On mark sequences in bipartite digraphs

T. A. CHISHTI* AND U. SAMEE

*Directorate of Distance Education

†Department of Mathematics

University of Kashmir

Srinagar-190006, India

e-mail: chishtita@yahoo.co.in, pzsamee@yahoo.co.in

Abstract

A bipartite r-digraph is an orientation of a bipartite multigraph that is without loops and contains at most r edges between any pair of vertices from distinct parts. In this paper, we obtain necessary and sufficient conditions for a pair of sequences of non-negative integers in non-decreasing order to be a pair of sequences of numbers, called marks (or r-scores), attached to the vertices of a bipartite r-digraph. These characterizations provide algorithms for constructing the corresponding bipartite multi digraph.

Keywords: bipartite multidigraph, mark, mark sequence, oriented graph, transmitter.
2010 Mathematics Subject Classification Number: 05C20.

1 Introduction

An r-digraph is an orientation of a multigraph that is without loops and contains at most r edges between any pair of distinct vertices. So, 1-digraph is an oriented graph, and a complete 1-digraph is a tournament. Let D be an r-digraph with vertex set $V = \{v_1, v_2, \ldots, v_n\}$, and let $d_{v_i}^+$ and $d_{v_i}^-$ denote the outdegree and indegree, respectively, of a vertex v_i . Define p_{v_i} (or simply p_i)= $r(n-1) + d_{v_i}^+ - d_{v_i}^-$ as the mark (or r-score) of v_i , so that $0 \le p_{v_i} \le 2r(n-1)$. Then the sequence $P = [p_i]_1^n$ in non-decreasing order is called the mark sequence of D.

An analogous result to Landau's theorem on tournament scores [5] is the following characterization of marks in r-digraphs and is due to Pirzada [10].

Theorem 1.1. A sequence $P = [p_i]_1^n$ of non-negative integers in non-decreasing order is the mark sequence of an r-digraph if and only

$$\sum_{i=1}^{t} p_i \geq rt(t-1),$$

for $1 \le t \le n$, with equality when t = n.

Various results on mark sequences in digraphs are given in [7, 8, 10] and we can find certain stronger inequalities of marks for digraphs in [6] and for multidigraphs in [17]. Further we can see characterizations of marks for bipartite digraphs in [4, 19] and on mark sets in [18]. Also analogous results for scores in oriented graphs can be found in [1, 11, 14].

A bipartite r-digraph is an orientation of a bipartite multigraph that is without loops and contains at most r edges between any pair of vertices from distinct parts. So bipartite 1-digraph is an oriented bipartite graph and a complete bipartite 1-digraph is a bipartite tournament. Let D(X,Y) be a bipartite r-digraph with $X = \{x_1, x_2, \ldots, x_m\}$ and $Y = \{y_1, y_2, \ldots, y_n\}$. For any vertex v_i in D(X,Y), let $d_{v_i}^+$ and $d_{v_i}^-$ be the outdegree and indegree, respectively, of v_i . Define p_{x_i} (or simply p_i) = $rn + d_{x_i}^+ - d_{x_i}^-$ and q_{y_i} (or simply q_j)= $rm + d_{y_j}^+ - d_{y_j}^-$ as the marks (or r-scores) of x_i in X and y_j in Y respectively. Clearly, $0 \le p_{x_i} \le 2rn$ and $0 \le q_{y_j} \le 2rm$. Then the sequences $P = [p_i]_1^m$ and $Q = [q_j]_1^n$ in non-decreasing order are called the mark sequences of D(X,Y).

One interpretation of a bipartite r-digraph is as follows. It can be interpreted as the result of a competition between two teams in which each player of one team plays with every player of the other team at most r times in which ties(draws) are allowed. A player receives two points for each win, and one point for each tie. With this marking system, player x_i (respectively y_j) receives a total of p_{x_i} (respectively q_{y_j}) points. The sequences P and Q of non-negative integers in non-decreasing order are said to be realizable if there exists a bipartite r-digraph with mark sequences P and Q.

In a bipartite r-digraph D(X,Y), if there are a_1 arcs directed from vertex $x \in X$ to vertex $y \in Y$ and a_2 arcs directed from vertex y to vertex x, with $0 \le a_1 \le r$, $0 \le a_2 \le r$ and $0 \le a_1 + a_2 \le r$, we denote it by $x(a_1 - a_2)y$.

