P_4 -Factorization of Cartesian product of complete graphs

R. SAMPATHKUMAR AND P. KANDAN

Department of Mathematics

Annamalai University

Annamalainagar 608 002, Tamil Nadu, India.

e-mail: sampathmath@gmail.com, kandan2k@gmail.com

Abstract

In 1996, Muthusamy and Paulraja have conjectured that for $k \ge 3$, the Cartesian product $K_m \square K_n$ has a P_k -factorization if and only if $mn \equiv 0 \mod k$ and 2(k-1)|k(m+n-2). Recently, Chitra and Muthusamy have partially settled this conjecture for k=3. In this paper, it is shown that for k=4 above conjecture is true if $(m \mod 12, n \mod 12) \in \{(0,2), (2,0), (0,8), (8,0), (2,6), (6,2), (6,8), (8,6), (4,4)\}$. The left over cases for k=4 are $(m \mod 12, n \mod 12) \in \{(0,5), (5,0), (0,11), (11,0), (1,4), (4,1), (3,8), (8,3), (4,7), (7,4), (4,10), (10,4), (8,9), (9,8), (10,10)\}$.

Keywords: Cartesian product of graphs, path factorization. 2010 Mathematics Subject Classification Number: 05C70.

1 Introduction

For terminology and notations not defined here we refer Balakrishnan and Ranganathan [1] and we consider finite undirected simple graphs only. We use usual notations: P_n for the path on n vertices, K_n for the complete graph on n vertices, and $K_m(n)$ for the complete m-partite graph with n vertices in each part. Unless otherwise mentioned, $V(K_n) = \{1, 2, ..., n\}$.

A decomposition of a graph G is a collection $\mathcal{D}=\{H_1,H_2,\ldots,H_k\}$ of nonempty subgraphs of G such that the edge sets $E(H_1),E(H_2),\ldots,E(H_k)$ form a partition of the edge set E(G); we denote this by $G=H_1\oplus H_2\oplus\cdots\oplus H_k$. A decomposition $\mathcal{F}=\{F_1,F_2,\ldots,F_k\}$ of G is a factorization of G if each F_i is a spanning subgraph of G; in addition if each $F_i\cong F$, then we say that F factorizes G and denote this by $F\|G$.

The Cartesian product $G_1 \square G_2$ of two graphs G_1 and G_2 is the simple graph with $V(G_1) \times V(G_2)$ as its vertex set and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G_1 \square G_2$ if and only if either $u_1 = u_2$ and v_1 is adjacent to v_2 in G_2 , or v_1 is adjacent to v_2 in v_1 is adjacent to v_2 in v_2 in v_3 is adjacent to v_2 in v_3 in v_4 in $v_$

In [3], Muthusamy and Paulraja posed the following conjecture.

Conjecture 1.1. [3] For $k \geq 3$, $P_k || (K_m \square K_n)$ if and only if $mn \equiv 0 \mod k$ and 2(k-1)|k(m+n-2).

Recently, Chitra and Muthusamy [2] have partially settled this conjecture for k = 3. For k = 4, above conjecture is:

Conjecture 1.2. $P_4 || (K_m \square K_n)$ if and only if $mn \equiv 0 \mod 4$ and 3 || (m+n-2).

If $mn \equiv 0 \mod 4$ and 3|(m+n-2), then $(m \mod 12, n \mod 12) \in \{(0,2), (2,0), (0,5), (5,0), (0,8), (8,0), (0,11), (11,0), (1,4), (4,1), (2,6), (6,2), (3,8), (8,3), (4,7), (7,4), (4,10), (10,4), (6,8), (8,6), (8,9), (9,8), (4,4), (10,10)\}$. By symmetry, assume that $(m \mod 12, n \mod 12) \in \{(0,2), (0,5), (0,8), (0,11), (1,4), (2,6), (3,8), (7,4), (10,4), (6,8), (8,9), (4,4), (10,10)\}$. In this paper, we prove Conjecture 2 for $(m \mod 12, n \mod 12) \in \{(0,2), (0,8), (2,6), (6,8), (4,4)\}$.

