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Abstract :
Let G = (V, E) be a connected graph. Two vertices « and v are
said to be distance similar if d(u, z) = d(v,z) for all z € V — {u,v}.
A nonempty subset S of V is called a pairwise distance similar set (in
short ‘pds-set’) if either |S| = 1 or any two vertices in S are distance
similar. The maximum (minimum) cardinelity of a maximal pairwise
distance similar set in G is called the pairwise distance similar number
(lower pairwise distance similar number) of G and is denoted by $(G)
(27(G)). The maximal pds-set with maximum cardinality is called

a ®-set of G. In this paper we initiate a study of these parameters.
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1 Introduction

By a graph G = (V, E) we mean a finite, undirected and connected graph
with neither loops nor multiple edges. The order and size of G are de-
noted by n and m respectively. For graph theoretic terminology we refer
to Chartrand and Lesniak [1]. The distance d(x,v) between two vertices
u and v in G is the length of a shortest u-v path in G. The open neigh-
borhood N(v) of a vertex v consists of the set of all vertices adjacent to
v, that is, N(v) = {w € V : vw € E}, and the closed neighborhood of v
is N[v]| = N(v) U {v}. For a set S C V, the open neighborhood N(S), is
defined to be [J N(v). For any two disjoint subsets A, B C V, let (4, B
s

vE
denote the set of all edges with one end in A and the other end in B.
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Saenpholphat et al. [2] while studying the concept of connected resolving
sets, introduced the concept of distance similar vertices.

Definition 1.1. Two vertices u and v of a connected graph G are distance
similar if d(u, ) = d(v, ) for all z € V(G) — {u,v}.

We observe that u and v are distance similar vertices if and only if
N(u) = N(v) if uv ¢ E(G) and N(u] = N[v] if uv € E(G). Hernando et
al. [3] called a pair of vertices satisfying the above equivalent conditions
as twins and introduced the concept of the twin graph of a graph G. The
relation = on V(G) defined by u = v if and only if u = v or u, v are twins
is an equivalence relation on V(G). For each vertex v € V(G), let v* be the
set of vertices of G that are equivalent to v under =. Let {v},v5,..., %}
be the partition of V(G) induced by = . Each (v}) is either independent or
a complete graph in G. Further ([v},v}]) is a complete bipartite graph if
v;v; € E(G) and is an empty graph if v;v; ¢ E(G). The twin graph of G,
denoted by G*, is the graph with vertex set V(G*) = {»1,v3,...,v;}, and
v}v; € E(G*) if and only if viv; € E(G). We observe that each equivalence
class v} has the property that any two vertices of v} are pairwise distance
similar and v} is maximal with respect to this property.

Motivated by this observation, in this paper we introduce the concept
of pairwise distance similar set and pairwise distance similar number of a
graph. We present basic results on this parameter.

We need the following definition.

Definition 1.2. [4] Let Gy be a graph with V(Go) = {v1,v2,...,vs} and
let¢ Gy,Ga,...,Gn be n disjoint graphs. The composition graph
G = Go|G1,Ga,...,Ghr] is formed as follows: We replace each vertex v;
in Go with the graph G; and make each vertex of G; adjacent to each
vertex of G; whenever v; is adjacent to v; in Go. In particular the graph
P,[G1,Ga, ..., Gn) is called the sequential join of the graphs Gy, G, ..., Gn.

2 Main Results

Definition 2.1. Let G = (V, E) be a connected graph. A nonempty subset
S of V is called a pairwise distance similar set (pds-set) if either |S| =1
or any two vertices in S are distance similar. The maximum (minimum)
cardinality of a maximal pds-set in G is called the pairwise distance similar
number (lower pairwise distance similar number) of G and is denoted by
&(G) ((G)). Any maximal pds-set with |S| = &(G) is called a ®-set of
G.

Clearly the equivalence classes v}, v3,...,v} With respect to the rela-
tion = are precisely the set of all maximal pds-sets of a graph G. Hence
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®(G) = Zax |vf| and &~ (G) = 12121: |[v7|. Hence it follows that both &(G)

and $~(G) can be computed with complexity O(n?).

Example 2.2. For the graph G; given in Figure 1, vy = {vn},
v; = {v2,v5,v6,v7}, v§ = {vs} and v} = {va} are the maximal pds-
sets. Hence #7(G1) = 1 and ®(G1) = 4. The twin graph G} is P; and
Gl = G;[KI:E) KlsKll-

v2

v

vr
G
Figure 1

Example 2.3. For the graph G, given in Figure 2, V; = {v1,v2,v3},
Vo = {vy,v5}, V3 = {ve,v7} and V; = {vs, vy} are maximal pds-sets. Also,
©~(Gz) = 2 and $(G2) = 3. The twin graph G} = P, and G; = G}(K, Ko,
K3, Ky). For the graph G given in Figure 2, {v;, v2}, {v3,vs4} and {vs, ve}
are maximal pds-sets. Hence ®~(G3) = &(Gs) = 2. Also G§ = P; and
G3 = Ga[sz K29 K2]

n

V4 Vg vg v v3 Vs
]
Vs U7 vy V2 U4 Ve
v3 Gg . Ga
Figure 2

Observation 2.4.

