\widehat{S}_k -Factorization of complete multipartite symmetric digraphs ### P.HEMALATHA Department of Mathematics Kongu Engineering College, Erode 638 052, Tamilnadu, India. e-mail: latha_saroja@yahoo.co.in and ## A. MUTHUSAMY Department of Mathematics Periyar University, Salem, Tamilnadu, India. e-mail: ambdu@yahoo.com #### Abstract In this paper we focus our study on finding necessary and sufficient conditions required for the existence of an \widehat{S}_k -factorization of $(K_m \circ \overline{K}_n)^*$ and $(C_m \circ \overline{K}_n)^*$. In particular, we show that the necessary conditions for the existence of an \widehat{S}_k -factorization of $(K_m \circ \overline{K}_n)^*$ are sufficient except when none of m, n is a multiple of k. In fact our results deduce some of the results of Ushio on \widehat{S}_k -factorizations of complete bipartite and tripartite symmetric digraphs. Keywords: \hat{S}_k -factorization, complete multipartite symmetric digraphs, wreath product of graphs. 2010 Mathematics Subject Classification Number: 05C70. # 1 Introduction Let C_m , K_m and \overline{K}_m denote a cycle, a complete graph and the complement of a complete graph on m vertices respectively. For a graph G, the symmetric digraph of G denoted by G^* , is obtained by replacing each edge of G by a pair of symmetric arcs and rG denotes r disjoint copies of G. The graph with vertex set V having partite sets V_1, V_2, \ldots, V_m such that $|V_i| = n_i$ and edge set $E = \{uv|u \in V_i, v \in V_j, \text{ and } i, j \in \{1, 2, \ldots, m\} \text{ with } i \neq j\}$ is called complete m-partite graph and is denoted by $K_{n_1, n_2, \ldots, n_m}$. The directed star $\vec{K}_{1,k-1}$ having vertices in two partite sets V_i and V_j of the m-partite digraph with all arcs having tail at the center and head at the end vertices is denoted by \hat{S}_k . $\widehat{S_4} = \overrightarrow{K}_{1,3}$ For a digraph \overrightarrow{G} , the spanning subdigraph F of \overrightarrow{G} is called an \widehat{S}_k -factor, if each component of F is isomorphic to \widehat{S}_k . If \overrightarrow{G} can be expressed as an arc-disjoint sum of \widehat{S}_k -factors, then we say that \widehat{S}_k -factorizes \overrightarrow{G} or \overrightarrow{G} has an \widehat{S}_k -factorization and we denote it by $\widehat{S}_k \| \overrightarrow{G}$. The wreath product of two graphs G and H denoted by $G \circ H$, has the vertex set $V(G) \times V(H)$ and the edge set $E(G \circ H) = \{(a,b)(c,d)|ac \in E(G) \text{ or } a=c \text{ and } bd \in E(H)\}$. For the definitions and notations not defined here we refer [1]. The existence of the star factorization of the complete bipartite and tripartite digraphs have been studied by many authors [4], [5], [6], [7] due