2 Results

Let G_1 and G_2 be graphs with n_1 and n_2 vertices, respectively. Consider the Cartesian product $G_1 \square G_2$. For $u \in V(G_1)$, the subgraph induced by $\{(u,v): v \in V(G_2)\}$, in $G_1 \square G_2$, is called a G_2 -layer of $G_1 \square G_2$; and for $v \in V(G_2)$, the subgraph induced by $\{(u,v) : u \in V(G_1)\}$, in $G_1 \square G_2$, is called a G_1 -layer of $G_1 \square G_2$. Then, in $G_1 \square G_2$, we have n_1 disjoint G_2 layers and n_2 disjoint G_1 -layers. Let H_1 and H_2 be spanning subgraphs of G_1 and G_2 , respectively; and let $F_1 = G_1 - E(H_1)$ and $F_2 = G_2 - E(H_2)$. Then, in $G_1 \square G_2$, we have n_1 disjoint copies of H_2 (each belonging to a G_2 -layer), n_2 disjoint copies of H_1 (each belonging to a G_1 -layer), and the removal of the edges of these copies from $G_1 \square G_2$ results in $F_1 \square F_2$. Hence, $G_1 \square G_2 = n_1 H_2 \oplus n_2 H_1 \oplus (F_1 \square F_2)$. Observe that if $F \parallel H_2$, $F \parallel H_1$, and $F||(F_1\square F_2)$, then $F||(G_1\square G_2)$. We use this observation and the following Theorem A in the proof of Theorems 1 and 2. The removal of the edges of n_1 disjoint copies of H_2 (each belonging to a G_2 -layer) from $G_1 \square G_2$ results in $G_1 \square F_2$. Hence, $G_1 \square G_2 = n_1 H_2 \oplus (G_1 \square F_2)$. We also use this observation in the proofs.

Theorem A. $[4]P_4||K_m(n)$ if and only if $mn \equiv 0 \mod 4$ and $2(m-1)n \equiv 0 \mod 3$.

Theorem 2.1. If $(m \mod 12, n \mod 12) = (4, 4)$, then $P_4 || (K_m \square K_n)$.

Proof. As $(m \mod 12, n \mod 12) = (4, 4), m = 12r + 4$ and n = 12s + 4 for some nonnegative integers r and s. Observe that

$$\begin{split} K_m \Box K_n &= K_{12r+4} \Box K_{12s+4} \\ &= (12r+4) K_{3s+1}(4) \oplus (12s+4) K_{3r+1}(4) \oplus \\ &\qquad \qquad (3r+1)(3s+1) (K_4 \Box K_4). \end{split}$$

As $(3s+1)(4) \equiv 0 \mod 4 \equiv (3r+1)(4)$ and $2(3s)(4) \equiv 0 \mod 3 \equiv 2(3r)(4)$, by Theorem A, $P_4 || K_{3s+1}(4)$ and $P_4 || K_{3r+1}(4)$. Hence $P_4 || (12r+4)K_{3s+1}(4)$ and $P_4 || (12s+4)K_{3r+1}(4)$.

As $K_4 \square K_4 = 4K_4 \oplus 4K_4$, and as $P_4 || K_4$, we have $P_4 || (K_4 \square K_4)$. Hence, $P_4 || (3r+1)(3s+1)(K_4 \square K_4)$.

This completes the proof.

Lemma 2.2. $P_4 || (K_6 \square K_2)$.

Proof.

$$G_1 = (1,1)(2,1)(2,2)(1,2) \oplus (3,1)(4,1)(4,2)(3,2) \oplus (5,1)(6,1)(6,2)(5,2),$$

$$G_2 = (6,1)(1,1)(1,2)(6,2) \oplus (3,1)(5,1)(2,1)(4,1) \oplus (3,2)(5,2)(2,2)(4,2),$$

$$G_3 = (4,1)(5,1)(5,2)(4,2) \oplus (1,1)(3,1)(6,1)(2,1) \oplus (1,2)(3,2)(6,2)(2,2),$$

$$G_4 = (2,1)(3,1)(3,2)(2,2) \oplus (6,1)(4,1)(1,1)(5,1) \oplus (6,2)(4,2)(1,2)(5,2)$$

is a P_4 -factorization of $K_6 \square K_2$.

Theorem 2.3. If $(m \mod 12, n \mod 12) = (0, 8)$, then $P_4 || (K_m \square K_n)$.