We have one of the following six possibilities between any two vertices $x \in X$ and $y \in Y$ in a bipartite 2-digraph D(X,Y).

- (i) Exactly two arcs directed from x to y and no arc directed from y to x, and this is denoted by x(2-0)y,
- (ii) Exactly two arcs directed from y to x and no arc directed from x to y, and this is denoted by x(0-2)y,

- (iii) Exactly one arc directed from x to y and exactly one arc directed from y to x, and this is denoted by x(1-1)y and is called a pair of symmetric arcs between x and y,
- (iv) Exactly one arc directed from x to y and no arc directed from y to x, and this is denoted by x(1-0)y,
- (v) Exactly one arc directed from y to x and no arc directed from x to y, and this is denoted by x(0-1)y,
- (vi) No arc directed from x to y and no arc directed from y to x, and this is denoted by x(0-0)y.

The following characterization of mark sequences in bipartite 2-digraphs [19] is analogous to a result on scores in bipartite tournaments due to Beineke and Moon [2].

Theorem 1.2. Let $P = [p_i]_1^m$ and $Q = [q_j]_1^n$ be the sequences of nonnegative integers in non-decreasing order. Then P and Q are the mark sequences of some bipartite 2-digraph if and only if

$$\sum_{i=1}^{f} p_i + \sum_{j=1}^{g} q_j \ge 4fg$$

for $1 \le f \le m$ and $1 \le g \le n$ with equality when f = m and g = n.

Analogous results for scores in oriented bipartite graphs can be found in [9].

An oriented tetra in a bipartite r-digraph is an induced 1-subdigraph with two vertices from each part. Define oriented tetras of the form x(1-0)y(1-0)x'(1-0)y'(1-0)x and x(1-0)y(1-0)x'(1-0)y'(0-0)x to be of α -type and all other oriented tetras to be of β -type. A bipartite r-digraph is said to be of α -type or β -type according as all of its oriented tetras are of α -type or β -type respectively. We assume, without loss of generality, that β -type bipartite r-digraphs have no pair of symmetric arcs because symmetric arcs x(a-a)y, where $1 \le a \le \frac{r}{2}$, can be transformed to x(0-0)y with the same marks. A transmitter is a vertex with indegree zero.

2 Criteria for realizability of marks

We have the following immediate observation about bipartite r-digraphs with given marks.

Lemma 2.1. Among all bipartite r-digraphs with given mark sequences, those with the fewest arcs are of β -type.

Proof. Suppose D(X,Y) is a bipartite r-digraph with mark sequences P and Q and let D(X,Y) be not of β -type. Then D(X,Y) has an oriented tetra of α -type, that is, x(1-0)y(1-0)x'(1-0)y'(1-0)x or x(1-0)y(1-0)x'(1-0)y'(1-0)x where $x,x'\in X$ and $y,y'\in Y$. Since x(1-0)y(1-0)x'(1-0)x'(1-0)x can be transformed to x(0-0)y(0-0)x'(0-0)y'(0-0)x with the same mark sequences and four arcs fewer, and x(1-0)y(1-0)x'(1-0)y'(0-0)x can be transformed to x(0-0)y(0-0)x'(0-0)y'(0-1)x with the same mark sequences and two arcs fewer, therefore, in both cases we obtain a bipartite r-digraph having same mark sequences P and Q with fewer arcs. Note that if there are symmetric arcs between x and y, that is x(a-a)y, where $1 \le a \le \frac{r}{2}$, then these can be transformed to x(0-0)y with the same mark sequences and a arcs fewer. Hence the result follows. \square

Lemma 2.2. Let $P = [p_i]_1^m$ and $Q = [q_j]_1^n$ be mark sequences of a β -type bipartite r-digraph. Then either the vertex with mark p_m , or the vertex with mark q_n , or both can act as transmitters.

We now have some observations about bipartite r-digraphs, as these will be required in application of Theorem 2.3. We know if $P = [p_1, p_2, \ldots, p_m]$ and $Q = [q_1, q_2, \ldots, q_n]$ are mark sequences of a bipartite r-digraph, then $p_i \leq 4n, 1 \leq i \leq m$ and $q_j \leq 4m, 1 \leq j \leq m$.