to its wide range of applications in many fields. Ushio [3] gives an application of $K_{1,k}$ - factorization of complete bipartite graphs to combinatorial multiple-valued index-file organisation schemes of order two in database management systems. Recently, Ushio [4], [5] has obtained some necessary or sufficient conditions for the existence of an \widehat{S}_k - factorization of complete bipartite and tripartite symmetric digraphs, but the same is unknown for the m-partite symmetric digraphs. Recently, the authors [2] have obtained some necessary conditions and some sufficient conditions for the existence of \widehat{S}_k -factorization of symmetric digraphs of tensor product of graphs. In this paper, we have obtained some necessary conditions and some sufficient conditions for the existence of an \widehat{S}_k -factorization of K_{n_1,n_2,\ldots,n_m}^* and $(C_m \circ \overline{K}_n)^*$. Infact, our results deduce some results of Ushio [4, 5] on \widehat{S}_k -factorizations of $K_{n,n}^*$ and $K_{n,n,n}^*$. # 2 Main Results # 2.1 Necessary Conditions In this section we establish some necessary conditions for the existence of an \widehat{S}_k -factorization in K_{n_1,n_2,\ldots,n_m}^* and $(C_m \circ \overline{K}_n)^*$. Theorem 2.1. If $K_{n_1,n_2,...,n_m}^*$ has an \widehat{S}_k -factorization, then (a) $$n_1 = n_2 = ... = n_m = n \equiv 0 \pmod{k-1}$$ (b) $mn \equiv 0 \pmod{k}$ (c) $$(m-1)n \ge (k-1)^2$$. Proof. Assume that $K_{n_1,n_2,...,n_m}^*$ has an \widehat{S}_k -factorization. Let r be the total number of \widehat{S}_k -factors, s be the number of components of each \widehat{S}_k -factor and b be the total number of components in the factorization. By applying counting technique, we have $s=\frac{n_1+n_2+...+n_m}{k}, b=\frac{\sum_{i,j=1,i\neq j}^m n_i n_j}{k-1}$ and $r=\frac{b}{s}=\frac{k}{k-1}(\frac{\sum_{i,j=1,i\neq j}^m n_i n_j}{\sum_{i=1}^m n_i})$. For a vertex $x\in V_i,\ i=1,2,...,m$, let c(x) and t(x) denote number of components having x as a center and an end vertex respectively. Then, $r=c(x)+t(x),\ c(x)=\frac{d^+(x)}{k-1}=\frac{\sum_{j=1,j\neq i}^m n_j}{k-1},$ $t(x)=d^-(x)=\sum_{j=1,j\neq i}^m n_j.$ From the above equalities we have $r=\frac{k}{k-1}\sum_{j=1,j\neq i}^m n_j,$ for i=1,2,...,m and hence $n_1=n_2=...=n_m=n$ say. Now since $|V_i|=n$ for all i=1,2,...,m, it is clear that $K_{n_1,n_2,...,n_m}^*\cong (K_m\circ\overline{K}_n)^*$. Therefore, $$r = \frac{k(m-1)n}{k-1}$$ and $$s = \frac{mn}{k}. (1)$$ By the definition of \widehat{S}_k , number of arcs from the vertex $x \in V_i$ to V_j must be a multiple of k-1. Therefore $$n \equiv 0 \pmod{k-1}. \tag{2}$$ This proves (a). Again by (1), $mn \equiv 0 \pmod{k}$. This proves (b). To complete the proof it remains to show that $(m-1)n \geq (k-1)^2$. Among the s components of an \widehat{S}_k -factor, let s_{ij} be the number of components with center vertices at V_i and end vertices at V_j . Then, $0 \leq s_{ij} \leq \frac{n}{k-1}$. W. l. o. g. n can be written as, $$\begin{array}{l} n = s_{12} + (k-1)s_{21} + s_{13} + (k-1)s_{31} + \ldots + s_{1m} + (k-1)s_{m1}.