.1. [

A signed graph ¥ is balanced if its vertex set V(Z) can be divided into
two disjoint subsets V; and V3, one of them possibly empty, such that every
negative edge of £ has one of its ends in V; and the other in V; but no
positive edge of £ has this property (see [4, 5, 14]); such a decomposition
of V(X) is often called in literature a Harary bipartition of £. The proof of
Theorem 2.6 suggests the validity of the following result.

Theorem 2.8.  IfX is a balanced signed graph such that one of the parts
Vi and V,, say Wy, in its Harary bipartition is a dominating set in |Z| then
it is a dominating set in ¥ (i.e., Vi € Dg). Further, if V; is a minimal
dominating set of |Z| then V, € Dy too.

Proof.  The first part of the theorem follows on similar line of arguments
as in the proof of Theorem 2.7. The second part follows from the definition
of balance of X and a theorem of Berge [3]. (m

Corollary 2.9.  Every homogeneously signed tree has two disjoint ker-
nels.

Proof.  Let T be any homogeneously signed tree. If T' is an all-positive
tree then each of the two parts V; and V; of its usual bipartition (due to
bipartiteness of T) is a kernel. Hence, suppose that T is an all-negative
signed tree. Then, m = {V}, 3} is its Harary bipartition, whence the result
follows from Theorem 2.8. O



It is well known that every finite tree has two disjoint dominating sets
(cf.: [7]). That this is true in general for any finite signed tree is established
in the following result.

Theorem 2.10. FEvery finite signed tree has two disjoint dominating
sets.

Proof. Let ¥ be any signed tree and let # = {V},V,} be the standard
bipartition of |£|. As mentioned above, both V) and V; are kernels of
|Z|. Label the vertices in V; as uy,uz,... and label the vertices in V; as
vy,%9,.... Starting from v, assign +1 or —1 arbitrarily to v;. Hence,
assign weights +1 or —1 to the ‘neighbors’ u; of v; (they are all in V; as V2
is independent) such that u; receives the weight of v; or its additive inverse
according to whether vy, is a positive edge or a negative edge in X. Next,
take v € V,. If none of the neighbors of v; is a neighbor of v, then assign
+1 or —1 to v arbitrarily and then assign +1 or —1 to the neighbors of v,
(again, they are all in V; as V; is independent) in the same manner as done
for the neighbors of v;. If, on the other hand, the set N(v2) of neighbors
of vy contains a neighbor of v; then, there must be only one such vertex
uj € W, for otherwise, there would be a cycle (in fact a quadrilateral) in
T contradicting the hypothesis that ¥ is a signed tree; hence, in this case,
assign to vy the weight of u; or its additive inverse according to whether
the sign of the edge u;vp is positive or negative. Further, continuing in
this manner, if at any stage, the vertex v, € V, has a neighbor that is
already marked then it must be unique, for otherwise & would contain a
cycle. Hence, we may continue this procedure till all the vertices of ¥ are
exhausted, whence we would have a ‘dominating marking’ u of ¥ due to
the hypothesis that ¥ is a finite signed tree as also due to the fact that each
of the sets Vi and V; is a dominating set of |Z|. Thus, the proof is seen to
be complete. (]

In the case when ¥ is a finite all-negative signed tree as considered in
Corollary 3.1, the usual bipartition = = {V},V;} of |Z| is also its Harary
bipartition, which may not necessarily be so for a general balanced signed
graph (even for a signed tree) as such. In fact, it may be easily seen that
for any finite signed tree T the usual bipartition 7 = {V1,V2} of |Z| is also
its Harary bipartition if and only if ¥ is a finite all-negative signed tree.
However, when X is not necessarily a signed tree, the following is easy to
prove.

Theorem 2.11. In a signed graph T, having bipartite underlying graph
|S| with bipartition & = {V1,V2},  is the Harary bipartition of ¥ if and
only if © is balanced and all-negative; further, such an isolate-free signed
graph has two disjoint kernels.

10



Ore [9] has shown that if a graph G does not have isolates, then G has a
dominating set D such that V(G)\ D is a dominating set; its proof involves
the assumption that G is connected and has a spanning tree T that has a
pendent vertex, but this may not hold when G is a connected infinite graph
in general. For example, a two-way infinite path does not have pendent
vertices. However, the proof goes through even if we choose an arbitrary
vertex z of T as its root and partition the vertices of G into two subsets V.7
and V¥ such that V7 consists of the vertices at odd distances from = and
VZ =V(G)\V£. In fact, it has been shown further that the complement D
of every minimal dominating set D in G is a dominating set of G. However,
the existence of a minimal dominating set is known only when G is locally
finite, in the sense that the edge-degree eg(u) := |E,| is finite for every
u € V(G) (cf.: [9], Theorem 13.1.1, p.206). By this theorem, it is easily
seen that for every finite graph G, the set DZ of minimal dominating sets
of G is nonempty (as, of course, it is true when G is locally finite). The
following open problem does not seem to have been attempted even for
graphs. .

