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Abstract

In 1996, Muthusamy and Paulraja have conjectured that for k >
3, the Cartesian product K,nOKn has a Pi-factorization if and only
if mn = Omodk and 2(k — 1)|k(m + n — 2). Recently, Chitra and
Muthusamy have partially settled this conjecture for ¥ = 3. In
this paper, it is shown that for k = 4 above conjecture is true if
(mmod12,nmod12) € {(0,2),(2,0),(0,8), (8,0),(2,6),(6,2), (6,8),
(8,6),(4,4)}. The left over cases for k = 4 are (m mod12,nmod 12)
€ {(0,5),(5,0),(0,11),(11,0),(1,4),(4,1),(3,8),(8,3), (4, 7),(7,4),
(4,10),(10,4),(8,9),(9,8),(10,10)}.
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1 Introduction

For terminology and notations not defined here we refer Balakrishnan and
Ranganathan (1] and we consider finite undirected simple graphs only. We
use usual notations: P, for the path on n vertices, K, for the complete
graph on 7 vertices, and K,(n) for the complete m-partite graph with n
vertices in each part. Unless otherwise mentioned, V(Kn) = {1,2,...,n}.

A decomposition of a graph.G is a collection D = {H;, Ho, ... ,Hi} of
nonempty subgraphs of G such that the edge sets E(H,), E(H,),. .., E(H)
form a partition of the edge set E(G); we denote this by G = H, & Ho @
-+ @ Hg. A decomposition F = {F, F,...,Fi} of G is a factorization of
G if each F; is a spanning subgraph of G; in addition if each F; = F, then
we say that F' factorizes G and denote this by F||G.
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The Cartesian product G103G; of two graphs G, and G» is the simple
graph with V(G1) x V(G) as its vertex set and two vertices (u;,v1) and
(ug,v2) are adjacent in G100G; if and only if either u; = u; and v, is
adjacent to v, in Ga, or v, is adjacent to uz in G; and v; = va.

In [3], Muthusamy and Paulraja posed the following conjecture.

Conjecture 1.1. [3] For k > 3, PiJ|(KmDK,) if and only if mn =

0modk and 2(k — 1){k(m +n - 2).

Recently, Chitra and Muthusamy [2] have partially settled this conjec-
ture for k = 3. For k = 4, above conjecture is:

Conjecture 1.2. B||(KnOK,) if and only if mn = Omod4 and 3
[(m+n-2).

If mn = 0mod4 and 3|(m+n —2), then (mmod 12,nmod 12) € {(0,2),
(2,0), (0,5), (5,0), (0,8), (8,0), (0,11), (11,0),(1,4),(4,1),(2,6), (6,2), (3,8),
(8.3), (4,7),(7,4), (4,10), (10,4), (6,8), (8,6), (8,9), (9,8), (4,4), (10, 10)}. By
symmetry, assume that (mmod12,nmod12) € {(0,2),(0,5),(0,8), (0,11),
(1,4),(2,6),(3,8),(7,4),(10,4),(6,8),(8,9), (4,4),(10,10)}. In this paper,
we prove Conjecture 2 for (mmod 12,nmod 12) € {(0, 2), (0, 8), (2,6), (6,8),

(4,4)}.

2 Results

Let Gy and G2 be graphs with n; and ny vertices, respectively. Consider
the Cartesian product G;00G,. For u € V(Gy), the subgraph induced by
{(u,v) : v € V(G2)}, in G10Gy, is called a G»-layer of G,0G,; and for
v € V(Gz), the subgraph induced by {(u,v) : u € V(G1)}, in G10G,
is called a Gy-layer of G10G2. Then, in G10G,, we have n; disjoint G-
layers and n, disjoint Gj-layers. Let H; and H; be spanning subgraphs of
G, and Gy, respectively; and let F; = Gy — E(H,) and F; = G — E(H3).
Then, in G10G3, we have n; disjoint copies of Ha (each belonging to a
Gs-layer), n, disjoint copies of Hy (each belonging to a G;-layer), and the
removal of the edges of these copies from G10G3 results in F1[OF;. Hence,
G;0G; = niH, & noHy © (F1{0OF,). Observe that if Fl|H;, F|H,, and
F||(F10OF), then F||(G10G2). We use this observation and the following
Theorem A in the proof of Theorems 1 and 2. The removal of the edges
of n, disjoint copies of H, (each belonging to a Gs-layer) from G10G;
results in G10F;. Hence, G10G, = n1Hp & (G10F;). We also use this
observation in the proofs.

