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Abstract

Let T be a Cayley graph generated by a transposition tree T on
n vertices. In an oft-cited paper [1] (see also [9]), it was shown that
the diameter of the Cayley graph I on n! vertices is bounded as

diam(T') < max { e(m)—n+ i distr (i, w(i))} )

i=1

where the maximization is over all permutations 7 in Sy, ¢(r) denotes
the number of cycles in 7, and disty is the distance function in T, It
is of interest to determine for which families of trees this inequality
holds with equality. In this work, we first investigate the sharpness
of this upper bound. We prove that the above inequality is sharp
for all trees of maximum diameter (i.e. all paths) and for all trees of
minimum diameter (i.e. all stars), but the bound can still be strict
for trees that are non-extremal. We also show that a previously
known inequality on the distance between vertices in some families
of Cayley graphs holds with equality and we prove that for some
families of graphs an algorithm related to these bounds is optimal.
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1 Introduction

Let I be a Cayley graph on n! vertices generated by a transposition tree
on the vertex set {1,2,...,n}. In an oft-cited paper [1}, an upper bound
was provided for the diameter of T, in terms of distances in the underlying
transposition tree. In that paper, the authors also showed that the diameter
of the Cayley graph generated by a star K ,-1 is [3(n ~ 1)/2], which
is sublogarithmic in the number of vertices of the Cayley graph, whereas
the diameter of the n-dimensional hypercube on 2" vertices is n, which
is logarithmic in the number of vertices. Thus, Cayley graphs generated
by transposition trees were since considered an attractive alternative to
hypercubes as a consideration for the topology of interconnection networks.
Cayley graphs also offer other desirable properties such as optimal fault
tolerance, optimal gossiping protocols 4], and optimal algorithmic efficiency
[2], among other properties.

Let S denote a set of transpositions of {1,2,...,n}. We can describe §
by its transposition graph T(S), which is a simple, undirected graph whose
vertex set is {1,2,...,n} and with vertices ¢ and j being adjacent whenever
(4,7) € S. Construct the Cayley graph I' = Cay(Gr(S), S), whose vertex
set is the permutation group generated by S and with two vertices g and
h being adjacent in I if and only if there exists an s € S such that gs="h
151171

A transposition graph which is a tree is called a transposition tree.
When T(S) contains a spanning tree, S generates the entire symmetric
group on n letters [3]. Let T = T(S) denote the transposition tree corre-
sponding to the set of transpositions S. Since each element of S is its own
inverse, we assume I' is a simple, undirected graph. Let distg(u,v) denote
the distance between vertices u and v in an undirected graph G, and let
diam(G) denote the diameter of G. Note that distr(r, o) = distr([,7~*0).
Thus, the diameter of I' is the maximum of distp(Z, ) over m € Sn.

A natural problem is to understand how the properties of the Cayley
graph T depend on the properties of the underlying transposition graph
T(S). Our question here concerns specifically the diameter of the Cayley
graph as well as the distances between vertices of the Cayley graph, which
we wish to express in terms of parameters of the underlying transposition
graph. There are some upper bounds in the literature for this specific
problem [1], {10, p.188]. In this work we investigate these bounds further.

1t is of interest to determine for what families of graphs the previously
known inequalities for the diameter and distances between vertices of the
Cayley graph are sharp, and the extent to which these bounds can be away
from the true diameter value in the worst case. In this work, we investigate
the sharpness of these bounds. We show that the bound is sharp (i.e. the
inequality holds with equality) for all families of trees of maximum diameter
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(i.e. for all paths) and for all trees of minimum diameter (i.e. for all stars).
On the other side, we exhibit some trees for which this bound is strict. We
also investigate the optimality of an algorithm posed in [1] for estimating
the distance between vertices in the Cayley graph, and we prove that for
some families of trees this algorithm sorts any given permutation using the
minimum number of transpositions.

