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Abstract

Hypertournaments are generalizations of tournaments. We dis-
cuss the concept of scores, losing scores, total scores and degrees
in k-hypertournaments and present characterizations of sequences
to be score, losing score, total score and degree sequence of some
k-hypertournement. We further discuss stronger upper and lower
bounds for scores and losing scores. We extend the concept of scores,
losing scores and degrees to bipartite hypertournaments. In the end
we list some open problems in hypertournaments.
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1 Introduction

A tournament is a complete oriented graph. In a tournament the score of
a vertex is its outdegree and the sequence of scores listed in non-decreasing
order is called the score sequence. Landau [17] characterized the score
sequences of a tournament.

Theorem 1.1. A sequence S = [3;]7 of non-negative integers in non-
deceasing order is a score sequence of a tournament if and only if for each

1<k<n-1, .
Zs.-z(:) (1)

i=1

with equality for k = n.
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There are now several proofs of this fundamental result in tournament
theory ranging from clever arguments involving gymastics with subscripts,
arguments involving arc reorientations of properly chosen arcs, arguments
by contradiction, arguments involving the idea of majorization to a con-
structive argument utilizing network flows and another one involving sys-
tems of distinct representatives, two proofs of Griggs and Reid [8] one a
new direct proof and the second is self contained.

A k-hypergraph is a pair H = (V, E), where V is the set of vertices
and E is the set of k-subsets of V, called k-edges. A hypertournament
is a generalization of a tournament, and have been studied by a number
of authors, Assous [1], Barhut and Bialostocki (3], Frankl (7], Gutin and
Yeo [9]. These authors raise the problem of extending the most important
results on tournaments to hypertournaments. A k-hypertournament is a
complete k-hypergraph with each k-edge endowed with an orientation, that
is a linear arrangement of the vertices contained in the edge.

Given two non-negative integers n and k with n > k > 1, a
k-hypertournament on n vertices is a pair (V, A), where v is a set of ver-
tices with |V| = n and A is a set of k-tuples of vertices, called arcs, such
that for any k-subset S of V, A contains exactly one of the k! k-tuples
whose entries belong to S. Note that if n < k, then A # ¢, and this type is
called a null hypertournament. Clearly a 2-hypertournament is an ordinary
tournament.

Let R = [r1,72, ' ,Tn] be an integer sequence. For 1 < i < j <
n, let R(r;",rj_) = [1'1,1‘2,... , T+ 1, T = 1,--- ’1‘”} , R(T?,TJ.-) =
[r,,7h, - ,7,] will denote a permutation of R(r;,r;) such that r{ <rj <

.., < 7. An (z,y)-path in H is a sequence (2 =)vie1vaevs - - - V110
(= y) of distinct vertices vy,va,vs, " ¥-1,%, t = 1, and distinct arcs

e1,e2, + , e—1 such that vy lies on the last entry in e;, 1 < i<t -1.
Let e = (v1,v2,3, - , V) be an arc in H and i < j < k, we denote
e(v;,v5) = (V1,2, "+ s Vic 1y Vjy Vi1, ** 5 V=13 Yiy Viks ** 3 Vi),

that is the new arc obtained from e by exchanging v; and v; in e.

Let S be the subset of V, we denote H(S) to be the subhypertour-
nament induced by S. A k-hypertournament H is strong if for any two
vertices z € V and y € V, H contains both an (z,y)-path and a (y,z)-
path. A strong component of a k-hypertournament H is a maximal strong
subhypertournament of H. For a pair of distinct vertices z and y in H,
A(z,y) denotes the set of all arcs of H in which z precedes y.
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2 Scores and losing scores in
k-hypertournaments

For a given vertex v € V, the score d}(v) (or simply dt(v)) of v is
denoted by df(v) = [ U A(v, u)‘, that is, the number of arcs contain-
v

ue

ing v and in which v is not the last element. Similarly the losing score
dy(v) (or simply d=(v)) is the number of arcs containing v and in which
v is the last element. The score sequence (losing score sequence) of a
k-hypertournament is a non-decreasing sequence of non-negative integers
[s1,92,-+ , 8n] ([r1,72, -+ ,n]) where s; (r;) is a score (losing score) of some
vertex in H.

Zhou et al. [31] derived a result analogous to Landau theorem on tour-
naments, the following are the characterizations of losing score sequences
and score sequences of k-hypertournaments.

Theorem 2.1. Given two non-negative integersn and k withn > k> 1, a
non-decreasing sequence R = [r;}] of non-negative integers is a losing score
sequence of some k-hypertournament if and only if for each j (k < j < n),

! i
2mi2 (k) @)
i=1
with equality holding when j = n.
Theorem 2.2. Given two non-negative integers n and k withn > k > 1,
a non-decreasing sequence S = [3;]{ of non-negative integers is a score
sequence of some k-hypertournament if and only if for each j (k < j < n),
J .
fn—-1 n—j n
> -

2w2i(1)+ (") - () @
with equality holding when j = n.