Proof. As $(m \mod 12, n \mod 12) = (0, 8)$, m = 12r and n = 12s + 8 for some positive integer r and some nonnegative integer s. Observe that

$$K_m \square K_n = K_{12r} \square K_{12s+8}$$

= $(12r)K_{6s+4}(2) \oplus (12s+8)K_r(12) \oplus (r)(6s+4)(K_{12} \square K_2).$

As $(6s + 4)(2) \equiv 0 \mod 4 \equiv (r)(12)$ and $2(6s + 3)(2) \equiv 0 \mod 3 \equiv 2(r - 1)(12)$, by Theorem A, $P_4 || K_{6s+4}(2)$ and $P_4 || K_r(12)$. Hence $P_4 || (12r)K_{6s+4}(2)$ and $P_4 || (12s + 8)K_r(12)$.

Note that $K_{12} \square K_2 = (2K_6 \oplus K_2(6)) \square K_2 = 2(K_6 \square K_2) \oplus 2K_2(6)$. By Lemma 2.2, $P_4 \parallel (K_6 \square K_2)$. Since $2(6) \equiv 0 \mod 4$ and $2(1)(6) \equiv 0 \mod 3$, we have by Theorem A, $P_4 \parallel K_2(6)$. Hence $P_4 \parallel (K_{12} \square K_2)$. Consequently, $P_4 \parallel (r)(6s+4)(K_{12} \square K_2)$.

This completes the proof.

A near 1-factor of a graph G with 2k+1 vertices is a set of k edges that cover all but one vertex. A near 1-factorization of G is a decomposition of G into near 1-factors. For every k, the complete graph K_{2k+1} has a near 1-factorization.

Lemma 2.4. For any nonnegative integer r, $P_4 || (K_{12r+6} \square K_2)$.

Proof. By Lemma 2.2, assume that $r \geq 1$. For $p \in \{1, 2, ..., 2r + 1\}$, identify six vertices 6p - 5, 6p - 4, 6p - 3, 6p - 2, 6p - 1, 6p of K_{12r+6} into a single vertex v_p , and consider the complete graph K_{2r+1} with vertex set $\{v_1, v_2, \ldots, v_{2r+1}\}$. Let \mathbb{F} be a near 1-factorization of K_{2r+1} . If $F = \{v_{2i}v_{2i+1}: i \in \{1,2,\ldots,r\}\}$ is a near 1-factor of K_{2r+1} belonging to \mathbb{F} , then in $K_{12r+6}\square K_2$ we associate 2r disjoint subgraphs of K_{12r+6} -layers each isomorphic to $K_{6,6}$ with bipartition $(\{(12i-5,k),(12i-4$ (3, k), (12i - 2, k), (12i - 1, k), (12i, k), (12i + 1, k), (12i + 2, k), (12i + 3, k), (12i + 3, k), (12i + 1, k), (12i + 2, k), (12i + 1, $(12i+4,k), (12i+5,k), (12i+6,k)\}$, $i \in \{1,2,\ldots,r\}, k \in \{1,2\}$, and one subgraph isomorphic to $K_6 \square K_2$ with vertex set $\{(1,1),(2,1),(3,1),(4,1),$ (5,1), (6,1), (1,2), (2,2), (3,2), (4,2), (5,2), (6,2) and prism edges (j,1) $(j,2), j \in \{1,2,3,4,5,6\}$. As both the graphs $K_{6,6} (= K_2(6))$ and $K_6 \square K_2$ (see Lemma 2.2) are P_4 -factorable into four P_4 -factors, the above associated spanning subgraph of $K_{12r+6}\square K_2$ is P_4 -factorable into four P_4 -factors. Since the number of near 1-factors in \mathbb{F} is 2r+1, we have obtained 4(2r+1)edge-disjoint P_4 -factors in $K_{12r+6} \square K_2$. Hence, $P_4 \parallel (K_{12r+6} \square K_2)$.

Theorem 2.5. If $(m \mod 12, n \mod 12) = (6, 8)$, then $P_4 || (K_m \square K_n)$.

Proof. As $(m \mod 12, n \mod 12) = (6, 8), m = 12r + 6$ and n = 12s + 8 for some nonnegative integers r and s. Observe that

$$K_m \square K_n = K_m \square K_{12s+8}$$

= $K_m \square ((6s+4)K_2 \oplus K_{6s+4}(2))$
= $(6s+4)(K_m \square K_2) \oplus mK_{6s+4}(2)$.