1.1 Notation and terminology

Let S, denote the symmetric group on [n] := {1,2,...,n}. We represent a
permutation 7 € S, as an arrangement of [n], as in [r(1),7(2),...,7(n)] or
in cycle notation. c(m) denotes the number of cycles in , including cycles
of length 1. Also, inv(r) denotes the number of inversions of 7 (cf. [3]).
Thus, if 7 = [3,5,1,4,2] = (1,3)(2,5) € Ss, then ¢(m) = 3 and inv(w) = 6.
For m,7 € S,,, w7 is the permutation obtained by applying 7 first and then
7. If m € Sy and 7 = (4,5) is a transposition, then c(rm) = ¢(x) + 1 if
i and j are part of the same cycle of , and c(r7) = ¢(r) — 1 if ¢ and j
are in different cycles of ; and similarly for c¢(n7) (cf. [6]). I denotes the
identity element of S,. Fix(m) denotes the set of fixed points of 7, and
Fix(w) denotes the complement set [n] — Fix(x).

Throughout this work, I denotes the Cayley graph generated by a trans-
position tree T. We now recall some previously known bounds. We also
outline the proof of these bounds since we refer to the proof in the sequel.

Theorem 1.1. [1] Let T be a tree and let # € S,. Let T be the Cayley
graph generated by T. Then

n
distr(I,m) S e(m) —n+ Y diste(i, 7(i)).
=1
By taking the maximum over both sides, it follows that
Corollary 1.2. [10, p.188]

diam(T) < max { e(n)—n+ idistq-(i, w(i))} .

i=1

In the sequel, we refer to the first upper bound as the distance upper
bound fr(rw) and the second upper bound as the diameter upper bound

f(T):
Definition 1.3. For a transposition tree T and 7 € S, define

f(T) = 1%%’: fr(m) = mex {c(ﬂ’) -n+ idist'p(i, r(z))} .

i=1
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We now recall from [1] the proofs of these results since we refer to the
proof in the sequel. Start with a given tree T' on vertices labeled by [n]
and an element 7 € Sy, 7 # I, for which we wish to determine distr(Z, 7).
Initially, at each vertex i of T, we place a marker (). Multiplying 7 by the
transposition (i, ) amounts to switching the markers at vertices ¢ and j.
We now have a new set of markers at each vertex of T corresponding to the
permutation (i, j), which is a vertex adjacent to « in I'. The problem of
determining distp(I,7) is then equivalent to that of finding the minimum
number of switches necessary to home each marker (i.e. to bring each
marker i to vertex i). Given any T with vertex set [n] and markers for
these vertices corresponding to 7 # I, it can be shown that T' always has
an edge ij such that the edge satisfies one of the following two conditions:
Either (A) the marker at i and the marker at j will both reduce their
distance to (i) and m(j), respectively, if the switch (7,7) is applied, or
(B) the marker at one of i or j is already homed, and the other marker
wishes to use the switch (é,j). We call an edge that satisfies one of these
two conditions an admissible edge of type A or type B. It can be shown
that during each step that a transposition 7 corresponding to an admissible
edge is applied to 7, we get a new vertex 7' which has a strictly smaller
value of the left hand side above; i.e., fr(n') < fr(w), and it can be verified
that f7(I) = 0. This proves the bounds above. This algorithm, which we
call the AK algorithm (after Akers and Krishnamurthy), can be viewed as
‘sorting’ a permutation using only the transpositions defined by T', and the
Cayley graph is the state transition diagram of the current permutation of
markers.

The diameter of Cayley graphs generated by transposition trees is known
for some particular families of graphs. For example, if the transposition tree
is a path graph on n vertices, then the diameter of the corresponding Cayley
graph is the maximum number of inversions of a permutation, which is (%)
and if the transposition tree is a star Kj -1, then the diameter of the
corresponding Cayley graph is [3(n — 1)/2] (cf. [1]). For the special case
when T is a star, another upper bound on the distance between vertices in
the Cayley graph is known:

Lemma 1.4. (1] Let T be a star. Then
distp(I,7) < n + ¢(m) — 2| Fix(n)| = r(x),

where r(r) equals 0 if (1) = 1 and r(w) = 2 otherwise (here, the center
vertez of T is assumed to have the label 1).

Note that the distance and diameter bounds above need not hold if T
has cycles (the proof mentioned above breaks down because if T' has cycles,
there exists a 7 # I such that T has no admissible edges for this 7). Thus,
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when we study the sharpness (or lack thereof) of the upper bounds, we
assume throughout that T is a tree and I is the Cayley graph generated
by a tree.

