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1 Introduction

An r-factor in a graph G is an r-regular spanning subgraph of G. Partition
of G into edge-disjoint 2-factors is called 2-factorization of G. A 2-factor is
called a C,-factor, if all its components are of order . The well known Ober-
wolfach Problem formulated by Ringel [10] in 1967 asks for a 2-factorization
of the complete graph K, in which each 2-factor is isomorphic to a given
2-factor of K. For survey of results see [2].

Hamilton-Waterloo Problem is one among many variations of the Ober-
wolfach Problem. Let R and S be given 2-factors of the complete graph
K. The Hamilton-Waterloo Problem (HWP) [8] asks for a 2-factorization
of K,, (respectively K,, — I, when n even, where I is a 1-factor of K,) in
which & 2-factors are isomorphic to R, 8 2-factors are isomorphic to S such
that a+ 8 = l;-L (respectively, a+ 8 = %—3, when n even) for all possible
a,BeZ ap (respectively, o, 8 € Zy, when n even). If such a factorization
exists we say that (a,8) € HWP(n;R,S) or HWP(n; R, 5) exists. We
say that HW P(n;r, s) exists or (a,8) € HW P(n;r, s) if a Cp-factors and
B C,-factors exist in K, (respectively, K, — I, when n even) for all possible
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values of Q, ﬁ € Zn EF5) (respectively a,8 € Z3, when n even) such that
o+ f = 251 (respectively, a + 8 = 232, when n even).

In 2002 Peter Adams et al. [1] have shown that HW P(n;r, 3) exists
when (r,s) € {(4,6),(4,8),(4,16),(8,16),(3,5),(3,15), (5,15)} and for all
possible cycle lengths when n < 17. This was the first remarkable result in
this topic. Horak et al. [11], Dinitz and Ling [5, 6] and Lei and Shen [13]
have studied the existence of HW P(n;3,n). Existence of HW P(n;3,4)
is shown by Danziger et al. [4]. There are many results by Fu et al.
(9, 12], Bryant and Danziger (3], if all the components of 2-factors under
consideration are of even order. But very few results are known for HWP,
if the 2-factors consist of components of odd order. In this paper, we give
some constructions to show the existence of HW P(n;r, 8) for higher values
of n, if it exists for lower values of n, which in turn reduce the domain of
unknown cases.

Let X = {z1,%2,...,%a} a0d Y = {y1,%2,...,¥n} be the partite sets of
the complete bipartite graph K, ». We define the set of edges of distance

k in K, . as below.

Definition 1.1. Define Ex = {{zi,y;} € E(Knas) : (j — ) = k(mod n),
1 <i,j <n},ie, Ex, 0 <k <n-—1is the set of edges of distance k in
K n, which is also an 1-factor of Kp 5.

From the definition of E, it is clear that {Ey, Ey,...,En—1} is an 1-
factorization of K, ». The distance between the vertices z; and y; in K, 5
is denoted by dx,, (i, ;)

Deflnition 1.2. Let i,j € Z,. Define |i — j|, = min{|i — j|,n—|i - j|}. If
D ={1,2,...,|%]}, then K, = (D),, where (D}, is a graph with vertex
set Z, and edgeset {{i,3} : li = jln € D,i,j € Z,}. We call {i,5} is an
edge of difference |i — j|,. The set D is called connection set of K.

The wreath product of two graphs G and H is a graph G® H with vertex
set V(G) x V(H), there is an edge between the vertices (u,v) and (u',v') if
and only if (i) {u, %’} is an edge of G, or (ii) v = v’ and {v,v'} is an edge
of H. The notation pK, denotes p copies of Kp.

To prove our results, we require the following:

Theorem 1.3. [7] K;n n has a Ci-factorization if and only if (i) m=n=
0(mod 2), (i) k = 0(mod 2), k > 4 and (iii) 2n = O(mod k) with precisely
one exception, namelym =n=~k=6.

Theorem 1.4. (3] Let R and S be bipartite 2-factors of Kan. Then (o, B) €
HWP(4n; R, S), except when a € {1,2n — 2}.
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2 Main Results

Lemmas 2.1 and 2.4 give the construction for the existence of H W P(n;r,s)
for larger n, provided HW P(l;r, s) exists, where | = lem(r, s) and 7,5 > 4
are even. Without loss of generality, we assume that r # s.

Lemma 2.1. Letr = 0(mod 4), s be even andl = lem(r,s). If HW P(l;r, s)
exists, then HW P(n; r, 8) exists, where n = pl for any integer P, except the
case when (r, 8) = (4,6).