Problem 2.12.  Characterize isolate-free infinite signed graphs T for
which D = 0.

Theorem 2.18.  For any balanced signed graph %, (8) holds; that is,
Dg = 'D|2| .

Proof. By Proposition 2.2, Dg C Djzj. We complete the proof by show-
ing the other way inclusion: Djg) C Dg. Toward this end, we recall a well
known result of Sampathkumar and Bhave {10] that a signed graph is bal-
anced if and only if there exists a marking p of its vertices such that for
every edge uv in the signed graph its sign is the the product u(u)u(v), and
notice that holds irrespective of X being finite or infinite (see [1]). Now,
since I is balanced, by the Sampathkumar-Bhave theorem just mentioned,
there exists a balancing marking p of L. Hence, let D € D\g| and consider
the set D in I. Then, it is easy to see that 4 satisfies (2), whence we get
D € Dg by definition. Since the choice of D was arbitrary in Dig), the
result follows. a

The reader is encouraged to find a counter-example to note that the
converse of Theorem 6 does not hold. Thus, it may be observed in passing
here that Problem 1 essentially remains to be settled for unbalanced signed
graphs.

An obvious but important point that needs to be noted here, in view
of the example of the signed quadrilateral mentioned much above, is the
following fact.

Proposition 2.14. If, for a signed graph T, Dg = Dig| then L does
have a kernel and, moreover, every kernel of |3| is a kernel of T.

11



3 The Domination Number of a Signed Graph

Clearly, for any signed graph I, its vertex set V() is trivially a dominating
set of £. Further, since Dg C Djg| we must have in general when X is finite

YIZ]) £ ¥(Z), (4)

where 7(Z) denotes the minimum cardinality of a dominating set in %,
called its domination number. We note here that the inequality in (4)
could be strict as may be verified by taking the signed graph ¥ on the
hezagon, or the 6-cycle Cs, consisting of three mutually disjoint negative
edges. For this signed graph, one has 4(|Z|) = 3 and ¥(Z) = 4. In fact,
one can easily see the validity of the following more general statement.

Corollary 3.1.  For any finite balanced signed graph I, v(Z) = y(|Z]).

Converse of Corollary 3.1 is not true. Take, for example, the unbalanced
signed graph T on the hexagon Cg in which the set E~(Z) of negative edges
forms an all-negative subsigraph consisting of one path of length one and
one path of length two (then the set E+(Z) also is seen to form a similar
all-positive subsigraph of ); it is easily verified that ¥(E) = 7(|Z[) = 3.

It would thus be interesting to solve the following problems.

Problem 3.2.  Study the special properties of minimal (minimum) dom-
inating sets of finite unbelanced signed graphs.

Problem 8.3. Determine or estimate the domination numbers of all
unbalanced signed cycles on the n-gon Cp, n > 3, the complete graph
K,, n > 4, the complete bipartite graph Km,n, the n-dimensional hyper-
cube Qn, the 2-dimensional complete square lattice grid Pm X P, and on
the generalized Petersen graph.

4 The role of switching

Given any signed graph (digraph) T = (V, E, ¢) and a marking p, switching
¥ with respect to  (or, the ‘u-switching’ of X,,) is to obtain a signed graph
(digraph) S,(Z) from I by changing the sign of every edge zy for which
u(z) # p(y). A signed graph (digraph) I, is said to switch to a signed
graph (digraph) I, written I; ~ X2, whenever there exists a marking p
of ¥; such that 8,(X;) = L. It is well known that the binary relation ‘~’
is an equivalence relation in the class of all signed graphs (digraphs) of a
given order [14]. The following result is due to the referee.

Theorem 4.1. For any signed graph (signed digraph) I, the set Dy is
invariant under switching.
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Proof.  We first consider a signed graph T = (V,E,0). Let D CV and
N(D) the set of all vertices in V'\ D that are adjacent to the vertices in D.
Clearly,

DeDg & [N(D)=V\D] and [8(D)] is balanced), (5)

where 8% (D) is the subsigraph spanned by the pu-boundary edges, which are
edges zy € E(X) with 2 € D, y € V' \ D, is an alternate definition of a
dominating set. Neither of the defining properties in (5) is altered by u-
switching of the u-marked signed graph T,,. Therefore, if we switch ¥ with
respect to u to another signed graph ', we find that D € Dy satisfies the
requirements to belong to Dys. That is, we have Dy C Dyg/. Similarly, one
can show Dy C Dy by interchanging the roles of £ and ¥’ in the above
argument as ~ is a symmetric binary relation. The conclusion follows.
The same conclusion follows when X is a signed digraph due to the fact
that the notion of u-switching does not involve the directions of the arcs in
z ]

The following result is well known [14].