\\ \text{i.e., } s_{12} + s_{13} + \ldots + s_{1m} = n - (k-1)(s_{21} + s_{31} + \ldots + s_{m1}).\\ \sum_{j=2}^m s_{1j} = (k-1)p - (k-1)\sum_{j=2}^m s_{j1} \end{array}$$ for some integer $p \ge 1$ (using equation (2)). Hence, $$\sum_{j=2}^{m} s_{1j} = (k-1)(p - \sum_{j=2}^{m} s_{j1}) = (k-1)q,$$ for some $q \ge 0$. In general, $$\sum_{j=1, j \neq i}^{m} s_{ij} = (k-1)q, \tag{3}$$ for i = 1, 2, ..., m. But $$\sum_{j=1, j \neq i}^{m} s_{ij} \le \frac{(m-1)n}{k-1}, \ i = 1, 2, ..., m.$$ (4) From the equations (3) and (4) we have, $(k-1)q \leq \frac{(m-1)n}{k-1}$. i.e., $(m-1)n \geq (k-1)^2$. Hence (c) holds. **Theorem 2.2.** If $(C_m \circ \overline{K}_n)^*$ has an \widehat{S}_k -factorization, then - (a) $mn \equiv 0 \pmod{k}$ - (b) $n \equiv 0 \pmod{k-1}$ - (c) $2n \geq (k-1)^2$. Proof. Let $V_1, V_2, ..., V_m$ be the m- partite sets of the vertex set of $(C_m \circ \overline{K}_n)^*$. Assume that $(C_m \circ \overline{K}_n)^*$ has an \widehat{S}_k -factorization. Let r be the number of \widehat{S}_k -factors, s be the number of components in each \widehat{S}_k -factor and b be the total number of components in the \widehat{S}_k -factorization. We know that $(C_m \circ \overline{K}_n)^*$ has mn vertices and $2mn^2$ arcs. Therefore, $s = \frac{mn}{k}$. This proves (a). By the definition of \widehat{S}_k , the set of arcs from the vertex $x \in V_i$ to V_j must be exhausted by a collection of \widehat{S}_k 's with center at x. Therefore the number of arcs from x to V_j must be a multiple of k-1. i.e., $n \equiv 0 \pmod{k-1}$. This proves (b). Among the s components of each \widehat{S}_k -factor, let s_{ij} be the number of components having center at V_i and end vertices are in V_j . Therefore, $0 \le s_{ij} \le \frac{n}{k-1}$. i.e., $$\sum_{j=i-1, i\neq j}^{i+1} s_{ij} \le \frac{2n}{k-1}, \ i, j = 1, 2, ..., m$$ (5) W. l. o. g. n can be written as, $$n = s_{12} + (k-1)s_{21} + s_{1m} + (k-1)s_{m1}$$ $$i.e., s_{12} + s_{1m} = n - (k-1)(s_{21} + s_{m1})$$ $$= (k-1)q - (k-1)(s_{21} + s_{m1}) \text{ (using (b))}$$ $$= (k-1)(q - (s_{21} + s_{m1}))$$ $$= (k-1)p, \text{ for some } p \ge 0.$$ In general, $$\sum_{j=i-1, i \neq j}^{i+1} s_{ij} = (k-1)p,$$ i=1,2,...,m. Using this value in (5), we get $(k-1)p\leq \frac{2n}{k-1}$. i.e., $2n\geq ((k-1)^2)p$. i.e., $2n\geq (k-1)^2$. This proves (c). **Notation**: We denote an \widehat{S}_k with center vertex u and end vertices $v_1, v_2, ..., v_{k-1}$ by $(u; v_1, v_2, ..., v_{k-1})$. #### 2.2 Sufficient conditions **Lemma 2.3.