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Abstract

Let G = (V, E) be a connected graph with domination number
7 2 2. In this paper we discuss the construction of a visual cryp-
tography scheme for the mindom access structure ['p(G) with basis
consisting of all y-sets of G. We prove that the access structure
T'p(G) is & (2,n)-threshold access structure if and only if n is even
and G = K, — M, where M is a perfect matching in K,. Further the
(k,n)-VCS with k < n can be realized s a I'p(G)-VCS if and only
if k=2 and n is even. We also construct I'p(G)-VCS for several
classes of graphs such as complete bipartite graphs, cycle Cl,, and
Kn — Cn and we have achieved substantial reduction in the pixel
expansion, when compared to the VCS constructed by using other
known methods.
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1 Introduction

A visual cryptography scheme (VCS) for a set P of n participants is a
method to encode a secret image, which consists of a collection of black and
white pixels, into n shadow images called shares, where each participant in
P receives one share. Certain qualified subsets of P can visually recover
the secret image by xeroxing their shares onto transparencies and stacking
them, but any forbidden set of participants have no information about the
secret image.

This cryptographic paradigm was introduced by Naor and Shamir [9].
They analysed the case of (k,n)-threshold visual cryptography scheme
((k,n)-VCS), where 2 < k < =, for black and white images. In a (k,n)-VCS
a subset S of P is a qualified set if and only if |S| > k. Another construction
principle for a (k,n)-VCS is given in Droste [5].

Naor and Shamir’s (k, n)-VCS has been extended to general access struc-
tures by Ateniese et al. [1, 2]. Let P = {1,2,...,n} be a set of participants.
Let 2P denote the set of all subsets of P. Let Q C 2P and F C 2 where
QN F = 0. Then the pair I = (Q, F) is called an access structure on P.
The elements of Q are called qualified sets and the elements of F' are called
forbidden sets. If further Q is monotone increasing and F' is monotone de-
creasing and QUF = 27, then I is said to be a strong access structure. Let
To={AeQ: A ¢Q forall A’ C A} be the set of all minimal qualified
subsets of P. The set I'g is called the basis for the strong access structure
and the strong access structure is completely determined by its basis.

Let S be an n x m boolean matrix and X C P = {1,2,...,n} and
ZC M ={1,2,...,m}. Then S{X]{Z] denotes the | X|x|Z| matrix obtained
from S by considering its restriction to rows corresponding to the elements
in X and columns corresponding to the elements in Z. Also S[X] denotes the
| X| x m matrix obtained from S by considering only the rows corresponding
to the elements in X. For X C P, the vector obtained by applying the
boolean OR operation to the rows of S corresponding to the elements in X
is denoted by Sx. Also the Hamming weight of the row vector Sx, which is
the number of ones in the vector Sx, is denoted by w(Sx). If A and B are
n x my and n X my matrices, then the n x (m; + mz) matrix obtained by
concatenating the columns of A and B is denoted by {[Ao B]. If A and B
are n; X m and ng X m matrices, then the (n; + ng) x (m) matrix obtained

by concatenating the rows of A and B is denoted by g . A VCS can

be defined in terms of two n X m boolean matrices S° and S*, called basis
matrices.

Definition 1.1. [1] Let T' = (Q, F) be an access structure on a set P of n
participants. A (T',m)-VCS is realized using two n x m boolean matrices
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5% and §? called basis matrices, if there exist a positive real number & and
a set of thresholds {¢x|X € Q} satisfying the following two conditions.

1. Any qualified set X = {i1,42...,4,} € Q can recover the image by
stacking their transparencies. Formally w(S%) < tx ~ am, whereas
w(S%) > tx.

2. Any forbidden set X = {i1,...,i4} € F has no information on the
shared image. Formally, the two g x m matrices S°[X] and §![X] are
equal up to a column permutation.

A VCS with basis matrices S° and S! is used to encrypt an image as
follows. Let m be a random permutation of {1,2,...,m}. If a pixel in
the secret image is white (resp. black), then 7 is applied to the columns
of % (resp.S!) and row i of the permuted matrix forms the share for the
it* participant. In this way every pixel of the image is encrypted and
distributed into n shares. The first property is related to the contrast
of the image and the second property is called security. The number o
is called the relative contrast, and m is the pizel ezpansion. The pixel
expansion is the number of subpixels used to encode one pixel of the secret
image in a share and the relative contrast measures the difference in grey
level between a black pixel and a white pixel in the reconstructed image,
which gives a measure of the clarity with which the image becomes visible.
The basic problem is to maximize the relative contrast and minimize the
pixel expansion. The relative contrast and the pixel expansion cannot be
optimized simultaneously. Thus, in general, optimality with respect to
relative contrast and optimality with respect to pixel expansion cannot be
achieved by the same scheme.

We need the following theorems.

Theorem 1.2. [9] There ezists a (k,k)-VCS with m = 2%~ gnd o =
1/2%=1. The basis matrices S° and S* for this VCS have the following
properties

(i) w(SY) - w(SY) =1if X = {1,2,...k},

(ii) The matrices S°[X] and S*[X] are equal up to column permutation
for any proper subset X C {1,2,...k}.

Further for any (k, k)-VCS, m > 2*~! and a < T
The following two theorems give the existence of a VCS for any strong
access structure.