Theorem 4.2. A signed graph (signed digraph) % is balanced if and only
if L~ ||

Thus, invoking Theorem 4.1 and Theorem 4.2, Theorem 2.13 can be
seen also as a natural corollary of Theorem 4.2.

5 Relations with clustering and colorings

In graph theory, there is a fundamental result that for any finite graph G
there is a minimum coloring (i.e., a proper coloring of the vertices using
minimum number of colors) ¢ that contains a maximal monochromatic
set of vertices that is a kernel (cf.: [12]) of G. How does this result get
extended in the case of minimum colorings of a finite signed graph (cf.:
(13])? A proper extension of the result would possibly yield several new
directions of research in the theory of signed graphs.

In 2], the authors defined a notion of coloring of a signed graph T =
(V,E, 0) as an assignment ¢ of colors c(u) to the vertices u € V so that

uv € B~ = c(u) # c(v). (6)

Further, they called the corresponding color partition P°¢ = {V&, V£, ...}
of V into monochromatic subsets V¢ a semiclustering of .

A semiclustering of a finite signed graph T with the least possible num-
ber x(Z) of monochromatic subsets is called a minimum semiclustering of
L. Since not every signed graph contains a kernel, the following problem
assumes significance.

13



Problem 5.1.  Characterize finite signed graph & = (V, E, o) which ad-
mits a minimum semiclustering that contains a kernel

Let us call a signed graph ¥ with the property stated in Problem 5.1 a
kernel chromatic semiclustering. Clearly, if a signed graph does not possess
a kernel then it cannot admit a kernel chromatic semiclustering.

Given a semiclustering P¢ of a signed graph L, a positive edge having its
two ends in two different monochromatic subsets of P¢ is called a positive
inconsistency. As well known, a signed graph is said to be clusterable if
it has a semiclustering having no positive inconsistency, and such a signed
graph has the following characterization.

Theorem 5.2. (J. Davis, 1867) A signed graph T is clusterable if and only
if it contains no cycle with ezactly one negative edge.

The following result gives a partial solution to Problem 5.1.

Theorem 5.3. If L = (V,E,0) is a clusterable signed graph then ¥
admits a kernel chromatic semiclustering.

Proof. Let P = {V1,V,...,} be any minimum clustering of £ and sup-
pose it does not contain any kernel. Our assumption implies that none of
the sets in P is a kernel in £. Now, since P is a clustering of Z, each V; con-
tains no negative edge of & (or, negative inconsistency) and hence by the
result of [12] quoted in the first paragraph of this section, we may assume,
without loss of generality, that one of the sets in P, say V; is a kernel in
|Z|. This implies, V; is an independent set in |Z| such that N(V;) = V\ 1.
Next, since none of the sets V; is a kernel in X, in particular V; is not
a kernel in £. Then, by the alternate definition (5) of domination in ¥
and our penultimate argument imply existence of a negative cycle Z in the
subsigraph spanned by the edges in 8g(V;). Without loss of generality, we
may assume that Z has the least possible length. Since I is clusterable,
by Theorem 5.2, two cases arise, viz., Z has no positive edge, or Z has at
least two positive edges.

Case 1: 7 is all-negative.

Then, Z has an odd length, say n = 2k + 1. Since every negative edge
joins vertices of two different subsets in P and since V is independent,
minimality of n implies that one of the edges of Z does not belong to
9s(V1), a contradiction.

Case 2: Z contains at least two positive edges.

Since the number of negative edges in Z is odd and all of them are in
d5(V1), at least one of the positive edges of Z must have an end in V; and
the other in V(Z)\ V1. But, this contradicts the fact that P is a clustering

of 2.
Thus, the proof follows by contraposition. (M}
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The converse of Theorem 5.3 fails to hold, as the following noncluster-
able signed graph illustrates.