We point out that this same diameter upper bound inequality is also
derived in Vaughan [12]; however, this paper was published in 1991, whereas
Akers and Krishnamurthy [1) was published in 1989 and widely picked up
on in the interconnection networks community by then. There are some
subsequent papers, such as [13] and [11], which cite only Vaughan [12] and
not [1].

1.2 Summary of our contributions

In this work, we investigate the performance of the upper bounds given in
(1] for the distances between vertices of a Cayley graph and for the diameter
of Cayley graphs generated by transposition trees. We now summarize our
contributions here:

Let I denote the Cayley graph generated by a transposition tree T. We
show that the previously known distance upper bound

distp(I,7) < ¢(m) -~ n + Zn:distr(z’, w(3)).

i=1

is exact or sharp (i.e. the inequality holds with equality) for all 7 € S, if

and only if T is a star.
We also show that the previously known diameter upper bound

n
diam(T') < max {c(7r) -n+ ;dlstq-(z,vr(z))} .
is sharp if T is a star or a path. Note that this also implies that even
though the distance upper bound is not exact for any paths, if we take
the maximum over both sides, we get that the diameter upper bound is
exact for all paths (i.e. the strict inequality becomes an equality when we
maximize over all T € S,,).
It was shown in [1} that: when T is a star,

distp(I, m) < n+ ¢(m) - 2| Fix(m)| ~ r(m).

We show here that this inequality holds with equality.

Enroute to deriving the diameter upper bound, the authors in (1] pro-
posed an algorithm, which we called the AK algorithm above, for finding
the distance between vertices in the Cayley graph. We prove some proper-
ties about this algorithm in Section 3.

We conclude with some open problems and further directions.
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2 Sharpness of the distance and diameter
upper bounds

In our proofs, it will be convenient to define

Sr(m) = _ distr(i, (3))-

i=1

Thus, fr(7) = ¢(x) — n+ Sp(m). While the bounds and results here are
independent of the labeling of the vertices of T, it will be convenient to
assume that the center vertex of a star has label 1, and that the vertices of
a path are labeled consecutively from 1 to n. Also, note that the diameter
and distance bounds are invariant to a translation of the labels on the set of
integers, i.e. we can replace the labels {1,2,...,n} by say {2,3,...,n+1}.

Theorem 2.1. Let ' be the Cayley graph generated by a transposition tree
T. Then, the distance upper bound inequality

distp(I,7) < e(m) —n+ Z": distr (4, m(3)),

i=1
holds with equality for all m € S,, if and only if T is the star Ky n-1.

Proof. Suppose T is the star Kj 1. It is already known that distr(Z,7) <
fr(m) for all m € S,. We now prove the reverse inequality. We want to
show that fr(w) is the minimum number of transpositions of the form
(1,4),2 < i < n required to sort . Each vertex i of T is initially assigned
the marker m(i). Before the markers along edge (1,i) are interchanged,
there are four possibilities for the values of the marker (1) at vertex 1 and
marker 7(4) at vertex i:

(a) m(1) = 1 and (i) = i: In this case, applying transposition (1,%)
creates a new permutation 7’ for which ¢(m) has reduced by 1 (i.e. ¢(#') =
c(r) — 1) and Sr(r) has increased by 2, thereby increasing fr(r) by 1.

(b) w(1) = 1 and m(i) # i: Applying transposition (1,%) reduces c(n)
and doesn’t affect St(w). Hence, fr(x) is reduced by 1.

(c) ®(1) # 1and m(i) = i: Applying (1,%) reduces c(7) by 1 and increases
St() by 2, hence increases fr(m) by 1.

(d) 7(1) # 1 and m(¢) # i: There are four subcases here:

(d.1) The first subcase is when m(1) = i and n(i) = 1. In this case,
applying (1, i) increases ¢(r) by 1, and reduces St(w) by 2, thereby reducing
fr(m) by 1.

(d.2) Suppose (1) = j (where j # 1,i) and n(i) = 1. Applying (1,7)
increases ¢(m) by 1 and doesn’t affect S7(r). So fr(w) increases by 1.
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(d.3) Suppose (1) = ¢ and 7 (i) = j # 1. Then applying (1, i) increases
¢(m) by 1 and reduces Sr(r) by 2, and hence reduces fp(r) by 1.

(d.4) Suppose m(1) = k and x(i) = j, where 7,k # 1,s. Then applying
(1,%) changes ¢(w) by 1 and doesn’t change Sr(r), so that fr(w) changes
by 1.