- 1. If $P = [p_1, p_2, \ldots, p_{m-1}, p_m]$ and $Q = [0, 0, \ldots, 0, 0]$ with each $p_i = 2rn$ are mark sequences of some bipartite r-digraph, then $P' = [p_1, p_2, \ldots, p_{m-1}]$ and $Q' = [0, 0, \ldots, 0]$ are also mark sequences of some bipartite r-digraph.
- 2. If $P = [p_1, p_2, \ldots, p_{m-1}, p_m]$ and $Q = [0, 0, \ldots, 0, q_n]$ with $4n p_m = 3$, $q_n \geq 3$ are mark sequences of some bipartite r-digraph, then $P' = [p_1, p_2, \ldots, p_{m-1}]$ and $Q' = [0, 0, \ldots, 0, q_n 3]$ are also mark sequences of some bipartite r-digraph.
- 3. If $P = [p_1, p_2, \ldots, p_{m-1}, p_m]$ and $Q = [0, 0, \ldots, 0, q_n]$ with $4n p_m = 4$, $q_n \ge 4$ are mark sequences of some bipartite r-digraph, then $P' = [p_1, p_2, \ldots, p_{m-1}]$ and $Q' = [0, 0, \ldots, 0, q_n 4]$ are also mark sequences of some bipartite r-digraph.
- 4. If $P = [p_1, p_2, \ldots, p_{m-1}, p_m]$ and $Q = [0, 0, \ldots, 0, q_n]$ with $4n p_m = 4$, $q_m \geq 3$ are mark sequences of some bipartite r-digraph, then $P' = [p_1, p_2, \ldots, p_{m-1}]$ and $Q' = [0, 0, \ldots, 0, q_n 3]$ are also mark sequences of some bipartite r-digraph.
- 5. If $P = [p_1, p_2, \ldots, p_{m-1}, p_m]$ and $Q = [0, 0, \ldots, 0, 1, 3]$ with $4n p_m = 4$, are mark sequences of some bipartite r-digraph, then the sequences $P' = [p_1, p_2, \ldots, p_{m-1}]$ and $Q' = [0, 0, \ldots, 0, 0, 0]$ are also mark sequences of some bipartite r-digraph.

- 6. If $P = [p_1, p_2, \ldots, p_{m-1}, p_m]$ and $Q = [0, 0, \ldots, 0, 1, 1, 2]$ with $4n p_m = 4$, are mark sequences of some bipartite r-digraph, then the sequences $P' = [p_1, p_2, \ldots, p_{m-1}]$ and $Q' = [0, 0, \ldots, 0, 0, 0]$ are also mark sequences of some bipartite r-digraph.
- 7. If $P = [p_1, p_2, \ldots, p_{m-1}, p_m]$ and $Q = [0, 0, \ldots, 0, 1, 1, 1, 1]$ with $4n p_m = 4$, are mark sequences of some bipartite r-digraph, then $P' = [p_1, p_2, \ldots, p_{m-1}]$ and $Q' = [0, 0, \ldots, 0, 0, 0]$ are also mark sequences of some bipartite r-digraph.

We note that the sequences of non-negative integers given by $[p_1]$ and $[q_1,q_2,\ldots,q_n]$, with $p_1+q_1+q_2+\cdots+q_n=2rn$, are always mark sequences of some bipartite r-digraph. We observe that the bipartite r-digraph D(X,Y), with vertex sets $X=\{x_1\}$ and $Y=\{y_1,y_2,\ldots,y_n\}$, where for q_i even, say 2t, we have $x_1((r-t)-t)y_i$ and for q_i odd, say 2t+1, we have $x_1((r-t-1)-t)y_i$, has mark sequences $[p_1]$ and $[q_1,q_2,\ldots,q_n]$. Also the sequences [0] and $[2r,2r,\ldots,2r]$ are mark sequences of some bipartite r-digraph.

The next result provides a useful recursive test whether or not a pair of sequences is realizable as marks.

Theorem 2.3. Let $P = [p_i]_1^m$ and $Q = [q_j]_1^n$ be the sequences of nonnegative integers in non-decreasing order with $p_m \ge q_n$, $rn \le p_m \le 2rn$.