Example 5.4. Consider the pentagon Cy = (v1,v2, v3,v4, v5,v;) and let
Z be the negative cycle on Cs in which v is the only negative edge. Con-
sider the minimum semiclustering P = {V; = {v2,v4}, Vo = {v1,vs,v5}}.
Define p : V(C5) — {-1,+1} by letting pu(v)) = +1,u(v2) = p(vs) =
#(vs) = p(vs) = ~1. It may then be easily verified that 4 is a domination
marking for each of the sets V; and V5. We observe that V; is a kernel of
Z.

Thus, Problem 5.1 remains open for nonclusterable signed graphs.

6 Absorbents and kernels in Signed Digraphs

In this section, the term ‘digraph’ (as treated in [5]) will be equivalent to
the term ‘1-graph’ as treated in [3]; this assumption essentially means that
between any two distinct vertices u and v there is at most one arc in each
direction, from u to v or from v to u.

The notion of a dominating set in a digraph was first considered by
Berge (3] (Ch.14), under the name absorbent, motivated by the problem
of managing surveillance networks. Subsequently, it has been studied ex-
tensively as may be found in [7, 8]. An extension of this notion to signed
digraphs is defined below.

Definition 6.1. Let ¥ = (V,A,0) be any signed digraph. A subset
D C V of vertices of ¥ is an absorbent of T if there exists a marking
p:V — {+1,-1} of T such that every vertex u of T is either in D or

O(w)ND#0 and o(u,v) = p(u)u(v) ¥V v € O(u)ND, M

where O(u) denotes the set of vertices v of T that are joined by the outgoing
ares (u,v) from u, or of out-neighbors of u for short.

It is easily seen that Definition 6.1 coincides only with a part of the
definition of an absorbent given by Berge for digraphs (cf.: [3], p.303), viz.,
when every digraph is treated as an all-positive signed digraph and the set of
in-neighbors is ignored from his definition. While generalizing results from
the theory of digraphs is one purpose of studying signed digraphs, in this
particular case the study of absorbents in signed digraphs seems to serve
some purpose of application too: A set D of soldiers on the war front is to be
chosen in a surveillance network X, in which there are some communication
channels that are ‘good’ or reliable (positive) and some that are ‘bad’ or
less reliable or noisy (negative), so that there is a perfect understanding by

15



every commander u € V(Z) \ D with every soldier v under his command
in D about the quality o(u,v) of the communication channel (u, v) so that
there is no ‘confusion’ in either the message sent by u to v or in its receiving
and decoding by v for the purpose of taking further necessary action at the
latter's end.

Again, clearly since V(X) € Dy for any signed digraph X Proposition 2.2
has the following extension.

Proposition 6.2.  The set Dy of all absorbents of a signed digraph T is
contained in the set Dig| of all dominating sets of its underlying digraph
|Z].

Proposition 6.2 also raises the following natural open problem, similar
to Problem 2.3.

Problem 6.3.  Determine the signed digraphs ¥ such that
Dy = 'D|}3|. (8)
The following observation is rather obvious.

Proposition 6.4.  For any signed symmetric digraph X, viz., the signed
digraph in which every adjacent pair of vertices are joined to each other by
an arc of the same sign in either direction,

DE"‘ = DE:

where T is its ‘underlying signed graph’ obtained by replacing each sym-
metric arc of L™ by an undirected edge of the same sign as that of the
symmetric arc in T,

Proposition 6.4 implies that the theory of domination in signed symmet-
ric digraphs £ coincides with the theory of domination in their underlying
signed digraphs Z.

A vertex u in a digraph is said to be reachable from a vertex v if there is a
directed path from v to u. A digraph is then said to be strongly connected if
every two of its vertices are mutually reachable from each other. A digraph
is weakly connected if its underlying undirected graph is connected. All
such basic terminology for structural aspects of a directed graph as given
in Harary et al. [5] also hold for any signed digraph. Hence, in particular,
notice that every weakly connected sign symmetric digraph X is strongly
connected. Proposition 6.4 prompts the following open question.

Problem 6.5. Can we extend Proposition 6.4 to strongly connected
signed digraphs?

16



Next, the relation between the signature o of a signed digraph £ and
a dominating marking g of ¥, whenever it exists as per Definition 6.1,
suggests the following observation.

Proposition 6.8.  For any signed digraph %, Dy C Dig), where |Z|
denotes the underlying digraph of .

The converse of Proposition 6.6 is not true. For example, consider
the signed digraph ¥ of order 6 constructed as follows: Take a signed
directed cycle Z, = (a1, a3, a3, a4, a1) with just one positive arc (a;, az) and
adjoin two other vertices  and y by introducing the positive arc (z,a4) and
the three negative arcs (z,az), (y,a2) and (y,a4). Then, it is not difficult
to verify that {as,as} is & kernel in |X|, viz., an absorbent that is also
independent, but is not even an absorbent in X. Thus, the following open

problem arises.
Problem 8.7.  Characterize signed digraphs & for which Dg = Dig.