(1) If a proper subset S of V(G) is a pds-set of G, then the edge induced
subgraph of [$, N(S) — ] is a complete bipartite graph.

(2) Let G be any connected graph of order n which is not complete. Then
there exist at least two disjoint maximal pds-sets in V(G) and hence
#-(C) < 3].
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(3) Let G be any nontrivial connected graph of order n which is not
complete and let k be any nonnegative integer with k¥ < |3|. Then
$~(G) = k if and only if G = G*[G}, Gy, . .., G¢] where G* is the twin
graph of G and each G; is complete or independent with
k=min{|V(G;)| : i =1,2,...,t}.

(4) Let G be any connected graph. Then ®(G) = 1 if and only if |v]| = 1
for each i and hence it follows that G = G*.

(5) Let T be any tree. Then ®(T*) =1 where T is the twin graph of T.

Lemma 2.5. If S is a pds-set of G, then for eachu € V(G) - S, |{d(u,v):
veS}=1

Proof. Let S = {v1,v2,...,vx} be a ®-set of G. Let u € V(G) — S and
d(u,v;) = t. Since vy and v; are distance similar for all i = 2,3,...,k, we
have d(u,v;) =t for all i = 2,3,..., k. Hence {d(u,v;):v; €8} =1 0O

Corollary 2.6. Let G be any connected graph which is not complete. Let
S be any ®-set of G. Then S C N(u) for any vertez u in N(S) — S. Hence
1<$7(G) < &(G) £ A(G).

Remark 2.7. The converse of Lemma 2.5 is not true. For the graph G4
given in Figure 3, S = {a,b,c,d} is not a ®-set of G since the vertices a
and b are not distance similar. However, |{d(u,v) : v € S}| = 1 for all
ue€ V(G4) -S.

]

N
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Figure 3
We now proceed to determine $(G) and &~(G) for some standard
graphs.
Observation 2.8.

(1) Let G be any connected graph of order n. Then $(G) = n if and only
if G = K,, and ®(G) = n if and only if G = K.



(2) Let G be any connected graph of order n. Then ®(G)=n-1if and
only if G = Ky ;.

3 if n=3
(3) For the cycle C,,, we have ®(Cn) =8~(C,)={ 2 if n=4
1 if n>5.

Theorem 2.9. Let G be any graph with §(G) > 2 and 9(G) 2 5 where
9(G) is the girth of G. Then ®(G) = 1.

Proof. Suppose G has a ®-set S with |S| > 2. Then § C N(u) for some
u € V(G) - S. Since g(G) > 5, it follows that S is independent and since
6(G) 2 2, there exists a vertex v € N(S) — S with v # u. Now, both u
and v are adjacent to all the vertices in S. Thus G contains a cycle Cy, a
contradiction. Hence &(G) = 1. (]

Theorem 2.10. Let T be any tree. For any vertez v of T, let {(v) denote
the number of leaves adjacent to v. Then ®(T) = max{I(v) : v is a support
vertez of T} and &~ (T) = 1.

Proof. Suppose S§ = {v1,vs,..., 0} is a ®-set of T with |S| > 2 and
§ € N(u) for some u € V(T). Since (S) is independent, (SU {u}) is a
star. Let w € V(T') — (S U {u}). If w is adjacent to some v; € S, then w is
adjacent to all the vertices of S and hence (S U {u,w}) contains a cycle, a
contradiction. Therefore v;, i =1,2,...,k are pendent vertices in 7. Thus
®(T) = max{l(v) : v is a support vertex of T'}. Further, if z is any support
vertex in T, then {z} is a maximal pds-set of T and hence = (T)=1. O

Theorem 2.11. Let G be a graph of order n with maezimum degree
A(G) > 0. Then &(G) = A(G) if and only if G is isomorphic to the
complete bipartite graph Ka n—a.

Proof. Let S be any ®-set of G with |S| = A(G) and let § = N(u) for
some u € V(G). If (S) is complete, then H = (SU{u}) = Ka,:. Hence
it follows that G = H and ®(G) = A(G) + 1, a contradiction. Hence
(S) is independent. Now, let v € V(G) — N[u). If d(v,8) = k > 2, let
P = (v,v1,...,v) be a geodesic joining v and S. Then vy is adjacent to all
the vertices of S and also v,_,. Hence d(v;;) > A(G) +1, a contradiction.
Hence d(v,S) = 1 for all v € V(G) — N[u]. Also since d(v) = A(G) for
all v € V(G) ~ S, it follows that V(G) — S is independent. Hence G is
isomorphic to the complete bipartite graph with bipartition S, V(G)-S.