** If $(C_m \circ \overline{K}_n)^*$ and $(K_m \circ \overline{K}_n)^*$ have \widehat{S}_k -factorizations, then so does $(C_m \circ \overline{K}_{sn})^*$ and $(K_m \circ \overline{K}_{sn})^*$, for every positive integer s. \square **Lemma 2.4.** If $n \equiv 0 \pmod{k(k-1)}$ then $\widehat{S}_k \| (C_m \circ \overline{K}_n)^*$, for all $m, k \geq 2$. *Proof.* Let n = k(k-1)s. If s = 1, then n = k(k-1). Let the m-partite sets of $(C_m \circ \overline{K}_n)^*$ be $V_1 = \{1^1, 2^1, ..., (k(k-1))^1\}$, $V_2 = \{1^2, 2^2, ..., (k(k-1))^2\}$, ..., $V_m = \{1^m, 2^m, ..., (k(k-1))^m\}$. Now for j = 0, 1, 2, ..., k-1, we can construct $k^2 \ \widehat{S}_k$ - factors $F_{1j}, F_{2j}, ..., F_{kj}$ of $(C_m \circ \overline{K}_n)^*$ as follows: $$F_{1j} = \bigoplus_{i=0}^{(k-2)} \{ ((i+1)^1; ((k-1)(j+i)+1)^2, \\ ((k-1)(j+i)+2)^2, ..., ((k-1)(j+i+1))^2), \\ (((k-1)(k-1+j)+i+1)^2; ((k-1)(k-1+j+i)+1)^3, \\ ((k-1)(k-1+j+i)+2)^3, ..., ((k-1)(k+j+i))^3), \\ (((k-1)(k-2+j)+i+1)^3; ((k-1)(k-2+j+i)+1)^4, \\ ((k-1)(k-2+j+i)+2)^4, ..., ((k-1)(k-1+j+i))^4), \\ ... \\ (((k-1)(k-(m-1)+j)+i+1)^m; ((k-1)(i+1)+1)^1, \\ ((k-1)(i+1)+2)^1, ..., ((k-1)(i+2))^1) \}, \\ j = 0, 1, 2, ..., (k-1)$$ $$F_{2j} = \bigoplus_{i=0}^{(k-2)} \{(((k-1)+i+1)^1; ((k-1)(j+i+1)+1)^2, \\ ((k-1)(j+i+1)+2)^2, ..., ((k-1)(j+i+2))^2), \\ (((k-1)j+i+1)^2; ((k-1)(j+i+1)+1)^3, \\ ((k-1)(j+i+1)+2)^3, ..., ((k-1)(j+i+2))^3), \\ (((k-1)j+i+1)^3; ((k-1)(j+i+1)+1)^4, \\ ((k-1)(j+i+1)+2)^4, ..., ((k-1)(j+i+2))^4), \\ ... \\ (((k-1)j+i+1)^m; ((k-1)(i+2)+1)^1, \\ ((k-1)(i+2)+2)^1, ..., ((k-1)(i+3))^1)\}, \\ j=0,1,2, ..., (k-1)$$ $$F_{3j} = \bigoplus_{i=0}^{(k-2)} \{(2(k-1)+i+1)^1; ((k-1)(j+i+3))^2), \\ (((k-1)(j+i+2)+2)^2, ..., ((k-1)(j+i+3))^2), \\ (((k-1)(k+1+j)+i+1)^2; ((k-1)(k+3+j+i)+1)^3, \\ ((k-1)(k+3+j+i)+2)^3, ..., ((k-1)(k+4+j+i))^3), \\ (((k-1)(k+2+j)+i+1)^3; ((k-1)(k+4+j+i)+1)^4, \\ ((k-1)(k+4+j+i)+2)^4, ..., ((k-1)(k+5+j+i))^4), \\ ... \\ (((k-1)(k+(m-1)+j)+i+1)^m; ((k-1)(i+3)+1)^1, \\ ((k-1)(k+3)+2)^1, ..., ((k-1)(i+4))^1)\}, \\ j=0,1,2, ..., (k-1)$$ $$F_{4j} = \bigoplus_{i=0}^{(k-2)} \{((3(k-1)+i+1)^1; ((k-1)(j+i+3)+1)^2, \\ ((k-1)(k+2+j)+i+1)^2; ((k-1)(k+5+j+i)+1)^3, \\ ((k-1)(k+2+j)+i+1)^2; ((k-1)(k+5+j+i)+1)^3, \\ ((k-1)(k+2+j)+i+1)^2; ((k-1)(k+5+j+i)+1)^3, \\ ((k-1)(k+4+j)+i+1)^3; ((k-1)(k+7+j+i)+1)^4, \\ ... \\ ((k-1)(k+2m-2)+j)+i+1)^m; ((k-1)(i+4)+1)^1, \\ ((k-1)(k+2), ..., ((k-1)(i+5))^1)\}, \\ j=0,1,2, ..., (k-1)$$ $$F_{kj} = \bigoplus_{i=0}^{(k-2)} \left\{ (((k-1)(k-1)+i+1)^1; ((k-1)(k-1+j+i)+1)^2, \\ ((k-1)(k-1+j+i)+2)^2, ..., ((k-1)(k+j+i))^2), \\ (((k-1)(2k-2+j)+i+1)^2; ((k-1)(2k-3+j+i)+1)^3, \\ ((k-1)(2k-3+j+i)+2)^3, ..., ((k-1)(2k-2+j+i))^3), \\ (((k-1)((2k-4+j)+i+1)^3; ((k-1)(2k-5+j+i)+1)^4, \\ ((k-1)(2k-5+j+i)+2)^4, ..., ((k-1)(2k-4+j+i)^4), \\ ... \\ (((k-1)(2(k-(m-1))+j)+i+1)^m; ((k-1)(j+i)+1)^1, \\ ((k-1)(j+i)+2)^1, ..., ((k-1)(j+i+1))^1) \right\},$$ where the additions are taken modulo k(k-1) with residues 1, 2, ..., k(k-1). Clearly each F_{pj} , $1 \le p \le k$, $0 \le j \le k-1$ is an \widehat{S}_k -factor. When p and j varies we have k^2 \widehat{S}_k -factors of $(C_m \circ \overline{K}_{k(k-1)})^*$. Due to symmetry of arcs, we have another k^2 \widehat{S}_k -factors as above. All these $2k^2$ \widehat{S}_k -factors together comprise an \widehat{S}_k -factorization of $(C_m \circ \overline{K}_{k(k-1)})^*$. By Lemma 2.3, $\widehat{S}_k \| (C_m \circ \overline{K}_{sk(k-1)})^*$ and hence $\widehat{S}_k \| (C_m \circ \overline{K}_n)^*$. Theorem 2.5. If $n \equiv 0 \pmod{k-1}$, then $\widehat{S}_k || (K_k \circ \overline{K}_n)^*$. Proof. Let n=(k-1)s. If s=1, then n=k-1. Let the k- partite sets of $(K_k \circ \overline{K}_n)^*$ be $V_1=\{1^1,2^1,...,(k-1)^1\},\ V_2=\{1^2,2^2,....,(k-1)^2\},...,\ V_k=\{1^k,2^k,...,(k-1)^k\}.$ We now construct k(k-1) \widehat{S}_k -factors $F_p^r,\ r=1,2,...,k,\ p=0,1,2,...,k-2$ of $(K_k \circ \overline{K}_{k-1})^*$ having the vertices of $V_r,\ r\in\{1,2,...,k\}$ as its center vertices as follows: $$F_p^r = \{ ((i+p+1)^r; 1^{(i+r+1)}, 2^{(i+r+1)}, ..., (k-1)^{(i+r+1)}), i = 0, 1, 2, ..., k-2 \},$$ where the additions in the superscripts are taken modulo k with residues 1,2,...,k and (i+p+1) is taken modulo k-1 with residues 1,2,...,k-1. Arc - disjoint sum of F_p^r , r=1,2,...,k, p=0,1,2,...,k-2 gives all the \widehat{S}_k -factors of $(K_k \circ \overline{K}_{k-1})^*$. All these k(k-1) \widehat{S}_k -factors of $(K_k \circ \overline{K}_{k-1})^*$ comprise an \widehat{S}_k -factorization of $(K_k \circ \overline{K}_{k-1})^*$. Therefore, by Lemma 2.3, $\widehat{S}_k \| ((K_k \circ \overline{K}_{(k-1)s})^*)^* \cong (K_k \circ \overline{K}_n)^*)$. Theorem 2.6. $\widehat{S}_k || (K_{sk} \circ \overline{K}_n)^*$ if and only if $n \equiv 0 \pmod{k-1}$. *Proof.* Assume that $n \equiv 0 \pmod{k-1}$. Let n = r(k-1). If r = 1, then n = k-1. Therefore by the definition of wreath product we have, $$(K_{sk} \circ \overline{K}_{k-1})^* \cong s(K_k \circ \overline{K}_{k-1})^* \oplus (K_s \circ \overline{K}_{k(k-1)})^*. \tag{6}$$ Case (i) s even. Then $(K_s \circ \overline{K}_{k(k-1)})^* \cong \bigoplus_{i=1}^{s-1} (F_i \circ \overline{K}_{k(k-1)})^*$, where F_i is a 1-factor of K_s . Now each $(F_i \circ \overline{K}_{k(k-1)})^* \cong \frac{s}{2} K_{k(k-1),k(k-1)}$. But by Lemma 2.4, $\widehat{S}_k \| K_{k(k-1),k(k-1)}$ and hence $\widehat{S}_k \| \left(\frac{s}{2} K_{k(k-1),k(k-1)} \cong (F_i \circ \overline{K}_{k(k-1)})^* \right)$. Therefore, $$\widehat{S}_k \| \bigoplus_{i=1}^{s-1} (F_i \circ \overline{K}_{k(k-1)})^*. \tag{7}$$ Case (ii) s odd. Then $(K_s \circ \overline{K}_{k(k-1)})^* \cong \bigoplus_{i=1}^{\frac{s-1}{2}} (H_i \circ \overline{K}_{k(k-1)})^*$, where H_i is a Hamilton cycle of K_s . By Lemma 2.4 we have, $\widehat{S}_k || (H_i \circ \overline{K}_{k(k-1)})^*$ and hence $$\widehat{S}_k \| \left(\bigoplus_{i=1}^{\frac{s-1}{2}} (H_i \circ \overline{K}_{k(k-1)})^* \cong (K_s \circ \overline{K}_{k(k-1)})^* \right). \tag{8}$$ (7) and (8) shows that $\widehat{S}_k \| (K_s \circ \overline{K}_{k(k-1)})^*$ for all s. By Theorem 2.5 we have, $\widehat{S}_k \| s(K_k \circ \overline{K}_{k-1})^*. \tag{9}$ Hence \widehat{S}_k -factorization of $(K_{sk} \circ \overline{K}_{k-1})^*$ follows from (6), (7), (8) and (9). Again by Lemma 2.3, $\widehat{S}_k \| ((K_{sk} \circ \overline{K}_{r(k-1)})^* \cong (K_{sk} \circ \overline{K}_n)^*)$. Necessity follows from Theorem 2.1. Note 2.7. If $n \equiv 0 \pmod{k}$, then by Theorem 2.1, $n \equiv 0 \pmod{k(k-1)}$. The \widehat{S}_k -factorization of $(K_m \circ \overline{K}_n)^*$ follows from the proof of cases (i) and (ii) of Theorem 2.6. **Theorem 2.8.** Suppose m is a prime and k is not a multiple of m, then $\widehat{S}_k \| (K_m \circ \overline{K}_n)^*$ if and only if $n \equiv 0 \pmod{k(k-1)}$. *Proof.* Assume that $\widehat{S}_k \| (K_m \circ \overline{K}_n)^*$. If m is a prime and k is not a multiple of m, then (m,k)=1. Then by Theorem 2.1, $n \equiv 0 \pmod{k(k-1)}$. Hence the necessity follows. Conversely, assume that $n \equiv 0 \pmod{k(k-1)}$. Now, $$(K_m \circ \overline{K}_n)^* \cong \left\{ \begin{array}{l} \bigoplus_{i=1}^{\frac{m-1}{2}} (H_i \circ \overline{K}_n)^*, & \text{if m is odd;} \\ \bigoplus_{i=1}^{m-1} (F_i \circ \overline{K}_n)^*, & \text{if m is even} \end{array} \right.$$ (10) where H_i and F_i are respectively a Hamilton cycle and a 1-factor of K_m . By Lemma 2.4, $$\widehat{S}_k \| (H_i \circ \overline{K}_n)^* \text{ and } \widehat{S}_k \| (F_i \circ \overline{K}_n)^*.$$ (11) Hence \widehat{S}_k -factorization of $(K_m \circ \overline{K}_n)^*$ follows from (10) and (11). Remark 2.9. The necessary conditions given in Theorem 2.2 are sufficient in the following cases: - (1) When m=2, $\widehat{S}_k \| ((C_2 \circ \overline{K}_n)^{\bullet} = K_{n,n}^{\bullet})$ if and only if $n \equiv 0 \pmod{k(k-1)}$. Proof follows from Theorem 2.2 and Lemma 2.4. - (2) When m=3, $\widehat{S}_k \| (C_3 \circ \overline{K}_n)^*$, if $k \equiv 0 \pmod{3}$, $n \equiv 0 \pmod{\frac{2k}{3}}(k-1)$, $2n \geq (k-1)^2$ and $\widehat{S}_k \| (C_3 \circ \overline{K}_n)^*$, if $k \equiv 1, 2 \pmod{3}$, $n \equiv 0 \pmod{k(k-1)}$. Proof follows from the result of Ushio [5]. - (3) When m=4, $(C_4 \circ \overline{K}_n)^* \cong K_{2n,2n}^*$. Hence