- (A) If $q_n \leq 2r(m-1)+1$, let P' be obtained from P by deleting the entry p_m , and Q' be obtained as follows.
 - For $[2r-(i-1)]n \ge p_m \ge (2r-i)n$, $1 \le i \le r$, reducing $[2r-(i-1)]n p_m$ largest entries of Q by i each, and reducing $p_m (2r-i)n$ next largest entries by i-1 each.
- (B) In case $q_n > 2r(m-1) + 1$, say $q_n = 2r(m-1) + 1 + h$, where $1 \le h \le r 1$, then let P' be obtained from P by deleting the entry p_m , and Q' be obtained from Q by reducing the entry q_n by h + 1.

Then P and Q are the mark sequences of some bipartite r-digraph if and only if P' and Q' (arranged in non-decreasing order) are the mark sequences of some bipartite r-digraph.

Proof. Let P' and Q' be the mark sequences of some bipartite r-digraph D'(X',Y'). First suppose Q' is obtained from Q as in A. Construct a bipartite r-digraph D(X,Y) as follows. Let $X=X'\cup x$ and Y=Y', where x does not belong to X'. Let x((r-i)-0)y for those vertices y of Y' whose marks are reduced by i in going from P and Q to P' and Q', and x(r-0)y for those vertices y of Y' whose marks are not reduced in going from P and Q to P' and Q'. Then D(X,Y) is the bipartite r-digraph with mark sequences P and Q. Now, if Q' is obtained from Q as in B, then construct

a bipartite r-digraph D(X,Y) as follows. Let $X=X'\cup x$ and Y=Y', where x does not belong to X'. Let x((r-h-1)-0)y for that vertex y of Y' whose marks are reduced by h in going from P and Q to P' and Q'. Then D(X,Y) is the bipartite r-digraph with mark sequences P and Q.

Conversely, suppose P and Q be the mark sequences of a bipartite r-digraph D(X,Y). Without loss of generality, we choose D(X,Y) to be of β -type. Then by Lemma 2.2, any of the vertex $x \in X$ or $y \in Y$ with mark p_m or q_n respectively can be a transmitter. Let the vertex $x \in X$ with mark p_m be a transmitter. Clearly, $p_m \geq rn$ and because if $p_m < rn$, then by deleting p_m we have to reduce more than n entries from Q, which is absurd.

- (A) Now $q_n \le 2r(m-1)+1$ because if $q_n > 2r(m-1)+1$, then on reduction $q'_n = q_n 1 > 2r(m-1)+1-1 = 2r(m-1)$, which is impossible.
- Let $[2r-(i-1)]n \geq p_m \geq (2r-i)n$, $1 \leq i \leq r$, let V be the set of $[2r-(i-1)]n-p_m$ vertices of largest marks in Y, and let W be the set of $p_m-(2r-i)n$ vertices of next largest marks in Y and let $Z=Y-\{V,W\}$. Construct D(X,Y) such that x((r-i)-0)v for all $v \in V$, x((r-i-1)-0)w for all $w \in W$ and x(r-0)z for all $z \in Z$. Clearly, D(X,Y)-x realizes P' and Q' (arranged in non-decreasing order).
- (B) Now in D, let $q_n > 2r(m-1)+1$, say $q_n = 2r(m-1)+1+h$, where $1 \le h \le r-1$. This means $y_m(r-0)x_i$, for all $1 \le i \le m-1$. Since x_m is a transmitter, there cannot be an arc from y_n to x_m . Therefore $x_m((r-h-1)-0)y_n$, since y_n needs h+1 more marks. Now delete x_m , it will decrease the mark of y_n by h+1, and the resulting bipartite r-digraph will have mark sequences P' and Q' as desired.

