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Abstract

In this paper we focus our study on finding necessary and suffi-
cient conditions required for the existence of an S; -factorization of
(Km0 Kpn)* and (Cm 0 Ky)". In particular, we show that the neces-
sary conditions for the existence of an S.-factorization of (KmoKn)®
are sufficient except when noneof m, nis a mu]tigle of k. In fact our
results deduce some of the results of Ushio on Si-factorizations of
complete bipartite and tripartite symmetric digraphs.
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1 Introduction

Let Cpn, K and K, denote a cycle, a complete graph and the complement
of a complete graph on m vertices respectively. For a graph G, the symmet-
ric digraph of G denoted by G*, is obtained by replacing each edge of G by
a pair of symmetric arcs and rG denotes r disjoint copies of G. The graph
with vertex set V having partite sets Vi, V,, ..., Vi, such that Vil = ny
and edge set £ = {uvlu € Vi, v €V}, and i,j € {1,2,...,m} with i # j}
is called complete m-partite graph and is denoted by Kn, nz,...inm -
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The directed star Rl,k_l having vertices in two partite sets V; and V;
of the m - partite digraph with all arcs having tail at the center and head
at the end vertices is denoted by Sk.
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For a digraph 8, the spanning subdigraph F q£ G is called an S -factor,

if each component of F is isomorphic to Si. If G can be expressed as an
-~ P~ -

arc - disjoint sum of Sk- factors, then we say t_l_l’at Si-factorizes G or G has

an Sk- factorization and we denote it by Sk||G. The wreath product of two

graphs G and H denoted by G o H, has the vertex set V(G) x V(H) and

the edge set E(G o H) = {(a,b)(c, d)|ac € E(G) or a = c and bd € E(H)}.

For the definitions and notations not defined here we refer [1].

The existence of the star factorization of the complete bipartite and
tripartite digraphs have been studied by many authors [4), (5],[6],(7] due to
its wide range of applications in many fields. Ushio [3] gives an applica-
tion of K i - factorization of complete bipartite graphs to combinatorial
multiple-valued index-file organisation schemes of order two in database
management systems. Recently, Ushio [4], (5] has obtained some necessary
or sufficient conditions for the existence of an S - factorization of complete
bipartite and tripartite symmetric digraphs, but the same is unknown for
the m-partite symmetric digraphs. Recently, the authors [2] have obtained
some necessary conditions and some sufficient conditions for the existence
of Si-factorization of symmetric digraphs of tensor product of graphs.

In this paper, we have obtained some necessary conditions and some
sufficient conditions for the existence of an Sk-factorization of K3, .., n.
and (Cm 0 Kv.)*. Infact, our results deduce some results of Ushio [4, 5] on
Sy-factorizations of K, and K3, ..
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2 Main Results

2.1 Necessary Conditions

In this section we establish some necessary conditions for the existence of
an Si-factorization in K .. . and (CmoK,)".

Theorem 2.1. IfK; .. . hasan Si- Jfactorization, then
(6) m=n2=..=nyn=n=0(mod k—1)
(b) mn = 0(mod k)
(c) (m=1)n>(k-1)>2

Proof. Assume that K . . hasan Si-factorization. Let r be the to-

tal number of S-factors, s be the number of components of each Si-factor
and b be the total number of components in the factorization. By apply-
ing counting technique, we have s = Mtfatedng § - ;—ﬁ%ﬁiﬂ and

r=2= ﬁ(&‘ﬁfg‘—"’) For a vertex z € V;, i = 1,2,...,m, let ¢(z)
and £(z) denote number of components having z as a center and an end
vertex respectively. Then, r = ¢(z) + #(z), c(z) = f:—_(? = QE,}'_‘I‘ﬂ
t(z) = d™(z) = ¥7L, ;4 From the above equalities we have r =
= ;";1.:'7“ n;, for i = 1,2,..,m and hence ny = ng = ... = n,, =
say. Now since |V;| =n for all i = 1,2,...,m, it is clear that Ky nanm
(Km o Kyn)*. Therefore,