In all cases above, switching the markers on an edge (1,%) of T reduces
fr(r) by at most 1. Hence, the minimum number of transpositions required
to sort m, or equivalently, the value of distp(Z, ), is at least Sfr(r). Hence,
distp(Z,m) > fr(x) for all = € S,,. This proves the reverse inequality.

Observe that Sp(m) = 2|Fix(r)| when 7(1) = 1, and Sp(w) = 2|Fix(n)|—
2 otherwise. Thus, it is seen that when T is the star graph, fr(xm) evaluates
to ¢(m) —n+2|Fix(m)| —r(w). Hence, distp(I,7) = c(m)—n+2[Fix(r)|—r(n).

Now suppose T is not a star. Then, diam(T") > 3. So T contains 4
ordered vertices %, j, k and £ that comprise a path of length 3. Let 7 be the
permutation (i, k)(j,). Then, e(m) = n—2, Sp(r) = 8, and hence, fr(r) =
6, but distr(/,7) < 4, as can be easily verified by applying transpositions

(4,k), (3,3), (k, 1) and (5, k). 0
Corollary 2.2. Let T be the star Ky n—1 onn vertices. Then the previously
known upper bound inequalities

distr (I, 7) < n + ¢(x) = 2| Fix(r)| — r(x),

and n
diam(T") < max {c('n‘) -n+ ; distp (%, ﬂ(z))}
hold with equality.
Theorem 2.1 implies that if T is the path graph (which is not a star for

n 2 4), then there exists a 7 € S, for which the distance upper bound is
strict:

Corollary 2.3. Let T be the path graph on n vertices. Then there ezists a
w € S, for which

distr(I,7) < ¢(m) —n + idistfp(z’, m(%)).

i=1

Despite such a result, when taking the maximum over both sides, we
obtain equality:
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Theorem 2.4. Let T' be the Cayley graph generated by e transposition tree
T. Then the diameter upper bound inequality

diam(T") < max {C(ﬂ') -n+ idiStT(i,W(i))}

i=l
holds with equality if T is a path.

Proof. Let T be the path graph on n vertices. It is known that diam(I') =
(3) (3]. Hence, it suffices to prove

max fo(m) = (5):

Let o = [n,n —2,...,2,1]. It can be verified that fr(c) evaluates to 3
Thus, it remains to prove the bound

fr(m) < (’2‘) V1€ Sn.

We prove this by induction on n. The assertion can be easily verified for
small values of n. So fix n, and now assume the assertion holds for smaller
values of n. Write 7 as mymy...m,. Thus 7 is a product of s disjoint
cycles, and suppose m is the cycle that contains n. We consider three
cases, depending on whether  fixes n, whether 7 maps n to 1, or whether
7 maps n to some j # 1:

(a) Suppose m; = (n). Define 7' := mp...ms € Sn—1. Let T' be the
tree on vertex set [n — 1]. We have that fr(w) = ¢(7) — n + Sr(7) =
e(n’) +1—n+ Sp(n') = e(n’) = (n — 1) + Sp+(n’), which is at most (";1)
by the inductive hypothesis.

(b) Suppose 7 maps n to 1. There are a few subcases, depending on the
length of m:

(b.1) Suppose m; = (n,1), a transposition. Define 7’ := m(n,1) =
(1)(n)m2... 7. Then, c(n') = ¢(x) + 1 and Sp(n') = Sp(r) — 2(n - 1).
Hence, fr(m) = ¢(m) —n+ Sp(r) = ¢(r') =1 —n+ Sp(n’) + 2(n — 1). Let
T" denote the tree on vertex set {2,3,...,n — 1}, and let 7/ = m... 7
be a permutation of the vertices of . Then fr(7) =2+c(n")~1-n+
Sr(n') + 2(n — 1) = ¢(n”) = (n — 2) + Spv(7") + 2(n — 1) — 1. Relabeling
the vertices of 7" and the elements of 7" from {2,...,n—1} to [n—2] does
not change ¢(n”) — (n — 2) + Sr~(n"), to which we can apply the inductive
hypothesis. The bound then follows.