Theorem A. [4)Py|| K. (n) if and only if mn = O0mod4 and 2(m - 1)n =
0mod3.
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Theorem 2.1. If (mmod 12,nmod 12) = (4,4), then Py||(KnOK.).

Proof. As (mmod12,nmod12) = (4,4), m = 12r+4 and n = 125 +4 for
some nonnegative integers » and s. Observe that

KmOK,, = K12,4+40K12,44
= (127 + 4)Ks,41(4) (125 + 4) Kapp (4)
(3r+1)(3s+ 1)(KOKy).

As (3s+1)(4) = 0mod4 = (3r +1)(4) and 2(35)(4) = 0mod3 = 2(37)(4),
by Theorem A, Py||K3,+1(4) and Py||K3r+1(4). Hence Py||(12r+4)K3,41(4)
and Py|[(12s + 4)K3,-+1(4).

As K,DKy = 4K, ® 4K, and as Py|| Ky, we have Py||(K4OKy). Hence,

By||(3r + 1)(3s + 1)(K,OKj).
This completes the proof. o

Lemma 2.2. Pyji{(KeOK?).
Proof.

G1 = (1,1)(2,1)(2,2)(1,2) ® (3,1)(4,1)(4,2)(3,2) ® (5,1)(6,1)(6,2)(5,2),
G2 = (6,1)(1,1)(1,2)(6,2) ® (3,1)(5,1)(2, 1)(4, 1) & (3,2)(5,2)(2, 2)(4, 2),
Gs = (4,1)(5,1)(5,2)(4,2) ® (1,1)(3,1)(6, 1)(2,1) & (1,2)(3,2)(6, 2)(2, 2),
Ga = (2,1)(3,1)(3,2)(2,2) ® (6,1)(4,1)(1,1)(5, 1) & (6, 2)(4,2)(1,2)(5,2)

is a P,-factorization of KgOKj. O
Theorem 2.8. If (mmod12,nmod12) = (0,8), then P4||(K,OK,).

Proof. As (mmod12,nmod12) = (0,8), m = 12r and n = 12s + 8 for
some positive integer r and some nonnegative integer s. Observe that

KmDKn = K12rDK12s+8
= (12r)Keu+4(2) ® (125 + 8)K,(12) ® (r)(6s + 4)(K120Ky).

As (6s + 4)(2) = 0mod4 = (r)(12) and 2(6s + 3)(2) = Omod3 =
2(r — 1)(12), by Theorem A, Pyl|Ks,+4(2) and Py||K,(12). Hence Py
(12r)Kes+4(2) and Pyf|(12s + 8)K,(12).

Note that K1,0K, = (2Ks e K2(6))DK2 = 2(K¢;DK2) & 2K2(6). By
Lemma 2.2, Py||(KsOK3). Since 2(6) = 0mod4 and 2(1)(6) = 0mod 3, we
have by Theorem A, P;4||K2(6). Hence P,]|(K120K>). Consequently,
Pyll(r)(6s + 4)(K120K3).

This completes the proof. O

129



A near 1-factor of a graph G with 2k+ 1 vertices is a set of k edges that
cover all but one vertex. A near 1-factorization of G is a decomposition of
G into near 1-factors. For every k, the complete graph Ko+ has a near
1-factorization.