R s

_k(m-1)n
i —
and ‘ mn

8= T. (1)

By the definition of §k, number of arcs from the vertex = € V; to V; must
be a multiple of k¥ — 1. Therefore

n=0(mod k - 1). (2)

This proves (a). Again by (1), mn = 0(mod k). This proves (b). To complete
the proof it remains to show that (m — 1)n > (k — 1)2. Among the s
components of an §k-factor, let s;; be the number of components with
center vertices at V; and end vertices at V. Then, 0 < %5 <223 W.l o
g. n can be written as,

n=2812+(k—1)sa1 + 813+ (k — 1)831 + ... + 81mm + (k = 1)8pn3.
i.e.';‘sm +813+ ..+ Im=n~— (I::n— 1)(s21 + 831 + ... + 8m1).
Y= sy =(k-1p—-(k-1) 2 =280
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for some integer p > 1 (using equation (2)). Hence,

2811' =(k- 1)(]7-' Zsjl) =(k—1)q,

i=2 i=2

for some ¢ > 0. In general,

m
> siy=(k=1), (3)
j=1j#i
fori=1,2,...,m. But
m
Y sys !l;c.:_l_l)" i=1,2,..,m. )

j=1,ii

From the equations (3) and (4) we have, (k—1)q < imk—:li)ﬁ ie., (m—1)n>
(k — 1)2. Hence (c) holds. (]

Theorem 2.2. If (Crm 0 K,)* has an Si.—factorization, then
(a) mn = 0(mod k)
(b) n=0(mod k — 1)
(c) 2n 3 (k- 1)2.

Proof. Let Vi, Va, ..., Vin be the m~ partite sets of the vertex set of (Cy, o
K.)*. Assume that (Cm o Ky)" has an Si-factorization. Let r be the
number of Sk-fact»ors 8 be the number of components in each Sk-factor
and b be the total number of components in the Si-factorization. We know
that (Crn 0 Kn)* has mn vertices and 2mn? arcs. Therefore, s = ma,
This proves (a). By the definition of Sk, the set of arcs from the vertex
z € V; to V; must be exhausted by a collection of Si’s with center at z.
Therefore the number of arcs from z to V; must be a multiple of k — 1.
i.e.,, n = 0(mod k — 1). This proves (b). Among the s components of each
Si-factor, let 8i; be the number of components having center at V; and end
vertices are in V. Therefore, 0 < s;; < £25.

ie.,
i+

2n_ ..
2 8ij < -k—:-i, L= 1,2, ey M (5)

=il
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W. L o. g. n can be written as,

n = 819+ (k—1)s31 + 81m + (k-1)sm1
ie,812+81m = n—(k—=1)(s21+ 5m1)
(k—1)g - (k~1)(s21 + 8m1) (using (b))
(k= 1)(g— (s21 + 8m1))
= (k-1)p, for some p > 0.

In general,
it1
Z S = (k - l)p’
J=i-Ll,i#j
i =1,2,...,m. Using this value in (5), we get (k — 1)p < 22 ie, 2n >
(k- 1)2)p ie., 2n > (k — 1)2 This proves (c). O

Notation: We denote an Sj with center vertex u and end vertices vy, vs, ..
vk-1 by (u;v1,v2, ..., vk-1).

2.2 Sufficient conditions

Lemma 2.3. If (CmoKp,)* and (Km oK,)* have Si-factorizations, then
s0 does (Crn © Kop)* and (Km o K,n)*, for every positive integer s. (]

Lemma 2.4. If n = 0(mod k(k—1)) then §k||(Cm oK,)*, for allm, k > 2.