The converse is obvious. O

Corollary 2.12. For any graph G of order n, ®~(G) = A(G) if and only
ifnis even and G = K3 3.
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Proof. If & (G) = A(G), then &(G) = A(G). By Theorem 2.11, we have
A=n—A and G = Kg 3. The converse is obvious. o

Theorem 2.13. Let G be any connected graph of order n at least four.
Then &(G) = n — 2 if and only if G is isomorphic to one of the graphs
P3[Kn-2, K1, K1), P2(Kn-2,2K1], P2[Kn-2,2K)1|, Po[Kn—2, K3).

Proof. Let S be any ®-set of G with |S| =n—2 and let S C N(u) for some
u € V(G). Clearly G* = P; or P,. If G* = P, then G = P3[K,-2, K1, K\
and if G* = P,,then G = leRn_z, Kz] or Pz[Kn..z,?Kﬂ or P2|Kn_z,2K1].
Hence it follows that G is isomorphic to one of the graphs given in the

theorem.
The converse is obvious. O

Theorem 2.14. Let G be any connected graph of order n > 6 and let
H = K,_3 or K,_3. Then ®(G) = n — 3 if and only if G is isomorphic to
one of the following.

(%) P2[H) 3K1]1 P?ljan—fh K3]

(ii) Ps[K1,H, Ko, Ps[H,Kj Ki|, Ps[H,K), K, Ps[Kn-3, K1,2K)),
P3[Kn-3,2K1, K;), Ks[Kn-3,2K), K1}

(iii) Py[H, Ky, K1, K1), Pi(K:, H, K1, Ki), G1[Kn-3, K1, K), K1) where Gy
is the graph given in Figure 4.

U2

> A ®
n v3 V4
Gy
Figure 4

Proof. Let S be any ®-set of G with S| = n — 3 and let G* be the twin
graph of G. Then 2 < |V(G*)| < 4. If [V(G*)| = 2, then G is isomor-
phic to one of the graphs given in (i). If [V(G*)] = 3 and G* = Kj,
then G = K3{Kn_3,2K1, Ki]. Now suppose G* = P3 = (v}, v3,v3). We
may assume without loss of generality that the vertex v* of G* corre-
sponding to S is either v{ or v§. If v = v3, then G is isomorphic to
P3[Ky,H,K3). If v* = v}, then G is isomorphic to one of the graphs
P3[H’ Kz»Klla P3[H7 Klv K2], P3[Kn—3)K112K1] or P3[Kﬂ-37 2K1)K1]'
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Now, suppose |V (G*)| = 4. Since there exist three singleton subsets of
V(G) which are maximal pds-sets, G* is not isomorphic to K4 —e, K 3 or
Cs. Hence G* is isomorphic to P; or Ky3 +e If G* = Py, then
G= P4[H,K1,K1,K1] or P4[K1,H,K1,K1]. IfG* = K1,3 + e = G, then
G=Gi[K.53, K1, K1, K.

The converse is obvious. O

Theorem 2.15. Let G;, 0 < i < n, be any nontrivial connected graphs with
V(Go) = {v,va,...,0,} and let G = Go[G1,Ga,...,Gy). Let
k= max{®(G;) : 1 <i< n}. Thenk < &(G) < k®(Go) and the bounds
are sharp.

Proof. Clearly any ®-set of G;, 1 < i < n, is a pds-set of G and hence it
follows that ®(G) > k. Also if S is any ®-set of G and V(G;) N S # 0,
then V(G:) N S is a pds-set of G; and {v; € V(Gy) : V(G;) NS # B} is
a pds-set of Go. Hence ®(G) < k®(Go). The upper bound is attained for
the graph G = C4[K3, K, K3, K4 and the lower bound is attained for the
graph G = P4[K4, K4, K4, K4). Thus the bounds are sharp. O

Corollary 2.16. Let G and H be any two nontrivial connected graphs.
Then max{®(G), ®(H)} < &(G + H) < ¥(G) + &(H).

Corollary 2.17. Let G = Fi[G1,Ga,...,Gi), k > 4 and each G; is a
nontrivial graph. Then ®(G) = max{®(G;):i=1,2,...,k}.

3 Conclusion and Scope

In this paper we have initiated a study of pds-set and the two parameters
®(G) and @ (G). The following are some interesting problems for further
investigation.

Problem 3.1. Characterize graphs G for which -(G) = 1.
Problem 3.2. Characterize graphs G for which &(G) = 1.
Problem 3.3. For which graphs G and H, we have
(a) ®(G + H) = max{®(G), ®(H)}
(b) ®(G+ H) = ¥(G) + ®(H)?
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