Lemma 2.4. For any nonnegative integer r, Py||(Ki2-+60K2).

Proof. By Lemma 2.2, assume that r > 1. For p € {1,2,...,2r + 1},
identify six vertices 6p — 5,6p — 4,6p — 3,6p — 2,6p — 1,6p of Kiarqs
into a single vertex vp, and consider the complete graph Ka,41 with ver-
tex set {v1,v2,...,v2r41}. Let F be a near l-factorization of Kpriy. If
F = {vaivai41 : © € {1,2,...,7}} is & near 1-factor of Ka,41 belonging to
F, then in Ki2r4+600K2 we associate 2r disjoint subgraphs of Kj2-,¢-layers
each isomorphic to Kg ¢ with bipartition ({(12¢ — 5, k), (12¢ — 4, k), (12i —
3,k), (12i - 2, k), (12i — 1, k), (124, k)}, {(12i + 1, k), (12i + 2, k), (12 + 3, k),
(12i +4,k), (12i +5,k), (12¢ +6,k)}), i € {1,2,...,7}, k € {1,2}, and one
subgraph isomorphic to Ke¢OK, with vertex set {(1,1),(2,1),(3,1),(4,1),
(5,1), (6,1, (1,2), (2,2), (3,2), (4,2), (5,2), (6,2)} and prism edges (5,1)
(5,2), 7 € {1,2,3,4,5,6}. As both the graphs K¢ ¢ (= K2(6)) and Ke[K>
(see Lemma 2.2) are Py-factorable into four Py-factors, the above associ-
ated spanning subgraph of K12r4+601K3 is Py-factorable into four Ps-factors.
Since the number of near 1-factors in F is 2r +1, we have obtained 4(2r +1)
edge-disjoint Pj-factors in Kjar4+60K2. Hence, Py||(K12r+6001K2). O

Theorem 2.5. If (mmod12,nmod12) = (6,8), then Py||(KnDOKp).

Proof. As (mmod12,nmod12) = (6,8), m = 12r + 6 and n = 12s + 8 for
some nonnegative integers r and s. Observe that

KnOK,, = KnDOKj248
= KmDO((6s + 4) K2 ® Kes+4(2))
= (6s + 4)(KmDKz) & mKgs44(2).

By Lemma 2.4, Py|(KnOK2).
(65 +4)(2) = 0mod 4 and 2(6s + 3)(2) = 0mod3 implies by Theorem A

that Py||Kes+4(2).
This completes the proof. |

Theorem 2.6. If (mmod12,nmod12) = (2,6), then Py||(KnDOKp).

Proof. As (mmod12,nmod12) = (2,6), m = 12r+2 and n =125 +6 for
some nonnegative integers r and s.

Forp € {1,2,...,2s+1}, identify six vertices 6p—5,6p—4,6p—3,6p—2,
6p—1, 6p of K12.16 into a single vertex v,, and consider the complete graph
Kj,41 with vertex set {vi,vs,...,%2441}. Let F be a near 1-factorization
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of Kogy1. If F = {vgsv241 : i € {1,2,...,5)}} is a near 1-factor of Koot
belonging to F, then in Kj2,4+900K 2,46 We associate:

(i) ms disjoint subgraphs of K12,1¢-layers each isomorphic to Keg with
bipartition ({(kr 125 - 5)’ (ks 125 -4)! (ky 125~ 3)’ (k: 125 -2)7 (k’ 125 - 1),
(k,129)}, {(k,125 + 1), (k, 125 + 2), (k,12] + 3), (k, 12 + 4), (k, 12] +
5), (k,12j + 6)}), k € {1,2,...,m}, 5 € {1,2,...,s}, (note that first
coordinate is from 1 to m and second coordinate is from 7 to n)

(ii) 6r disjoint subgraphs of Ks,.2-layers each isomorphic to Kg ¢ with
bipartition ({(12i — 9, k), (12i - 8, k), (12i - 7,k), (12i - 6, k), (12i — 5, k),
(12 - 4,k)}, {(12¢ - 3,k), (12i — 2,k), (12i - 1, k), (124, k), (12i + 1,k),
(12i42,k)}),i € {1,2,...,7}, k € {1,2,...,6}, (note that first coordinate
is from 3 to m and second coordinate is from 1 to 6) and

(iii) one subgraph isomorphic to KgOK; with vertex set {(1,1),(1,2),
(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)} and prism
edges (1,5)(2,7), j € {1,2,3,4,5,6}.