Proof. Let n = k(k — 1)s. If s = 1, then n = k(k — 1). Let the m -
partite sets of (c oK,)* beVl—{ll 2L, (k(k— 1)1}, Vo = {12,22, ..,
(k(k-1))%}, ..., Vm = {1™,2™, .., (k(k- 1))"‘} Now for j =0,1,2,...,k—1,
we can construct k2 S - fam:ors Py, Foj, ..., Fyj of (Crn o K,)* as follows:

(k=2)
D G+ D5 (k=G +9) + 172,
1=0

((k=1)G +8)+2)% .., (k= 1) + i+ 1)),
(((k=1)(k=1+7)+i+1)%((k=1)(k—1+j+14) + 1)},
(k=1)(k=147+8)+2)3 ..., (k- 1)k +7+1)%),
((k=1)(k=2+7)+i+1)% (k= 1)(k -2+ +3)+ 1)%
((k=1)(k=2+5+8)+2)% ..., ((k— 1)k — 14 +4))%),

(((k =Dk=(m-1+7)+i+1)™((k-1)(E+1)+1)},

((k=1)GE+1)+2),..., (k- 1) + 2))1)},
i=0,1,2,..,(k-1)
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(k-2)
B = @{(k-1)+i+1)}((k- DG +i+1)+1)3,
=0
(k=G +i+1)+2)%,..,((k=1)(F +i+2))?),
(k= 1)j+i+ % ((k-1)(G+i+1)+1)°,
((k=1)(G+i+1)+2), ..., (k- 1) +i+2))*),
((k=1)j +8+1)%((k - 1)(G+i+1)+1)%
(k=1 +i+1)+2)% .., (k= 1) +i+2))Y),

(k= 1)j +i+1)™ (k- 1)(E+2) + 1)},
((k=1)GE+2)+2)%, ..., (k- 1)(E+3))},
§=0,1,2,..,(k-1)

(k-2)

B = @{ek-1D)+i+)5((k-1G+i+2)+1)
=0

(k= 1)(G +i+2)+2)% ..., (k- 1) +i+3))%),
(k= D(k+1+7)+i+1)%5((k—1)(k+3+7+1i)+1)%,
(k= 1)k +3+7+3)+2)°..(k— 1)k +4+5+i))®),
(k= 1((k+2+3) +i+1)%((k=1)(k+4+7+1i)+ 1),
(k= 1)(k+4+37+3)+2)% ... (k= 1)(k+5+7+))*),

(k= 1)(k + (m — 1) + §) + i+ 1)™ (k- 1) + 3) + 1)},
(k- 1)E+3)+2), .., (k- 1)E+ 4},
§=0,1,2,..,(k-1)

(k-2)

Fy = @{Bk-1)+i+1)((k=1)0G+i+3)+1),
=0

((k=1)G +i+3)+2)% ... (k= 1)(F +i+4))3),
(((k=1)(k+2+7)+i+ 1% ((k—1)(k+5+7+13)+1)%
(k= 1)(k+5+37+1) +2)% ..., ((k = 1)(k + 6 + j +1))*),
(k= 1)((k+4+35) +i+1)3%((k=1)(k+ 745+ +1)%,
(k= 1)(k+T+7+i)+2)% .. (k- 1)(k +8+j +14)*),

Z(.(k —1)(k+2m—-2)+j)+i+1)™((k-1)(i+4)+ 1),

((k - 1) +4) +2)%, .., ((k - 1)(i+5))},
§=0,1,2,..,(k—1)
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(k-2)
Fy = @{k-1)(k-1)+i+1)5((k-1)(k =1+ +i)+ 1),
=0