By Lemma 2.4, $P_4 \parallel (K_m \square K_2)$.

 $(6s+4)(2) \equiv 0 \mod 4$ and $2(6s+3)(2) \equiv 0 \mod 3$ implies by Theorem A that $P_4 || K_{6s+4}(2)$.

This completes the proof.

Theorem 2.6. If $(m \mod 12, n \mod 12) = (2, 6)$, then $P_4 || (K_m \square K_n)$.

Proof. As $(m \mod 12, n \mod 12) = (2, 6), m = 12r + 2$ and n = 12s + 6 for some nonnegative integers r and s.

For $p \in \{1, 2, ..., 2s+1\}$, identify six vertices 6p-5, 6p-4, 6p-3, 6p-2, 6p-1, 6p of K_{12s+6} into a single vertex v_p , and consider the complete graph K_{2s+1} with vertex set $\{v_1, v_2, ..., v_{2s+1}\}$. Let \mathbb{F} be a near 1-factorization

- of K_{2s+1} . If $F=\{v_{2i}v_{2i+1}:i\in\{1,2,\ldots,s\}\}$ is a near 1-factor of K_{2s+1} belonging to \mathbb{F} , then in $K_{12r+2}\square K_{12s+6}$ we associate:
- (i) ms disjoint subgraphs of K_{12s+6} -layers each isomorphic to $K_{6,6}$ with bipartition ($\{(k,12j-5), (k,12j-4), (k,12j-3), (k,12j-2), (k,12j-1), (k,12j)\}$, $\{(k,12j+1), (k,12j+2), (k,12j+3), (k,12j+4), (k,12j+5), (k,12j+6)\}$), $k \in \{1,2,\ldots,m\}$, $j \in \{1,2,\ldots,s\}$, (note that first coordinate is from 1 to m and second coordinate is from 7 to n)
- (ii) 6r disjoint subgraphs of K_{12r+2} -layers each isomorphic to $K_{6,6}$ with bipartition $(\{(12i-9,k), (12i-8,k), (12i-7,k), (12i-6,k), (12i-5,k), (12i-4,k)\}, \{(12i-3,k), (12i-2,k), (12i-1,k), (12i,k), (12i+1,k), (12i+2,k)\}), i \in \{1,2,\ldots,r\}, k \in \{1,2,\ldots,6\},$ (note that first coordinate is from 3 to m and second coordinate is from 1 to 6) and
- (iii) one subgraph isomorphic to $K_6 \square K_2$ with vertex set $\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)\}$ and prism edges $(1,j)(2,j), j \in \{1,2,3,4,5,6\}$.

As both the graphs $K_{6,6}$ and $K_6 \square K_2$ are P_4 -factorable into four P_4 -factors, the above associated spanning subgraph of $K_{12r+2} \square K_{12s+6}$ is P_4 -factorable into four P_4 -factors. Since the number of near 1-factors in \mathbb{F} is 2s+1, we have obtained 4(2s+1) edge-disjoint P_4 -factors in $K_{12r+2} \square K_{12s+6}$.

Identify the two vertices 1,2 of K_{12r+2} into a single vertex x and for $p \in \{1,2,\ldots,2r\}$, identify six vertices 6p-3, 6p-2, 6p-1, 6p, 6p+1, 6p+2 of K_{12r+2} into a single vertex y_p . Consider the complete graph K_{2r+1} with vertex set $\{x,y_1,y_2,\ldots,y_{2r}\}$. $\{y_1y_2,y_3y_4,\ldots,y_{2r-1}y_{2r}\}$ is a near 1-factor of K_{2r+1} and K_{2r+1} is near 1-factorable implies that $K_{2r+1}-\{y_1y_2,y_3y_4,\ldots,y_{2r-1}y_{2r}\}$ is near 1-factorable. Let $\mathbb H$ be a near 1-factorization of $K_{2r+1}-\{y_1y_2,y_3y_4,\ldots,y_{2r-1}y_{2r}\}$. If H is a near 1-factor of K_{2r+1} belonging to $\mathbb H$, then in $K_{12r+2}\square K_{12s+6}$ we associate the following:

- (i) for an edge of the form $y_i y_j$ in H, n disjoint subgraphs of K_{12r+2} -layers each isomorphic to $K_{6,6}$ with bipartition $(\{(6i-3,k), (6i-2,k), (6i-1,k), (6i,k), (6i+1,k), (6i+2,k)\}, \{(6j-3,k), (6j-2,k), (6j-1,k), (6j,k), (6j+1,k), (6j+2,k)\}), k \in \{1,2,\ldots,n\},$
- (ii) for the edge of the form xy_q in H, n disjoint subgraphs of K_{12r+2} -layers each isomorphic to $K_4(2)$ with partite sets $\{(1,k),(2,k)\},\{(6q-3,k),(6q-2,k)\},\{(6q-1,k),(6q,k)\},\{(6q+1,k),(6q+2,k)\},k\in\{1,2,\ldots,n\},$ and
- (iii) for the vertex y_t $(t \in \{1, 2, ..., 2r\})$ not covered by H, 3(2s + 1) subgraphs each isomorphic to $K_2 \square K_6$ with
- (a) vertex set $\{(6t-3,6\ell-5),(6t-3,6\ell-4),(6t-3,6\ell-3),(6t-3,6\ell-2),(6t-3,6\ell-1),(6t-3,6\ell),(6t-2,6\ell-5),(6t-2,6\ell-4),(6t-2,6\ell-3),(6t-2,6\ell-2),(6t-2,6\ell-1),(6t-2,6\ell)\}$ and prism edges $(6t-3,6\ell-5)$ $(6t-2,6\ell-5),(6t-3,6\ell-4)(6t-2,6\ell-4),(6t-3,6\ell-3)(6t-2,6\ell-3),(6t-3,6\ell-2)(6t-2,6\ell-2),(6t-3,6\ell-1)(6t-2,6\ell-1),(6t-3,6\ell)(6t-2,6\ell),$ (b) vertex set $\{(6t-1,6\ell-5),(6t-1,6\ell-4),(6t-1,6\ell-3),(6t-1,6\ell-2),(6t-1,6\ell-$

 $(6t-1,6\ell-1), (6t-1,6\ell), (6t,6\ell-5), (6t,6\ell-4), (6t,6\ell-3), (6t,6\ell-2), (6t,6\ell-1), (6t,6\ell)$ and prism edges $(6t-1,6\ell-5)(6t,6\ell-5), (6t-1,6\ell-4)$ $(6t,6\ell-4), (6t-1,6\ell-3)(6t,6\ell-3), (6t-1,6\ell-2)(6t,6\ell-2), (6t-1,6\ell-1)$ $(6t,6\ell-1), (6t-1,6\ell)(6t,6\ell),$

(c) vertex set $\{(6t+1,6\ell-5), (6t+1,6\ell-4), (6t+1,6\ell-3), (6t+1,6\ell-2), (6t+1,6\ell-1), (6t+1,6\ell), (6t+2,6\ell-5), (6t+2,6\ell-4), (6t+2,6\ell-3), (6t+2,6\ell-2), (6t+2,6\ell-1), (6t+2,6\ell)\}$ and prism edges $(6t+1,6\ell-5)$ $(6t+2,6\ell-5), (6t+1,6\ell-4)(6t+2,6\ell-4), (6t+1,6\ell-3)(6t+2,6\ell-3), (6t+1,6\ell-2)(6t+2,6\ell-2), (6t+1,6\ell-1)(6t+2,6\ell-1), (6t+1,6\ell)(6t+2,6\ell),$ where $\ell \in \{1,2,\ldots,2s+1\}$.

As all the three graphs $K_{6,6}$, $K_2 \square K_6$ and $K_4(2)$ (see Theorem A and Lemma 2.2) are P_4 -factorable into four P_4 -factors, the above associated spanning subgraph of $K_{12r+2} \square K_{12s+6}$ is P_4 -factorable into four P_4 -factors. Since the number of near 1-factors in $\mathbb H$ is 2r, we have obtained 4(2r) edge-disjoint P_4 -factors in $K_{12r+2} \square K_{12s+6}$.

Thus we have obtained 4(2r+2s+1) edge-disjoint P_4 -factors in K_{12r+2} $\square K_{12s+6}$. This completes the proof.

Theorem 2.7. If $(m \mod 12, n \mod 12) = (0, 2)$, then $P_4 || (K_m \square K_n)$.