As both the graphs Kg¢ and Kg[IK, are P;-factorable into four Pj-
factors, the above associated spanning subgraph of K 12r+20K12,46 i8 Py-
factorable into four P,-factors. Since the number of near 1-factors in F is
2s+1, we have obtained 4(2s+1) edge-disjoint Py-factors in K;2,490K 125+6-

Identify the two vertices 1,2 of Kjar42 into a single vertex = and for
p € {1,2,...,2r}, identify six vertices 6p — 3,6p — 2,6p — 1,6p,6p +
1,6p + 2 of Kj,42 into a single vertex y,. Consider the complete graph
Kar4y with vertex set {z,y1,%2,...,%r}. {y192,¥3%4,...,¥2r—1%2-} is &
near 1-factor of Kor41 and Ka,41 is near 1-factorable implies that Kory1 —
{w1v2,¥3%4, . . . , Y2r-1Y2r } is near 1-factorable. Let H be a near 1-factorization
of Kar+1 — {¥192, %34, - - -, Y2r—1%2-}. If H is a near 1-factor of K3,,1 be-
longing to H, then in Ki2,420K12,46 We associate the following:

(i) for an edge of the form y,y; in H, n disjoint subgraphs of Kjo,40-
layers each isomorphic to Kgg with bipartition ({(6i — 3,k), (6i — 2, k),
(67: -1, k), (Gi: k)’ (67:"" 1, k)’ (6i+21 k)}’ {(6.7 - 31 k), (6.7 - 2s k)1 (6.7 -1, k):
(67, k), (67 +1,k), (65 +2,k)}), k € {1,2,...,n},

(ii) for the edge of the form zy, in H, n disjoint subgraphs of Kiz,42-
layers each isomorphic to K,4(2) with partite sets {(1, &), (2, k)}, {(6g-3, k),
(6%- 2, k)}’ {(Bq_ l) k)$ (an k)}l {(GQ"' 11 k)) (6¢J+ 27 k)}v ke {1’ 2) ey n}’
an

(iii) for the vertex y (t € {1,2,...,2r}) not covered by H, 3(2s + 1)
subgraphs each isomorphic to KoDOKg with

(a) vertex set, {(6t—3,6¢—5), (6t—3, 6¢—4), (6t—3, 6¢—3), (6t—3, 6¢~2),
(62— 3,6¢ — 1), (6t - 3,6¢), (6t — 2,6¢ — 5), (6t — 2,6¢ — 4), (6t — 2, 6¢ — 3),
(6t —2,6¢—2), (6t —2,6¢— 1), (6t — 2,6¢)} and prism edges (6t — 3,6¢ — 5)
(6t —2,6¢—5), (6t —3,6¢— 4)(6t —2,6¢ - 4), (6t — 3,6¢ — 3)(6t — 2, 6¢ — 3),
(6¢—3,66—2)(6t—2,6¢—2), (6t—3,6¢—1)(6t—2, 6¢—1), (6t—3, 6¢)(6t—2, 6¢),