((k=1)(k =145+ +2P..,((k=1)(k+j+19))?),

(k= 1)@k = 2+5) +i+1)%((k— 1)(2k — 3+ +1) + 1)3,

((k=1)(2k =3+ 7 +14)+2)%,..., ((k - 1)(2k — 2+ j +1))?),

(k= 1)((2k — 4+ 7) + i + 1)% ((k — 1)(2k - 5 + j +1) + 1)%,

(k=1)2k =5+ +4) +2)%, ..., ((k - 1)(2k — 4 + j +1i)%),

(((k = 1)(2(k - (m = 1)) + 4) +4 + 1)™; ((k - 1)(§ + ) + 1)},
((k=1)G+3)+2)} ., (k= DG +i+ 1))},
i=0,1,2,..,(k-1),
where the additions are taken modulo k(k—1) with residues 1,2, ..., k(k—1).
Clearly each Fp;, 1 < p< k,0<j<k-1lisan Sk-factor When p and
j varies we have k2 Sk-factors of (Cm o 7,‘(,,_1)) Due to symmetry of

arcs, we have another k? S;-factors as above. All these 2k2 Si-factors
together comprise an S-factorization of (Cmo K, k(k-1))*. By Lemma 2.3,

Sk”(c OK,k(k 1))' and hence Sk”(C o Kn)*. O

Theorem 2.5. If n.=0(mod k — 1), then S¢||(Kx o K.,)".

Proof. Let n = (k—1)s. If s =1, then n = k — 1. Let the & - partite sets
of (K;,oK,.) be Vi = {11,2%, .., (k- 1)}, Vo = {12,22, .., (k — 1)}, ...

Vi = {1%,2,..., (k - 1)*}. We now construct k(k — 1) Si-factors F,r=
1,2,...k,p=0,1,2,..,k — 2 of (Kx o Ki_;)* having the vertices of Vi,
r€{1,2,..,k} asits center vertices as follows:

Fpr = {((i+p+1)r; 1(i+r+l), 2(i+r+1), . (k_]_)(i+r+l)), i=0,1,2,..,k-2},

where the additions in the superscripts are taken modulo k with residues
1,2,...,k and (i + p + 1) is taken modulo k — 1 with residues 1,2,...,k — 1.
Arc - dmjomt sum of Fy, r =1,2,..,k,p=10,1,2,...,k -2 glvw a.ll the

Sk-factors of (Kk oKj_ 1) All these k(k-1) Sk, -fax:tors of (Kx o K. 1)*
comprise an 8. -factorization of (Kr o Ki-1)*. Therefore, by Lemma, 2.3,
Sk" ( Kk OR(k 1),) (Kk O?ﬂ)‘) D
Theorem 2.8. S¢||(K,x 0 K,)* if and only if n = 0(mod k ~ 1).

Proof Assume that n = O(mod k — 1). Let n = r(k — 1). If » = 1, then
n =k — 1. Therefore by the definition of wreath product we have,

(K 0 Ki1)” 2 s(Ky 0 Ki-1)" © (K, 0 Kiryy)™- (6)
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Case (i) s even.

Then (X, O-I?k(k—l)_): = @i21 (F: o Ky(k-1))*, where F; is a 1-factor
c:f K,. Now each (F; o Ky(k—1))* = §Ki(k-1)k(k-1)- But by Lemma 2.4,
Sk || Kk(k—1),k(k-1) and hence
Sell (8 K(k-1)k(k-1) 2 (Fi 0 K(x-1))*) - Therefore,

s—-1
Sl P(F: o Rige-1))"- (M
t=1
Case (ii) s odd.
— =1 —
Then (K, 0 Ki(i-1))* = ;3 (Hi o Ki(k-1))*, where H; is a Hamilton
cycle of K,. By Lemma 2.4 we have, S||(H; 0 Kx(k-1))" and hence

‘_;_l'
Skl (@(H, o Rrgeey))® = (K, o'}?k(k_l))-) . (8)

=1

(7) and (8) shows that Si)|(K, o Kik-1)* for all s. By Theorem 2.5 we
have, R .

Sk||s(Kk o Kr-1)". 9)
Hence Si-factorization of (K,k 0 'I?k;l)" follows from (6), (7), (8) and (9).
Again by Lemma 2.3, Sill(Ks 0 Krk-1))" = (Kuk © K)"). Necessity
follows from Theorem 2.1. O

Note 2.7. If n = 0(mod k), then by Theorem 2.1, n = 0(mod k(k — 1)).
The Si-factorization of (K, o K,.)* follows from the proof of cases (i) and
(ii) of Theorem 2.6.