(b.2) Suppose m; = (n,1,5), where 2 < j < n — 1. Define =
(n,1)(j)m2... 7. It can be verified that Sr(m) = Sr(n'), and c(n’) =
e(r) + 1. Hence, fr(n) = fp(n') =1 < (3) — 1 by the earlier subcase
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(b.1). Note that Sr(m) = Sr(7~!) and ¢(r) = ¢(r~1), so that the bound
evaluates to the same value when 7, = (n,j,1) and when m; = (1,n,35).

(b.3) Suppose m; = (n,1,41,...,js) contains at least 4 elements. Define
7 = (n,1)(41,...,5¢)m2...7,, where the first cycle of 7 has now been
broken down into two disjoint cycles to obtain n’. Define z := [j; — ja| +
.+.+|je-1=Je|. Then, Sp(n’') = 2(n—1)+x+|j,— 51| +d for some d, where
d is the sum of distances obtained from the remaining cycles ms,...,m,.
Also, Sr(7) =n -1+ |1 - f1| + 2 + |je — n| + d. Also, ¢(7) = ¢(n') — 1.
Using the equations obtained here and substituting, we get that fr(z) =
e(m) =n + Sp(m) = c(n') —n + Sp(n') = n+ |1 = ji| + [fe - 7| — |5e — 1.
Using the bound ¢(7’) — n + Sp(n’) < (3) of subcase (b.1), and using the
fact that |1 — 71| + |je = n| — |je — j1] < n ~ 1, we get the desired bound
fr(m) < (3).

(c) We consider two subcases. In the first subcase, 1 and n are in the
same cycle of 7, and in the second subcase 1 and n are in different cycles
of .

(c.1) Let m = (n,j1,..., 52,1, k1, ... ke)ma. . . 7,.

Define n’ = (n, j1,...,5¢, 1) (k1,..., ke)mw2 ... m,. We show that fr(r) <
fr(n’). This latter quantity is bounded from above by (g) due to the earlier
subcases.

(c.1.1) The subcase £ = 0 has been addressed in subcases (b.2) and
(b.3). Since there is a vertex automorphism of the path graph T that maps
1ton and n to 1, the subcase ¢ = 0 has also been addressed by the subcase
£=0.

(c.1.2) Now suppose £ = 1 and t = 1. The sum of distances of elements in
the cycle (n, j1,1, k1) and (n, j1,1)(k1) are equal, and ¢(7) < ¢(n’). Hence,
fr(m) < fr(n).

(c.1.3) Now suppose t = 1 and ! > 2; note that by symmetry, this
subcase also addresses the subcase £ = 1 and ¢ > 2. A calculation of the
sum of distances Sr(w) and Sr(w’) yields, again, that Sp(r) = Sp(x).
Since ¢(r) < c(n’), fr(m) < fr(x’)

(c.1.4) Finally, suppose t > 2 and £ > 2. Recall that 7 contains the cycle
(ny315---,3e,1,k1,..., k), and 7’ contains the two cycles (n, 41y -2 e, 1)
and (ki,...,k). A summation of distances due to elements in these cycles
yields that fr(w) < fp(«') if and only if ky — k; < |k - k¢| + 1, which is
clearly true.

(c.2) Let m = (n,51,...,5e)(L, k1, ..., ke)m3 ... 7,.

(c.2.1) Suppose £ = 1, ie. m; = (n,7;) is a cycle of . Define a new
permutation 7’ = (n,1)mj ..., that has the same type as 7 but with the
labels of 1 and ji interchanged, i.e. #' = (1,41)  (1,4,). Then c(n') = ¢fn).
Note that Sp(m) contains terms |n ~ 1| and |j; — n|, corresponding to the
cycle my. When going from 7 to #/, the sum of two terms of St is increased
by an amount equal to 2[j1 — 1] because the cycle (n, j) is replaced by the
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cycle (n,1). When going from 7 to #’, the cycle containing the element 1 is
now replaced by a cycle containing the element j;, and this could contribute
to a decrease in St by at most 2|j; —1|. Hence, fr(m) < fr(#'). The bound
then follows from applying the earlier subcase (b.1) to #’. This resolves the
case £ = 1, and by symmetry, also the case ¢t = 1.

(c.2.2) So now assume £ > 2 and ¢ > 2.