(b) vertex set {(6t—1,6¢—5), (6t—1, 6£—4), (6¢t—1,6¢—3), (6t—1,6¢—2),
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(6t - 1,6¢— 1), (6t — 1,6¢), (6t,6¢ — 5), (6¢,6¢ — 4), (6t,6¢ — 3), (6t,6¢ — 2),
(6t,6¢—1),(6t,6¢)} and prism edges (6t—1,6¢—5)(6t,6¢—5), (6t—1,6£—4)
(6t,6—4), (6t—1,6¢—3)(6¢,6¢—3), (6t—1,6¢—2)(6t,6¢—2), (6t—1,6¢—1)
(6t,6¢ — 1), (6t — 1,6¢)(6t,6¢£),

(c) vertex set {(6t+1,6¢—5), (6t+1,6¢—4), (6t+1,6¢—3), (6t+1,6—2),
(6t +1,6£ — 1), (6t + 1,6¢), (6t + 2,6¢ — 5), (6t + 2,6¢ — 4), (6t + 2,6¢ — 3),
(6t +2,6¢—2), (6t +2,6¢ — 1), (6t +2,6€)} and prism edges (6t + 1,6¢ — 5)
(6t +2,6¢—5), (6t +1,6£— 4)(6t +2,6¢ — 4), (6t +1,6¢ — 3)(6t +2,6¢ — 3),
(6t+1,6£-2)(6t+2,60-2), (6t+1,6£—1)(6t+2,6¢—1), (6t+1,6¢)(6t+2,6¢),
where £ € {1,2,...,25+1}.

As all the three graphs Kg ¢, K2OKg and K4(2) (see Theorem A and
Lemma 2.2) are P,-factorable into four Pj-factors, the above associated
spanning subgraph of Ki,4+20K12,46 is Ps-factorable into four Py-factors.
Since the number of near 1-factors in H is 2r, we have obtained 4(2r) edge-

disjoint Py-factors in K 121-+2DK 12546+
Thus we have obtained 4(2r +2s+ 1) edge-disjoint Ps-factors in Ky2r42
OK12s+6- This completes the proof. a

Theorem 2.7. If (mmod12,nmod12) = (0,2), then Py||(KnOK,).

Proof. As (mmod12,nmod12) = (0,2), m = 12r and n = 125 + 2 for
some positive integer r and some nonnegative integer s. Observe that

KnDOKn = K12:0K12,42
= (K2r(6) ® 2rKg)OK 12,42
= (128 + 2)K»,(6) ® (2r)(KeOK12542)-
(2r)(6) = 0mod4 and 2(2r — 1)(6) = O0mod 3 implies by Theorem A that

P;||K2-(6). By Theorem 2.6, Pa||(KeOKi2s+2)-
This completes the proof. a

3 Observations

1. If mmodl12 € {1,7,10}, nmod12 = 4, and P4||(KsOKj), then
P|(KOK,).
Proof. As nmod12 = 4, n = 12s+4 for some nonnegative integer s. Observe
that
K,OK, = KmDK12a+4
= KmO((3s + 1) K4 @ K3s41(4))
= (35 + 1)(KnOK,) @ mKa,q1(4).

132



(3s + 1)(4) = Omod4 and 2(3s)(4) = Omod3 implies by Theorem A that
P4||K3441(4). This completes the proof. O

2. If nmod12 = 8, then Py||(K30K,).

Proof. As nmod12 =8, n = 123+ 8 for some nonnegative integer s.

A = 3e_§12 [(1,4i - 3)(2, 4i — 3)(3, 4 — 3)(3, 4i — 2)
T @(24i-2)(1,4i - 2)(1,4i - 1)(2,4i— 1)
@ (3,4i — 1)(3,4i)(2, 40)(1, 4i)]
and 3342
F,= @ [(3,4i-3)(1,4i - 3)(1,4:)(3,4i)
i=1

@ (2,41 — 3)(2,4i - 2)(3,41 — 2)(1,4¢ — 2)

® (1, 4i — 1)(3,4i — 1)(2,4i - 1)(2, 4))
are edge-disjoint Py-factors of K30K,,. The removal of the edges of F; @ F
from K30K,, has three components and each component is isomorphic to
Kes+4(2) with partite sets: {(1,4¢ — 3),(1,44)}, {(1,4i — 2),(1,4i - 1)},
i € {1,2,...,3s 4 2}, for the first copy; {(2,4i - 3), (2,4i — 2)}, {(2,4i -
1),(2,40)},1 € {1,2,...,3s+2}, for the second copy; and {(3, 4i—3), (3, 4i—
2)}, {(3,4i - 1),(3,44)}, ¢ € {1,2,...,33+ 2} for the third copy.