Proof. By the hypothesis r|n and s|n and ! = O(mod 4). We write
K, = K2p®Kl/2 = (Fp ®Kl/2) =103 ®Kl/2) e (F ®?{/2) ®...® (ng_g ®
?;/2) = pK, 98](1/2.1/2 @ QpKz/z,l/g where {Fg,Fl, ven ,sz_z} isan 1-
2p—2vtimca
factorization of Kp. By the hypothesis, K; — I’ has required number of Cj-
factors and C,-factors, where I’ is a 1-factor of K;. The union of all I/ from
p copies of K; gives a 1-factor I of K,,. Now consider K, ~I. Let a, 8 be two
integers satisfying & + 8 = 252, 0 < @, 8 < 252. For the given a, 8 and
thereexist o/, #',iand j,0< o/, ' < (1-2)/2,0< i < 2p-2, j = 2p-2—i
and o + @' = (I - 2)/2, such that & = o’ +i(l/4) and 8 = B' + j(i/4).
By Theorem 1.3, we obtain /4 C,-factors from pK/3 1/ which correspond
to each F; ® Ky/3, 1 < j < i and I/4 C,-factors from pKj/51/2 which
correspond to each of the remaining F; ® K5, i +1 < j < 2p— 2. By
the hypothesis, we have o/ C,-factors and B’ C,-factors from pK;. Hence
(o, 8) € HWP(n; 1, 3). O

Remark 2.2. When (r,s) = (4,6), the construction given in Lemma 2.1
will not work, since Cg-factorization of K¢ g does not exist.

Remark 2.3. By Theorem 1.4 and Lemma 2.1, we conclude that to show
the existence of HW P(4n;r,s), when r = 0(mod 4) and s is even, it is
enough to show that (a,8) € HWP(l;r,s) when a € {1, '—;5} where | =
lem(r, s).

Lemma 2.4. Letr, s > 4 be even integers andl = lem(r, s). If HW P(l;r, s)
ezists, then HW P(n; 7, s) exists, where n = pl for any even integer p.

Proof. By the hypothesis r|n, s|n and [ is even. We write Kpn = K, ®
Ki=(K,®K)d (R 9K))® (R ®K1))®...® (Fo-1 ® K1) = pK1 ®
gm,, @8 gx,,,, where {F1, 3, ..., Fp-1} is an 1-factorization of K,

p-1 times

By the hypothesis, K; — I’ has required number of C,-factors and C,-
factors, where I’ is a 1-factor of K;. The union of all I’ from p copies of K;
gives a 1-factor I of K. Now consider K, — I. Let a, be integers such
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that a+ 8 = ";2 0<apf< "‘ . For the given a, 8 and [ there exist
o, f,iand j, 0L o, 0 < (1—2)/2 0<i<p-1j=p-1-iand
o +8' = (1-2)/2,such that o = o' +i(l/2) and B8 = §'+;(l/2). By Theorem
1.3, we obtain I/2 C,-factors of K, — I from ;K 1,4 which correspond to each
F;®K,, 1 < j <iand /2 C,-factors from 5K, which correspond to each
of the remaining F} ®K., i+1 < j < p-1. By the hypothesis, we have o

C,-factors and 3’ C,-factors from pK. Hence (a,8) € HW P(n;r,s). O

Note 2.5. Let n be even. In any 2-factor of K3, there are at least Eg—“
pairs of edges such that each pair of edges are of same difference. For,
let D;, 1 < i < n/4 be the number of edges of difference ¢, in K,/5. In
any 2-factor of K, 3, we have Z:‘_/: ; = nf2, 0 < D; < n/2. By pairing
the edges of same difference, we can get a maximum of n/4 pairs, if all
D; are even. We get minimum number of pairs, if each D; is odd, say
D;=1,3,5,...,n/4 or n/4—1. The number of D; such that D; is odd, can
be at most 2 — 1. The remaining edges of same difference can be paired to

get at least (1‘- - (2 -1))/2 = 24 pairs.

The next theorem deals the HWP if the 2-factor R consists of uniform
odd length cycles and the 2-factor S is a hamilton cycle.

Theorem 2.6. Let r > 3 be an odd integer. If HW P(3;r,3) exists, then
(e, B) € HW P(n;,n), when n/4 < B < 252 and n=0(mod 4).