for even $k \geq 2$, $\widehat{S}_k \| (C_4 \circ \overline{K}_n)^*$ if $n \equiv 0 \pmod{\frac{k}{2}(k-1)}$ and for odd $k \geq 3$, $\widehat{S}_k \| (C_4 \circ \overline{K}_n)^*$ if $n \equiv 0 \pmod{k(k-1)}$, by Lemma 2.4. - (4) When $m \geq 5$, $\widehat{S}_k || (C_m \circ \overline{K}_n)^*$ if $n \equiv 0 \pmod{k(k-1)}$, $k \geq 2$. Proof follows from Lemma 2.4. - (5) For all $m \geq 2$, $\widehat{S}_3 || (C_m \circ \overline{K}_n)^*$, if 3 | mn and n is even. *Proof.* Since 3 is a prime, 3|mn implies at least one of m, n is a multiple of 3. Case (i) $m \equiv 0 \pmod{3}$. Let m=3s and n=2r for some positive integer s and r. Let r=1 and hence n=2. For j=1,2,3 and p=0,1,2,...,s-1, we get 6s \widehat{S}_3 -factors F'_{jp} and F''_{jp} of $(C_{3s} \circ \overline{K}_2)^*$ as follows: $$F'_{jp} = \bigoplus_{p=0}^{(s-1)} \{ ((1)^{j+3p}; (1)^{j+3p+1}, (2)^{j+3p+1}),$$ $$((2)^{j+3p}; (1)^{j+3p+m-1}, (2)^{j+3p+m-1}) \},$$ $$F''_{jp} = \bigoplus_{p=0}^{(s-1)} \{ ((1)^{j+3p}; (1)^{j+3p+m-1}, (2)^{j+3p+m-1}),$$ $$((2)^{j+3p}; (1)^{j+3p+1}, (2)^{j+3p+1}) \}$$ where the additions in superscripts are taken modulo m with residues 1,2,3. Thus, when p and j varies the 6s \widehat{S}_3 -factors F'_{jp} and F''_{jp} together comprise an \widehat{S}_3 -factorization of $(C_{3s} \circ \overline{K}_2)^*$. Hence by Lemma 2.3, $\widehat{S}_3 \| ((C_{3s} \circ \overline{K}_{2r})^* \cong (C_{3s} \circ \overline{K}_n)^*)$. Case (ii) $n \equiv 0 \pmod{3}$. Since 3|n and n is even, n=6r for some positive integer r. Then by Lemma 2.4, $\widehat{S}_3||(C_m \circ \overline{K}_n)^*$ for all $m \geq 2$. # 3 Conclusion Theorems 2.6, 2.8 and Note 2.7 show that the necessary conditions given in Theorem 2.1 are sufficient for the existence of an \widehat{S}_k -factorization of $(K_m \circ \overline{K}_n)^*$, if at least one of m, $n \equiv 0 \pmod{k}$. Further, Lemma 2.4 deduce some of the results of Ushio [4], [5] when m = 2, 3. # References - [1] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Elsevier, New York (1976). - [2] P. Hemalatha and A. Muthusamy, \widehat{S}_k -factorization of symmetric Digraphs of Tensor product of Graphs, Ramanujan Math. Soc. Lect. Notes Ser., 7 (2008), 233-236. - [3] K. Ushio, G-designs and related designs, Discrete Math., 116 (1993), 299-311. - [4] K. Ushio, Star-factorization of symmetric complete bipartite digraphs, Discrete Math., 167/168 (1997), 593-596. - [5] K. Ushio, \hat{S}_k -factorization of symmetric complete tripartite digraphs, Discrete Math., 197/198 (1999), 791-797. - [6] K. Ushio, Star-factorization of symmetric complete bipartite multidigraphs, Discrete Math., 215 (2000), 293-297. - [7] H. Wang, On K_{1,k}-factorization of complete bipartite graph, Discrete Math., 126 (1994),359-364.