Theorem 2.3 provides an algorithm of checking whether or not the sequences P and Q of non-negative integers in non-decreasing order are the mark sequences, and for constructing a corresponding bipartite r-digraph. Let $P = [p_1, p_2, \dots, p_m]$ and $Q = [q_1, q_2, \dots, q_n]$, where $p_m \ge q_n$, $rn \le q_n$ $p_m \leq 2rn$ and $q_n \leq 2r(m-1)+1$, be the mark sequences of a bipartite r-digraph with parts $X = \{x_1, x_2, \dots, x_m\}$ and $Y = \{y_1, y_2, \dots, y_n\}$ respectively. Deleting p_m and performing A of Theorem 2.3 if $[2r-(i-1)]n \ge 1$ $p_m \geq (2r-i)n$, $1 \leq i \leq r$, we get $Q' = [q'_1, q'_2, \ldots, q'_n]$. If the marks of the vertices y_j were decreased by i in this process, then the construction yielded $x_m((r-i)-0)y_i$, if these were decreased by i-1, then the construction yielded $x_m((r-i-1)-0)y_j$. If we perform B of Theorem 2.3, the mark of y_n was decreased by h+1, the construction yielded $x_m((r-h-1)-0)y_n$. For vertices y_j whose marks remained unchanged, the construction yielded $x_m(r-0)y_i$. Note that if the conditions $p_m \geq rn$ does not hold, then we delete q_n for which the conditions get satisfied and the same argument is used for defining arcs. If this procedure is applied recursively, then it tests whether or not P and Q are the mark sequences, and if P and Q are the

mark sequences, then a bipartite r-digraph with mark sequences P and Q is constructed.

We illustrate this reduction and the resulting construction with the following examples.

Exercise 2.4. Consider the two sequences of non-negative integers given by P = [14, 14, 15] and Q = [6, 6, 8, 9]. We check whether or not P and Q are mark sequences of some bipartite 3-digraph.

1. P = [14, 14, 15], Q = [6, 6, 8, 9].

We delete 15. Clearly $[2r-(i-1)]n=[2.3-(3-1)]4=16\geq 15\geq (2r-i)n=(2.3-3)4=12$. So reduce $[2r-(i-1)]n-p_m=[2.3-(3-1]4-15=16-15=1$ largest entry of Q by i=3 and $p_m-(2r-i)n=15-(2.3-3)4=15-12=3$ next largest entries of Q by i-1=3-1=2 each, we get P=[14,14], Q=[4,4,6,6], and arcs are defined as $x_3(0-0)y_4, x_3(1-0)y_3, x_3(1-0)y_2, x_3(1-0)y_1$.

2. P = [14, 14], Q = [4, 4, 6, 6].

We delete 14. Here $[2r - (i - 1)]n = [2.3 - (3 - 1)]4 = 16 \ge 14 \ge (2r - i)n = (2.3 - 3)4 = 12$. Reduce $[2r - (i - 1)]n - p_m = [2.3 - (3 - 1)]4 - 14 = 16 - 14 = 2$ largest entries of Q by i = 3 and $p_m - (2r - i)n = 14 - (2.3 - 3)4 = 14 - 12 = 2$ next largest entries of Q by i - 1 = 3 - 1 = 2 each, we get P = [14], Q = [2, 2, 3, 3], and arcs are defined as $x_2(0 - 0)y_4$, $x_2(0 - 0)y_3$, $x_2(1 - 0)y_2$, $x_2(1 - 0)y_1$.

3. P = [14], Q = [2, 2, 3, 3].

We delete 14. Here $[2r-(i-1)]n=[2.3-(3-1)]4=16\geq 14\geq (2r-i)n=(2.3-3)4=12$. Reduce $[2r-(i-1)]n-p_m=[2.3-(3-1]4-14=16-14=2$ largest entries of Q by i=3 and $p_m-(2r-i)n=14-(2.3-3)4=14-12=2$ next largest entries of Q by i-1=3-1=2 each, we get ϕ , Q=[0,0,0,0], and arcs are defined as $x_1(0-0)y_4$, $x_1(0-0)y_3$, $x_1(1-0)y_2$, $x_1(1-0)y_1$.

The resulting bipartite 3-digraph has mark sequences P = [14, 14, 15] and Q = [6, 6, 8, 9] with vertex sets $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2, y_3, y_4\}$ and arcs as $x_3(0-0)y_4$, $x_3(1-0)y_3$, $x_3(1-0)y_2$, $x_3(1-0)y_1$, $x_2(0-0)y_4$, $x_2(0-0)y_3$, $x_2(1-0)y_2$, $x_2(1-0)y_1$, $x_1(0-0)y_4$, $x_1(0-0)y_3$, $x_1(1-0)y_2$, $x_1(1-0)y_1$.

The following is the combinatorial criterion [4] for determining whether the sequences of non-negative integers are realizable as marks. This is analogous to Landau's theorem [5] on tournament scores and similar to the result by Beineke and Moon [2] on bipartite tournament scores.