Proof. We write K, = 2Kn/2 <] Kn/z nf2 = Kn/z U K:‘/z @ K,,/zm/g,
where K,l g = K,js. By the hypothesis, K2 — I’ has required number
of C,-factors and C,.,g-fa,ctors, where I’ is a 1-factor of K,,/2. The union
of I' from the 2 copies of K,/ gives a 1-factor I of K,. Now consider
K,-1.Ifg= "’2 then o = 0 and the problem is nothing but the well
known Oberwolfanh Problem whose solution is known. If 8 = n/4, we
can obtain 3 Cn-factors from K. /2,n/2, given by {Egi U Epiy1, 0 < i <
n/4 = 1}. Then, we have a(= 23%) C,-factors from K,/> and hence in
Ko Ifn/d <fB < (n-2)/2 then B =n/4+pf, 1< p < 2 and
a=d, where o’ + ' = "'4 . By the hypothesis, we get o C, -factors
and §' C,/o-factors from Kn/z UK’ n/2 and n/4 Cp-factors from Ky /o n/2
as above. By combining the 8’ C/o-factors with appropriate Cp-factors
of Knja,ns2, We get the required 8 C,.-factors as follows: Let C7 be the
jth Cpjo-factor of K,/; and let C7' be the copy of C7 in K’ /2" From
Note 2.5, any 2-factor of K,/» contains at least —f’r pairs of edges such
that edges in each pair have the same difference. Let {u,v} and {w,z} be
two edges of same difference in the 2-factor C7 of Kppoie, [u—vlp2 =
|w — 2|nj2. Define 21 = min{u,v}, 22 = maz{u,v}, 11 = min{w,z}
and y» = maz{w,2}. Without loss of generality, we can take the edge

140



{u,v} = {z1,72} and {w,z} = {y1,%2} in K,,/g Let z7,75,y] and y5 be
copies of z1, z2,y; and y, respectively, in C7'. By the choice of edges {u,v}
and {w, z}, we have dg, . | 7! (z1,91) = Ak, npa (a:g,yé) d’’, say. We may
choose either the distance d#’ or the distance 2 8- d?'. First, let us consider
the distance d’’. Define df = d/, when d#’ ls even; d = d7' — 1, when
d’' is odd. It is clear that, the subgraph induced by the edges of distances
d’ and &7 +1, (i.e., By UEg,,) is a Cy-factor of Kp/2,n72. Now consider
CiuCi ®Ey UEgs 41 in KpjpUK], /2631(,. /2.n/2- By the choice of C7 and C7',
the edges {z1,22}, {yl, y2} € C7 and {z}, 73}, {¥},9%)} € C7'. Fix {xl,zz}
in C7 and {y], 45} in C7'. Now we construct the two Cy-factors, H and H}
of K,, as follows: H’ ciucid’ U{z1, ¥ }U{zs, ¥3} — {1, 72} — {1}, ¥} see
Figure 2.1 and Hj = E,; UEg 41 —{z1,41} = {z2,v5} U {z1, 2} U {9}, %5},
see Figure 2.2. Clearly H{ and Hj are C,-factors of K.

Figure 2.2. Hj

If we choose the distance § — d7’, then define d/ = 2 — ¢/, when &'’ is
even, d/ = 2 —d’" — 1, when d’ is odd. Fix {z1,32} in C7 and {z},25} in
. In thls case the C,-factors are given by H] = C7 UC? — {y;,1} -
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{3'1,2'2} U {ylvw{l} U{y2,$’2} and Hj = Eys UEgi41 — {yl!zi} - {yz,z'2} v
{y1,92} U {=1,z5}. In each time while we are choosing the pair of edges of
same difference in C7, a suitable distance &’ or 3 — d' of Kpn/a,n/2 may
be considered so that the Cp,-factor induced by Ey; U Ey; 4., is disjoint from
the Cp,-factors chosen previously in Ky /2 n/2 for the construction of 8’ Cp-
factors of K. This is possible since in a 2-factor of Ky, /o, there are at
least 2%'4 pairs of edges, in which each pair has same difference and each
difference is associated with two distances. m]

Remark 2.7. We know that HW P(10;5,10) and HW P(14;7, 14) exists
[1). By Theorem 2.6, HW P(2!10; 5, 2:10) exists when 2312 < g < 222 and
HW P(2!14;7,2t14) exists when 2514 < 8 < 232 for all positive integer t.

3 Conclusion and scope

Theorem 2.6 provides a technique to find the existence of HWP for larger
order provided the smaller order exists. In fact it reduces the domain of
unknown cases, with which one can try to settle HWP by solving the un-
known cases of HWP for smaller order in the case 2-factors consisting of
uniform odd length cycles and hamilton cycles.
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