Proof. As $(m \mod 12, n \mod 12) = (0, 2)$, m = 12r and n = 12s + 2 for some positive integer r and some nonnegative integer s. Observe that

$$K_m \square K_n = K_{12r} \square K_{12s+2}$$

$$= (K_{2r}(6) \oplus 2rK_6) \square K_{12s+2}$$

$$= (12s+2)K_{2r}(6) \oplus (2r)(K_6 \square K_{12s+2}).$$

 $(2r)(6) \equiv 0 \mod 4$ and $2(2r-1)(6) \equiv 0 \mod 3$ implies by Theorem A that $P_4 ||K_{2r}(6)$. By Theorem 2.6, $P_4 ||(K_6 \square K_{12s+2})$.

This completes the proof.

3 Observations

1. If $m \mod 12 \in \{1,7,10\}$, $n \mod 12 = 4$, and $P_4 || (K_m \square K_4)$, then $P_4 || (K_m \square K_n)$.

Proof. As $n \mod 12 = 4$, n = 12s + 4 for some nonnegative integer s. Observe that

$$K_m \square K_n = K_m \square K_{12s+4}$$

= $K_m \square ((3s+1)K_4 \oplus K_{3s+1}(4))$
= $(3s+1)(K_m \square K_4) \oplus mK_{3s+1}(4)$.

 $(3s+1)(4) \equiv 0 \mod 4$ and $2(3s)(4) \equiv 0 \mod 3$ implies by Theorem A that $P_4 || K_{3s+1}(4)$. This completes the proof.

2. If $n \mod 12 = 8$, then $P_4 || (K_3 \square K_n)$.

Proof. As $n \mod 12 = 8$, n = 12s + 8 for some nonnegative integer s.

$$F_1 = \bigoplus_{i=1}^{3s+2} [(1,4i-3)(2,4i-3)(3,4i-3)(3,4i-2) \\ \oplus (2,4i-2)(1,4i-2)(1,4i-1)(2,4i-1) \\ \oplus (3,4i-1)(3,4i)(2,4i)(1,4i)]$$

and

$$F_2 = \bigoplus_{i=1}^{3s+2} [(3,4i-3)(1,4i-3)(1,4i)(3,4i) \\ \oplus (2,4i-3)(2,4i-2)(3,4i-2)(1,4i-2) \\ \oplus (1,4i-1)(3,4i-1)(2,4i-1)(2,4i)]$$

are edge-disjoint P_4 -factors of $K_3 \square K_n$. The removal of the edges of $F_1 \oplus F_2$ from $K_3 \square K_n$ has three components and each component is isomorphic to $K_{6s+4}(2)$ with partite sets: $\{(1,4i-3),(1,4i)\}, \{(1,4i-2),(1,4i-1)\}, i \in \{1,2,\ldots,3s+2\}, \text{ for the first copy; } \{(2,4i-3),(2,4i-2)\}, \{(2,4i-1),(2,4i)\}, i \in \{1,2,\ldots,3s+2\}, \text{ for the second copy; and } \{(3,4i-3),(3,4i-2)\}, \{(3,4i-1),(3,4i)\}, i \in \{1,2,\ldots,3s+2\} \text{ for the third copy.}$

 $(6s+4)(2) \equiv 0 \mod 4$ and $2(6s+3)(2) \equiv 0 \mod 3$ implies by Theorem A that $P_4 || K_{6s+4}(2)$. This completes the proof.

3. If m(mod 12) = 8, then $P_4 || (K_m \square K_9)$.

Proof. As m(mod 12) = 8, m = 12r + 8 for some nonnegative integer r. In order to factorize $K_{12r+8} \square K_9$ into P_4 -factors, we require 8r + 10 edge-disjoint P_4 -factors of $K_{12r+8} \square K_9$. Observe that

$$K_{12r+8} \square K_9 = ((6r+4)K_2 \oplus K_{6r+4}(2)) \square K_9$$

= $(6r+4)(K_2 \square K_9) \oplus 9K_{6r+4}(2)$.