(6s+4)(2) = 0mod4 and 2(6s + 3)(2) = 0mod 3 implies by Theorem A

that Py||Kes+4(2). This completes the proof. 0

3. If m(mod12) = 8, then P||(KmOKs).

Proof. As m(mod12) = 8, m = 12r + 8 for some nonnegative integer r.
In order to factorize Kj2,4+80Kp into Pj-factors, we require 8r + 10 edge-
disjoint Pys-factors of Kjs,,+30Ky. Observe that

K12r480Ko = ((6r + 4) K2 ® Ksr44(2))0Ky
= (6r + 4)(K20Kp) @ 9Ker44(2).

(6r + 4)(2) = 0(mod4) and 2(6r + 3)(2) = 0(mod 3) implies by Theorem
A that Py||Ker+4(2). Hence, there is a Ps-factorization of Kg,44(2) into
Py-factors Fy, F3,..., Fary4. Each Py-factor Fj, i € {1,2,...,8r + 4}, of
Ker+4(2) yields a Py-factor Fy = F{V + F® + F® 4 F@ L F® 4 F©
1;;(7) + F,-(S) + F,-(g) of 9Ksr4+4(2) in Kj2r4+80Ky, where Ff” is a Pj-factor
in the j-th Kjs,,g-layer of K 12r+80Kp.

First take the 8r+1 Py-factors Fy, Fg, ..., F§,, .. Next, we factorize the
remaining subgraph (6r +4)(K20Ky) ® (F} U F3 U F3) into the following
nine Py-factors: For j € {0,1,2},
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1. ( F1(31'+1) + F1(31+2) + F1(3j+3))
6r+4
® (D [(26—1,4+34)(2 — 1,7 +3§)(2i, 7 + 3/)(2i,4 + 3j)

i=1
®(2—1,54+35)(2i —1,8+35)(2¢ — 1,9+ 35)(2: - 1,6 + 35)
@ (2,5 +'3/)(2,8 + )(2,0-+ 3)(2,6 + )

2. (F(3J+1) + F(3.‘l+2) + F(3.7+ )

& ( @ [(2i — 1,4 + 37)(2i — 1,8+ 35)(2¢,8 + 35)(2¢,4 + 3j)

®(2z— 1,54 35)(2¢ — 1,9+ 35)(2i — 1,7+ 35)(2i — 1,6 + 35)
® (2,5 +37)(24,9 fSJ)(2z 7+ 35)(2¢,6 + 35)]),
3. ( F(31+1) + F(3’+2) + F(3a+ )

® ( G) (26 —1,4+35)(2i — 1,9+ 35)(2¢,9 + 35)(2¢,4 + 37)

@(22— 1,5 +37)(2 - 1,7+ 35)(2i — 1,8 + 35)(2: - 1,6 + 35)
® (2,5 + 35)(24, 7+ 35)(2¢,8 + 35)(24,6 + 37))),
where the addition involving j is taken modulo 9 with residues 1,2,...,9.
This completes the proof. ]

4 Conclusion

In conclusion, left over cases are:
o Pj-factorization of Kn,OK,, for

(i) (mmod12,nmod12) € {(0,5),(0,11),(10,10)},
(ii) (mmod12,nmod12) = (3,8) and m # 3,
(iii) (mmod12,nmod12) = (8,9) and n # 9; and

e P;-factorization of K,,0K, for mmod12 € {1,7,10}.
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