Recently Pirzada and Zhou [24] gave a new and short proof of Theorem
2 by using the contradiction argument. Further Zhou et. al [31] obtained
a necessary and sufficient condition for a score sequence of a strong k-
hypertournament. This result generalizes a theorem of Harary and Moser
[11] about strong tournaments.
Theorem 2.3. [31] A non-decreasing sequence ()} (1 < i < n), of non-
negative integers is a score sequence of a strong k-hypertournament with
n>kifandonlyif fork<j<n-1
J ,

fn—-1 n—j n

223 2)+ (") - () @

i=1
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and n

By using a similar argument, we have the following.

Theorem 2.4. A non-decreasing sequence [r;]T of non-negative integers
with n > k is a losing score sequence of a strong k-hypertournament if and

onlyiffork<j<n-1,
J .
o> (i) (6)

and n
Zf‘i = (:) (7

Koh and Ree [16] gave another proof of Theorem 2 based on finding
a system of distinct representatives of a family of sets. This is similar to
" the proof of Bang and Sharp of Landau’s theorem, using Hall’s theorem.
Koh and Ree [15, 16] defined a k-hypertournament matrix M(H) as the
incidence matrix of a k-hypertournament. This M(H) is the n x (}) matrix
whose (%, j)th entry is given by

—~1 if vertex v; appears in arc e; as the last entry,

1 if vertex v; appears in arc e; but not as the last entry,
mij =
0 otherwise.

Several properties of k-hypertournament matrix are given in Koh and Ree
(15, 16).

We note that the concept of a k-hypertournament matrix differs from
that of an h-tournament matrix as given by Kirkland [14] and Maybee and
Pullman [18). An h-hypertournament matrix is any square matrix A that
satisfies A + AT = hhT — I, where I is the identity matrix and h is a
non-zero column matrix.

Kayibi, Khan and Pirzada [12] have investigated the problem of ran-
domly sampling all k-hypertournaments with a given score (equivalently
losing score) sequence by constructing a Markov chain, denoted by 9 __ on
the set M of all k-hypertournament matrices with the same score sequence
S based on a switching operation. They proved that 9 _ is ergodic, has a
uniform stationary distribution and is rapidly mixing. They then used 90t
to construct a Markov chain §,,, on the set H of all k-hypertournaments
with score sequence S and proved ergodicity, uniform stationary distribu-
tion and rapid mixing of the new Markov chain.
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3 Application of classical inequalities

Khan, Pirzada and Kayibi [13] investigated how classical inequalities can
provide information about the behaviour of score and losing score sequences
and hence the structure of hypertournaments. In the following results some
famous inequalities from mathematical analysis such as Holder, Minkowski
and Mahler have been used to obtain results on powers of scores and losing
scores.

Theorem 3.1. Let n and k be two non-negative integers with n > k > 1.
If R =[]}, is a losing score sequence of a k-hypertournament, then for

l1<g<oo
j(i-1y°
Z"" Zﬁ(k-l) ®
where 1 £ j < n. In particular

B4

with equality if and only if the hypertournament is regular.

Theorem 3.2. If [s;]] is non-increasing, [ri]} non-decreasing, then

() + () o () oo

where 1 < j < n. In particular

J o9 3 J .9 : 1
i=1 i i=1 T3 n-

with equality if and only if the hypertournament is regular.
Furthermore for any positive integer 1 < j < n, we have the following.
Theorem 3.3.

ﬂs,}+ﬂrl_( ) (12)

i=1 =1
In particular for j =n,

Hs +Hr’ <( ) (13)

i=l i=1

with equality if and only if the hypertournament is regular.
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Let R" denote the n-dimensional Euclidean space. The inner product of
two vectors A = (a;,a2,++ ,@,) and B = (by,b2,-++ ,bs) in R™ is defined

as (A,B) = i a;b;. The next result [13] gives an upperbound for the
i=1

=
inner product of score and losing score vector in R". The bound given
in Theorem 9 is best possible in the sense that it is realized by regular
hypertournaments.

Theorem 3.4. If S = [s;]}, R =[]}, then
k—-1/n\(n-1

with equality if and only if the hypertournament is regular.

Koh and Ree [16] have given the following necessary and sufficient con-
ditions for the existence of regular hypertournaments.

Theorem 3.5. Forn =3 and 2 < k < n-1, a regular k-hypertournament
on n vertices ezists if and only if n divides (7).

Using Theorem 3.1 for g = 2 we get a short proof of Theorem 3.4. The-
orem 3.4 can also proved by using Theorem 3.3 together with the argument
as used in proving Theorem 3.4 from Theorem 3.1.