Let 7 = (n,j1,...,5¢)(1, k1,..., ke)ms ... 7y, and

let 7’ = (n,1)(j1,. .., Je, k1, ..., k) W3... 7. A computation of the sum
of distances in Sr(n) and Sp(n') yields that fr(x) < fr(7') if and only if
ky — je + ke — 51 < |ky — el + |k — j1] + 1, which is clearly true. O

3 On the AK algorithm

We describe some properties of the AK algorithm here.

Theorem 3.1. If T is a star or a path, then the AK algorithm sorts any
permutation using the minimum number of transpositions.

Proof. Let T be the path graph, with the vertices labeled consecutively
from 1 to n. Let m € S, be a given permutation. Then, the AK algorithm
chooses, during each step, an admissible edge (3,7 + 1) of type A or type
B. If the edge is of type A, then the marker 7(i) at vertex i reduces its
distance to vertex 7 (i) if the transposition (%, + 1) is applied, and similarly
for the marker m(i + 1) at vertex i + 1. Hence, by the chosen labeling of
the vertices, m(¢) > m(¢ + 1). Thus, applying (3,7 + 1) reduces the number
of inversions of the given permutation by 1. Similarly, if the edge is of type
B, applying (i,i + 1) reduces again the number of inversions of the given
permutation by 1. Thus, in either case, after (4,4+1) is applied to 7, we get
& new permutation which has exactly one fewer inversion than 7. Thus, the
AK algorithm uses exactly inv(r) transpositions to home all the markers,
and it is a well-known result that this is the minimum number distr(Z, )
of transpositions possible.

Let T be the star. The different cases in the proof of Theorem 2.1 were
(a),(b),(c) and (d.1) to (d.4). Each time a transposition is applied by the
AK algorithm, it picks an admissible edge of type A or type B. If the edge
is of type A, then we are in case (d.1) or (d.3), in which case fr(w) surely
reduces by 1. If the edge is of type B, then we are in case (b), in which
case fr(m) again surely reduces by 1. Thus, the AK algorithm sorts 7 using
exactly fr(w) transpositions of T' and this is the minimum possible number
of transpositions by Theorem 2.1. a
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Theorem 3.2. There exist transposition trees for which the diameter upper
bound is strict. There exist transposition trees Jor which the AK algorithm
uses more than the minimum number of transpositions required.

Proof. Let T be the transposition tree on 5 vertices consisting of the 4
transpositions (1,2), (2,3),(1,4) and (1,5). Let 7 = (2,4)(3,5) € Ss. Then
fr(w) = 8, whereas a quick simulation using GAP [8] confirms that the
diameter of the Cayley graph generated by T is 7. Hence, there exist
transposition trees for which the diameter upper bound inequality is strict.
Next, suppose T is the transposition tree on 7 vertices consisting of
the 6 transpositions (1,2),(2,3), (1,4), (4,5),(1,6) and (6,7). Let 7 =
(2,4)(3,5)(5,7) € S7. Then the following 15 edges of T', when applied in the
order given, are all admissible edges (of type A or type B), and can be used
tosort mon T (1,2),(1,4),(1,2), (2,3),(1,2),(1,6), (6,7),(1,2),(2,3),(4,5),
(1,4),(1,6), (6,7),(1,4),(4,5). However, it can be verified (with the help
of a computer) that the diameter of the Cayley graph generated by T is
14. Hence, the AK algorithm can take more than the minimum required
number of transpositions to sort a given permutation. a

4 Further remarks

The upper bound from [1] for the diameter of Cayley graphs generated
by transposition trees was studied in this work. This formula bounds the
diameter of the Cayley graph on n! vertices in terms of parameters of the
underlying transposition tree. We showed above that this bound is sharp
for all trees of minimum diameter and for all trees of maximum diameter,
but can be strict for trees that are not extremal. We also showed that for
some families of graphs the AK algorithm is optimal.

Let s(n) denote the number of non-isomorphic trees on n vertices and
let h(n) denote the number of nonisomorphic trees on n vertices for which
the diameter upper bound is sharp. Then, the following table seems to
result from our preliminary calculations:

Table 1: Number of trees for which the diameter upper bound is sharp

n |56 7 8 9
s(n) |3 6 11 23 47
hin) |2 4 3 6 4

An open problem is to characterize (all) the remaining families of trees
for which the diameter upper bound is sharp. Another direction is to in-
vestigate further properties of the AK algorithm.
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