Theorem 2.5. Let $P = [p_i]_1^m$ and $Q = [q_j]_1^n$ be the sequences of nonnegative integers in non-decreasing order. Then P and Q are the mark sequences of some bipartite r-digraph if and only if

$$\sum_{i=1}^{f} p_i + \sum_{j=1}^{g} q_j \ge 2rfg,\tag{1}$$

for $1 \le f \le m$ and $1 \le g \le n$, with equality when f = m and g = n.

The concept of scores has been extended to oriented hypergraphs [13, 22], hypertournaments [3, 16, 20, 21, 22] and bipartite hypertournaments [12, 15].

References

- [1] P. Avery, Score sequences of oriented graphs, J. Graph Theory, 15(3) (1991), 251-257.
- [2] L. W. Beineke and J. W. Moon, On bipartite tournaments and scores, The Theory and Applications of Graphs (ed. G. Chartrand et al.) Wiley, (1981), 55-71.
- [3] T. A. Chishti and U. Samee, Mark sequences in bipartite multidigraphs and constructions, *Acta Univ. Sapientiae Math.*, (To appear).
- [4] M. A. Khan, S. Pirzada and K. K. Kayibi, Scores, inequalities and regular hypertournaments, Math. Ineq. Appl., 15(2) (2012), 343-351.
- [5] H. G. Landau, On dominance relations and the structure of animal societies: III, The condition for a score structure, Bull. Math. Biol.,15 (1953), 143-148.
- [6] S. Pirzada and T. A. Naikoo, Inequalities for marks in digraphs, Math. Ineg. Appl., 9(2) (2006), 189-198.
- [7] S. Pirzada and U. Samee, Mark sequences in digraphs, Sém. Lothar. Combin., 55 (2006), B55c.
- [8] S. Pirzada, Merajuddin and U. Samee, Mark sequences in 2-digraphs, J. Appl. Math. Comput., 27 (2008), 379-391.
- [9] S. Pirzada, Merajuddin and Yin Jainhua, On the scores of oriented bipartite graphs, J. Math. Study, 33(4) (2000), 354-359.
- [10] S. Pirzada, Mark sequences in multidigraphs, Discrete Math. Appl., 17 (1) (2007), 71-76.

- [11] S. Pirzada, T. A. Naikoo and N. A. Shah, Score sequences in oriented graphs, J. Appl. Math. Comput., 23(1-2) (2007), 257-268.
- [12] S. Pirzada and G. Zhou, Score lists in (h, k)-bipartite hypertournaments, Appl. Math. J. Chinese Univ. Ser. B, 22(4) (2007), 485-489.
- [13] S. Pirzada and G. Zhou, Score sequences in oriented k-hypergraphs, Eur. J. Pure Appl. Math., 1 (2008), 10-20.
- [14] S. Pirzada and T. A. Naikoo, Score sets for oriented graphs, Appl. Anal. Discrete Math., 2(1) (2008), 107-113.
- [15] S. Pirzada, T. A. Chishti and T. A. Naikoo, Score lists in [h, k]-bipartite hypertournaments, Discrete Math. Appl., 19(3) (2009), 321-328.
- [16] S. Pirzada and Zhou Guofei, On k-hypertournament losing scores, Acta Univ. Sapientiae, Informatica, 2(1) (2010), 5-9.
- [17] S. Pirzada, U. Samee, T. A. Naikoo and Merajuddin, Inequalities for marks in multidigraphs, Ital. J. Pure Appl. Math., 28 (2011), 91-100.
- [18] S. Pirzada and T. A. Naikoo, Mark sets in 2-digraphs, Appl. Comput. Math., 10(2) (2011), 283-288.
- [19] U. Samee, Merajuddin, S. Pirzada and T. A. Naikoo, Mark sequences in bipartite 2-digraphs, Int. J. Math. Sci., 6(1) (2007), 97-105.
- [20] G. Zhou, T. Yao and K. Zhang, On score sequences in k-hypertournaments, European J. Combin., 21 (2000) 993-1000.
- [21] G. Zhou and K. Zhang, On the degree sequences of k-hypertournaments, Sica. Annal. Math., 22A (2001) 115-120.
- [22] G. Zhou and S. Pirzada, Degree sequences of oriented k-hypergraphs, J. Appl. Math. Comput., 27 (1-2) (2008), 149-158.