4 Stronger inequalities for scores and losing
scores

Brualdi and Shen [5] obtained stronger bounds for scores in tournaments,
which indeed give better necessary and sufficient conditions for score se-
quences in tournaments. The following results by Pirzada, Khan and Kayibi

[27] give bounds for 7.

i€l
Theorem 4.1. Given non-negative integers n and k withn 2 k> 1, a
sequence R = [ri]}, of non-negative integers in non-decreasing order is o
losing score sequence of some k-hypertournament if and only if for every

subset I C [n},
1 i-1 1/
Yoz ( )+—( ) (15)
Y 2 g k-1 2\ k
with equality when |I| = n.
Theorem 4.2. [r;]} is a losing score sequence if and only if

TR ()20 w

i€l iel
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with equality when |I| = n.

Theorem 4.3. If R = [r;]] is a losing score sequence of a k-hypertournament
then for each 1 < i < n, we have

1/i-1 1/i-1 1/n-1
()ensi() 0 o

Since spy1-i + 75 = (“‘1) for I € [n] = {1,2,--- ,n}, we have

et Tn=Y (321 (18)

i€l iel i€l

S e =l (3 1]) - S (19)

i€l i€l
So by using Theorems 4.1 and 4.2, we obtain the following.

Theorem 4.4. § = [3;]T in non-decreasing order is a score sequence if and
only if for every subset I C [n]

i—1 |
S o<l (1) - 2 (y)-3(h) @
iel
with equality when |I| = n.
Theorem 4.5. S = [s;]] is a score sequence if and only if
-1 -1
Szl (31]) - o) (") @
i€l
with equality when |I| = n.
The following is a consequence of Theorems 4.3 and 4.4.

Theorem 4.6. If S = [s;]] is a score sequence of a k-hypertournement,
then foreach1 <i<n

1/n-1) 1 n—1\ 1/i-1
il _z < -z .
2(k—1) g S 41 S (k—l) 2(1c-1) (22)
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5 Total scores in k-hypertournaments

The total score of a vertex v; is defined as ¢; = 8; — r;. The total score
sequence is the sequence of total scores arranged in non-increasing order.
Koh and Ree [16] characterized total score sequences in hypertournaments.

Theorem 5.1. A non-decreasing sequence of integers [t;]T is a total score
sequence of a k-hypenoumament of order n if and only if t; has the same
parity as that of (}_1) for eachi=1,2,--- ,n,

3 fn-1 7
;tsS3<k_l)—2(k) (23)
with equality when j = n.

Using the improved bounds for scores and losing scores presented in
Section 4, Pirzada et al. [27) obtained the following stronger upper and
lower bounds for total scores.

Theorem 5.2. A non-decreasing T = [t;]} is a total score sequence if and
only if t; has the same parity as (3_}) for eachi = 1,2, -+ ,n and for every
|| = [n]

G2 -5 00 - () (3 <5

iel

«m(;2) -2 (o) - (5)

iel

(24)

Theorem 5.3. If a non-increasing sequence T = [t;]} is a total score

sequence, then
i—1 n-1 i—1
'(k-1)<t'—(k-1)“<k—1)' (25)

Theorem 5.4. A non-increasing sequence T = [t;]? is a total score se-
quence of a strong k-hypertoumament if and only if t; has the same parity
as that of (R7}) for eachi=1,2,

zj:t.- <j(::i) -2(;’;) (26)

i=1

for1<j<n-1land ¥ t;=(k—-2)(})-
=1
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6 Scores in bipartite hypertournaments

Bipartite hypergraph is a generalization of a bipartite graph. U =
{u1,u2,-+- ,up} and V = {v;, vy, -- »Un} are vertex sets, then the edge of
a bipartite hypergraph is a subset of the vertex sets which contains atleast
one vertex from U and atleast one vertex from V. If an edge has exactly
h vertices from U and has exactly k vertices from V, it is called an [k, k]-
edge. An [k, k]-bipartite hypergraph is a bipartite hypergraph all of whose
edges are [k, k]-edges. An [h, k] bipartite hypertournament (or [k, k]-BH) is
a complete [h, k]-bipartite hypergraph with each [k, k)-edge endowed with
an orientation, that is, a linear arrangement of the vertices contained in the
hyperedge.

Equivalently, given non-negative integers m, n, h and k withm > h > 1
and n > k > 1, an [k, k]-bipartite hypertournament of order m + n consists
of two vertex sets U and V' with |U| = m and |V| = n, together with an arc
set E, a set of (h+ k) tuples of vertices, with exactly A vertices from U and
exactly k vertices from V/, called arcs, such that for any h-subset U; of U
and k-subset V; of V, E contains exactly one of the (h + k)! (k + k)-tuples
whose % entries belong to U; and & entries belong to V3.