 $(6r+4)(2) \equiv 0 \pmod{4}$ and $2(6r+3)(2) \equiv 0 \pmod{3}$ implies by Theorem A that $P_4 \| K_{6r+4}(2)$. Hence, there is a P_4 -factorization of $K_{6r+4}(2)$ into P_4 -factors $F_1, F_2, \ldots, F_{8r+4}$. Each P_4 -factor F_i , $i \in \{1, 2, \ldots, 8r+4\}$, of $K_{6r+4}(2)$ yields a P_4 -factor $F_i^* = F_i^{(1)} + F_i^{(2)} + F_i^{(3)} + F_i^{(4)} + F_i^{(5)} + F_i^{(6)} + F_i^{(7)} + F_i^{(8)} + F_i^{(9)}$ of $9K_{6r+4}(2)$ in $K_{12r+8} \square K_9$, where $F_i^{(j)}$ is a P_4 -factor in the j-th K_{12r+8} -layer of $K_{12r+8} \square K_9$.

First take the 8r+1 P_4 -factors $F_4^*, F_5^*, \ldots, F_{8r+4}^*$. Next, we factorize the remaining subgraph $(6r+4)(K_2\square K_9) \oplus (F_1^* \cup F_2^* \cup F_3^*)$ into the following nine P_4 -factors: For $j \in \{0,1,2\}$,

$$\begin{array}{c} 1. \ (F_1^{(3j+1)} + F_1^{(3j+2)} + F_1^{(3j+3)}) \\ \oplus \ (\bigoplus_{i=1}^{6r+4} \ [(2i-1,4+3j)(2i-1,7+3j)(2i,7+3j)(2i,4+3j) \\ \oplus \ (2i-1,5+3j)(2i,8+3j)(2i,9+3j)(2i,6+3j)]), \\ 2. \ (F_2^{(3j+1)} + F_2^{(3j+2)} + F_2^{(3j+3)}) \\ \oplus \ (\bigoplus_{i=1}^{6r+4} \ [(2i-1,4+3j)(2i-1,8+3j)(2i,8+3j)(2i,4+3j) \\ \oplus \ (\bigoplus_{i=1}^{6r+4} \ [(2i-1,5+3j)(2i-1,9+3j)(2i-1,7+3j)(2i-1,6+3j) \\ \oplus \ (2i,5+3j)(2i,9+3j)(2i,7+3j)(2i,6+3j)]), \\ 3. \ (F_3^{(3j+1)} + F_3^{(3j+2)} + F_3^{(3j+3)}) \\ \oplus \ (\bigoplus_{i=1}^{6r+4} \ [(2i-1,4+3j)(2i-1,9+3j)(2i,9+3j)(2i,4+3j) \\ \oplus \ (\bigoplus_{i=1}^{6r+4} \ [(2i-1,4+3j)(2i-1,9+3j)(2i,9+3j)(2i,4+3j) \\ \oplus \ (2i,5+3j)(2i,7+3j)(2i-1,8+3j)(2i-1,6+3j) \\ \oplus \ (2i,5+3j)(2i,7+3j)(2i,8+3j)(2i,6+3j)]), \\ \text{where the addition involving } j \text{ is taken modulo } 9 \text{ with residues } 1,2,\ldots,9. \end{array}$$

4 Conclusion

In conclusion, left over cases are:

- P_4 -factorization of $K_m \square K_n$ for
 - (i) $(m \mod 12, n \mod 12) \in \{(0, 5), (0, 11), (10, 10)\},\$
 - (ii) $(m \mod 12, n \mod 12) = (3, 8)$ and $m \neq 3$,
 - (iii) $(m \mod 12, n \mod 12) = (8, 9)$ and $n \neq 9$; and
- P_4 -factorization of $K_m \square K_4$ for $m \mod 12 \in \{1, 7, 10\}$.

Ackowledgement

One of the author R. Sampathkumar was supported by the Department of Science and Technology (DST), Government of India, New Delhi; Project Grant No. SR/S4/MS:481/07.

References

- R. Balakrishnan and K. Ranganathan, A textbook of graph theory, Springer-Verlag, New York, 2000.
- [2] V. Chitra and A. Muthusamy, P₃-factorization of Cartesian product of complete graphs, Bull. Inst. Combin. Appl., 63 (2011), 60-72.

- [3] A. Muthusamy and P. Paulraja, Path factorization of product graphs, Proceedings of the National Workshop on Graph Theory and its Applications, Manonmaniam Sundaranar University, Tirunelveli, Feb. 21-27, 1996, 77-88.
- [4] A. Muthusamy and P. Paulraja, Path factorization of complete multipartite graphs, *Discrete Math.*, 195 (1999), 181-201.