Theorem 2.8. Suppose m is a prime and k is not a multiple of m, then
Sill(Km oK) if and only if n = 0(mod k(k — 1)).

Proof. Assume that S;||(KmoKy,)*. If m is a prime and  is not a multiple
of m, then (m, k) = 1. Then by Theorem 2.1, n = O(mod k(k — 1)). Hence

the necessity follows.
Conversely, assume that n = 0(mod k(k — 1)). Now,

2l = e e _
KnoK,) = @;5 (HioK,)*, ifmisodd; 10
(Km0 ) { @ (FoK,)", ifmiseven (10)

where H; and F; are respectively a Hamilton cycle and a 1-factor of Kr,.
By Lemma 2.4,

Skll(H: o Kn)* and Si||(Fi 0 Kyn)*. (11)
Hence §k-factoriza.tion of (K o Ky,)* follows from (10) and (11). (]
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Remark 2.9. The necessary conditions given in Theorem 2.2 are sufficient
in the following cases:

(1) When rr; = 2, S|((C2 oK,) = K2 n) if and only if n = 0(mod
k(k - 1)).

Proof follows from Theorem 2.2 and Lemma 2.4.

(2) When m = 3, 5;||(Cs o??,,)*, if k = 0(mod 3), n = O(mod % (k- 1)),
2n > (k—1)% and Sil[(Cs o Kn)*, if k = 1, 2(mod 3), n = O(mod
k(k —1)).

Proof follows from the result of Ushio [5].

(3) When m = ¢4, (C4 0 K,,)* = K3, 5,. Hence for even k > 2, Sill(Cy 0
Kp)" if n = O(mod ¥ (k — 1)) and for odd k > 3, 5¢||(Cs o K)" if
n = O(mod k(k — 1)), by Lemma 2.4.

(4) When m > 5, 5cf|(Cm 0 Kn)* if n = O(mod k(k - 1)), k> 2.
Proof follows from Lemma 2.4.

(5) For all m > 2, S3/|(Cpm 0 Kn)*, if 3lmn and n is even.

Proof. Since 3 is a prime, 3|mn implies at least one of m,n is a
multiple of 3.

Case (i) m = 0(mod 3).

Let m = 3s and n = 2r for some positive mteger sand7r. Let r=1
and hence n = 2. For j = 1,2,3 and p = 0,1,2,...,8 — 1, we get 63
Ss-factors F}, and F}; of (Cs, o K3)* as follows:

(s-1)

F, = @{((1)j+3p;(1)j+3p+1,(2),-+3p+1)’
=0
p ((2)j+3p; (1)j+3p+m—l, (2)j+3p+m-l)}’
(s-1)

Fy, = @{((1)j+3}’;(1)j+3p+m—1,(2)j+3p+m-1)’

p=0
((2)j+3p. (1)j+3p+1 (2)j+3p+1)}

where the additions in superscripts are taken modulo m with residues
1,2, 3. Thus, when P and j varies the 6s Ss-factors F’ and F}, to-
gether comprise an Ss-factonza.tlon of (C3, 0 K3)*. Hence by Lemma
23, Sa"((Cs, OKQ,»)" 2 (Cyy0 Kn) ).

Case (ii) n = 0(mod 3).

Since 3|n and n is even, n = 6r for some positive integer 7. Then by
Lemma 2.4, Sau(Cmo'I? )* for allm > 2. O
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3 Conclusion

Theorems 2.6, 2.8 and Note 2.7 show that the necessary conditions given
in Theorem 2.1 are sufficient for the existence of an Sy -factorization of
(KmoKy)*, if at least one of m, n = 0(mod k). Further, Lemma 2.4 deduce
some of the results of Ushio [4], [5] when m = 2,3.
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