For a given u; € U, the score d*(v;) is the number of [k, k]-arcs con-
taining u; and in which v; is not the last element. The losing score d=(u;) is
the number of [h, k]-arcs containing u; and in which u; is the last element.
Similarly we define d*(v;) and d~(v;) for v; € V. The losing score lists of
an [h, k]-bipartite hypertournament is a pair of non-decreasing sequence of
non-negative integers A = [q]7* and B = [b;]} (C = [;]]* and D = [d;]})
where a; (c;) is the losing score (score) of some vertex u; € U and b; (d;)
is the losing score (score) of some vertex v; € V.

The following two results br Pirzada et al. [23] provide characteriza~
tions of losing score lists and score lists in [k, k]-bipartite hypertourna-
ments. These are similar to the characterizations of score lists in bipartite
tournaments by Beineke and Moon [4].

Theorem 8.1. Given non-negative integers m, n, h and k withm > h > 1
and n 2 k 2 1, the non-decreasing sequence A = [a;]* and B = [b;]} of
non-negative integers are the losing score lists of an [h, k|-BH if and only if

,Z:: o + fi‘: b 2 (Z) (z) 27)

with the equality whenp =m and g =n.
Theorem 6.2. C = [c;][* and D = [d;]} are the score lists of an [k, k)-BH
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if and only if for eachp and q ,
Ser a0 ()G
-6

with the equality when p =m and g = n.

28)

Now if an edge has atmost h vertices from U and atmost k vertices from
V, it is called (k, k)-edge . An (k, k)-bipartite hypertournament ((k, k)-BH)
is a complete (k, k)-bipartite hypergraph. The following characterizations
of losing score lists and score lists in (h, k)-BH can be seen in Pirzada and

Zhou [19].

Theorem 6.3. A = [a;]* and B = [b;]} are losing score lists of an (h, k)-
BH if and only if

P q ok

Zaa+2bj>2§:( )(J) (29)
i=1 i=1 =1 i=1

with the equality when p =m and ¢ =n.

Theorem 6.4. C = [ci][* and D = [d;]} are the score lists of an (h, k)-BH
if and only if

faefus S50 ()

ER- 00

with the equality when p =m and g =n.

(30)

7 Degrees in k-hypertournaments

Let a = (%1, ,Zx) be an arc of a k-hypertournament H. We call z; the
ith entry of @ , zi+1 the (i+1)th entry of a , zi4+1 in the successor of z;
and z; the predecwsor of ;1. Clearly zx has no successor and z; has no
predecessor in a. Define a function p on a by

k—i if x €a and z is the ith entry of a ,
(z,0)
0 ifzda.

108



For v € V(H), we denote d}; = Z p(v, a) or simply d*(v) is the degree

of v in H. The degree sequence of a k-hypertournament is a non-decreasing
sequence of non-negative integers [d;]}, where each d; is the degree of some
vertex in V(H). Zhou and Zhang (32] raised the following conjecture and
proved the case k = 3. This was settled in affirmative by Wang and Zhou
(30].

Theorem 7.1. Given two positive integers n and k with withn > k > 1,
a non-decreasing sequence D = [di]? of non-negative integers is a degree
sequence of some k-hypertournament if and only if

j .
N/n-2
g;d. > (2) (k B 2) (31)
for all 1 < j < n, with equality for j = n.

Pirzada and Zhou [26] extended the concept of degree in & k-hypertournament
to k-bipartite hypertournament and obtained the following characterization
of degree lists.

Theorem 7.2. Given non-negative integersm, n and k withm+n > k> 3
, let A= [a;]7* and B = [b;]} be non-decreasing sequences of non-negative
integers. Then A and B are degree lists of some k-bipartite hypertourna-
ment if and only if

Za‘+2b > (P‘fq) (m:j;2)_

S OED-06

with the equality when p=m and g =n.

(32)

The extension of scores and losing scores to tripartite hypertournaments
can be seen in Pirzada et al. [20] multipartite hypertournaments in Pirzada
[25]). The generalization of scores and degrees to oriented k-hypergraphs can
be found in [21, 33], while as degree sequences of k-multi hypertournaments
are due to Pirzada (22].

8 Open problems
1. The set of distinct scores (losing scores) is called the score (losing
score) set of a k-hypertournament. The characterization of score sets

in tournaments can be found in [10, 28]. Characterize score sets and
losing score sets in hypertournaments.
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2. A survey of kings in tournaments can be found in Reid [29]. Charac-
terize kings and serfs in hypertournaments.

3. We can find characterization of self converse score sequences in tour-
naments is given by Eplett [6] and the characterization of uniquely
realizable score sequences in tournaments can be seen in Avery [2].
Characterize self converse and uniquely realizable score sequences in
hypertournaments.
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