Signed digraphs for which Dg = Dz will be referred to as absorbance
invariant signed digraphs.

As noted already, however, a digraph H may not have a kernel and hence
any signed digraph on H would not have a kernel; but a signed digraph £
on H may have an absorbent, which is not a kernel. The converse may
be amusing due to the 6-vertex signed digraph constructed above, which
has no kernel but whose underlying digraph has exactly one kernel, viz.,

{0'2""4}'

Problem 6.8.  Characterize signed digraphs & having no kernel but their
underlying digraphs |Z| having one.

Further, we shall call a kernel-free signed digraph a strictly kernel-free
signed digraph if its underlying digraph is kernel-free too.

Let A(X) denote the set of sources in I, i.e., vertices at each of which
there are only outgoing arcs and no incoming arcs. Then, clearly, A(X)
cannot be an absorbent of X. However, the following result shows that its
complement is an absorbent in ¥.

Proposition 6.9.  Given any signed digraph T, V() \ A(Z) € Dg.

Proof. Clearly, V(Z) \ A(Z) € Dj5). Hence, let u be a marking that
assigns +1 to each vertex u € A(X), +1 or —1 to every vertex v €
O(u)N(V(X)\ A(X)) according to whether the arc (u,v) is positive or neg-
ative in ¥ and assigns arbitrarily +1 or ~1 to any vertex z in V(Z) \ A(S)
that has no predecessor in A(Z). It is easy to see that u so defined satisfies
the conditions of Definition 6.1. 0O
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Next, as mentioned above already, by a theorem of Ore, any isolate-
free graph G has a dominating set D such that V(G) \ D is a dominating
set. Is there an analogue of this theorem for isolate-free signed digraphs?
Instantly, it may be noticed that in any signed digraph ¥ on an out-star,
i.e., the star Kin, » > 1 in which every edge is oriented outward from
its center ¢ (viz., the vertex of full out-degree), the set of its sinks (i.e.,
vertices from which no arc is outgoing) is the only nontrivial absorbent in
¥; moreover, notice that it is in fact a kernel. This raises the following
open problems.

Problem 6.10.  Characterize signed digraphs having e unique minimum
absorbent.

Problem 6.11.  Characterize signed digraphs having a unique minimum
kernel.

However, one can prove the following result, in the same manner in
which its graph theoretical analogue is established by Ore [9].

Theorem 6.12. Let ¥ be any signed digraph whose underlying digraph
is strongly connected having a finite bound on the out-degrees and in-degrees
of its vertices. Then, to any minimal absorbent in ¥ there erists another
disjoint from it.

The following three lemmas will be required to establish Theorem 6.12.

Lemma 6.13. Let & be any weakly connected digraph having a finite
bound on the in-degrees of its vertices. Then, any absorbent in ¥ contains
a minimal one.

Proof. We apply the principle of minimality. Let {D;} be any family of
inclusion ordered absorbents with the intersection Dy. Suppose, for some
d ¢ Dy there is no arc from d to some vertex in Dgy. Then, there would
be some set D; such that there are no arcs from D; to d, contrary to the
definition of D;. a

Lemma 6.14. Any strongly connected digraph has an absorbent D such
that its complement D is also an absorbent.

Proof. Let T be any strongly connected digraph. Then, it has a maximal
acyclic subdigraph T having a root ¢ such that every other vertex v in ¥ is
reachable from ¢ via a directed path in T from ¢ to v. Then, the vertices
in T and ¥ fall into two disjoint sets D and D consisting respectively of
the vertices with an even and odd directed distance from c in T'. Evidently
then D and D are absorbents in X. m]
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Note that Lemma 6.14 does not hold if the requirement of X being
strongly connected is dropped from its hypothesis.

Lemma 6.15.  In any strongly connected digraph, the complement D of
a minimal ebsorbent D is an absorbent.

Proof.  This follows from the fact that the property of a set of vertices in
a digraph is superhereditary, in the sense that the superset of any absorbent
is again an absorbent. O

Proof of Theorem 6.12. This follows now from Lemmas 6.13, 6.14 and
Definition 6.1. (]

Problem 6.16.  Study the properties of absorbents in signed digraphs
whose underlying digraphs are not necessarily strongly connected.

And so on .... As the saying goes in the scientific circles, “The best way
to predict the future is to invent it!”. Here lies a counter-example to the
often chanted philosophy that ‘simplicity is ultimate sophistication’!
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