Theorem 1.3. (1] Let T = (Q, F) be a strong access structure and let Z M
be the family of all mazimal forbidden sets in F. Then there exists a VCS
for T withm =22m1-1 o =1/m andtx =m forany X € Q.
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Theorem 1.4, [3] Let T = (Q, F) be a strong access structure on a set P
of n participants with basis o = {Bi, By, ..., Br}. Let 0 be a permutation
on {1,2,...,k}. Then there erists a strong VCS with pizel ezpansion M,
and tx = M, for any X € Q, where M, is defined as follows:

]
3> 2|Bei-nUBon| -2 fek=201>1
Ma — i?l
E 2|Bo(a:-|)U3o(m|—2 + 2|Bc(21+l)|_1 ifk =2+1,1>0.

i=1

The method used in Theorem 1.3 for constructing the VCS is called
cumulative array method. The formula for the pixel expansion M, given
in Theorem 1.4 depends on the choice of the permutation o.

Ateniese et al. [1] investigated access structures based on graphs. Given
a graph G = (V, E) with |V| = n, they considered the strong access struc-
ture whose basis consists of the edge set E. Thus a subset X of V is qualified
if the induced subgraph G[X] contains at least one edge of G. A few basic
results for the VCS of this access structure are given in [1]. Dehkordi and
Cheragi [6] obtained further results on the VCS of the above strong access
structure for several classes of graphs. In this paper we consider the ac-
cess structure arising from the dominating sets of a graph G = (V, E) and
discuss the problem of constructing a VCS for such access structures. For
basic terminology in graphs we refer to Chartrand and Lesniak. [4].

Definition 1.5. Let G = (V, E) be a graph. A subset S of V' is called a
dominating set of G if every vertex in V — S is adjacent to a vertex in S.
The minimum cardinality of a dominating set of G is called the domination
number of G and is denoted by v(G) or simply . Any dominating set § of
G with | S| = v is called a y-set of G.

For an excellent treatment of the fundamentals of domination, we refer
to the book by Haynes et al. [8].

Definition 1.6. Let G = (V,E) be a graph. Let SC V and u € §. We
say that a vertex v € V is a private neighbor of u with respect to S if
N[v)n S = {u} where N[v] is the closed neighborhood of v, which consists
of v and all vertices adjacent to v.

Theorem 1.7. [7] A dominating set S of a graph G is a minimal dominat-
ing set if and only if every vertez u € S has at least one private neighbor.

‘We observe that if S is a minimal dominating set and if v is an isolated
vertex in the induced subgraph G[S], then u is its own private neighbor. If
u is not an isolated vertex in G[S], then u has a private neighborve V - S.
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Definition 1.8. For any graph G = (V, E), the graph H obtained from G
by adding a new vertex w; for each v; € V and joining w; and v; is called
the corona of G and is denoted by G o K.

2 Main Results

Let G = (V, E) be a graph with 7(G) > 2. Let Q = {X €V : X contains
a y-set of G} and let F =2V - Q. Clearly I' = (Q, F) is a strong access
structure on V' and the basis for Tis given by o = {X C V : X is a y-set
of G}. The set of all maximal forbidden sets for this access structure is
given by Zps = {S C V': S does not contain a y-set and S U {v} contains
a y-set for all v € V — S}. This access structure I' = (Q, F) is called the
mindom-access structure of the graph G and is denoted by I'p(G). We
proceed to construct & VCS for this access structure for several families of
graphs. We start with an example.

Example 2.1. Consider the graph G = (V, E) given in Figure 1, which is
the cycle on 5 vertices. Clearly v(G) = 2 and the 4- sets of G are {1,3},
{1,4}, {2,4}, {2,5}, {3,5}. The set of maximal forbidden sets for this ac-
cess structure is given by Zy = {{1,2}, {2,3},{8,4},{4,5},{5,1}} .Hence
by Theorem 1.3 the VCS constructed by using the cumulative array method
for this access structure has m = 212¥|-1 = 16 and o = 15+ However, the
following matrices S° and S! are basis matrices for a VCS for this access
structure withm =6 and a = -‘}, thus giving a substantial reduction in the
pixel expansion.

1
5 2
G:
3
Fig.1
001111 101110
010111 1 00111
S°=1011011}|,8=|110011
011101 111001
011110 111100
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Clearly S°[X] and S*[X] are equal up to column permutation for all
X € F. Also w(S%) = 6 and w(S%) = 5 for all X € Q. Hence a = } and
m = 6. Any pixel of an original image is encoded on each of the five shares
as six subpixels. Figure 2 shows the representation of a black pixel and a
white pixel of the original image in each of the five shares.

Encoding of a white pixel

White Pixel
0 el bl A O
Black pixel Encoding of a black pixel
r R R ML e
Fig.2

For the secret image given in Figure 3, the five shares are given in Figure
4. The reconstructed image by the superimposition of shares {1, 3}, {2,4},
{3,5}, {1,2} and {1, 5} are given in Figure 5.

DOMINATION

Figure 3

Share 1

Share 2

Share 3

Share 4

Share 5
Figure 4
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Superimposition of shares 1 and 3

Superimposition of shares 2 and 4

Superimposition of shares 3 and 5

Superimposition of shares 1 and 2

Superimposition of shares 1 and 5
Figure 5

We observe that this VCS is different from the usual (2,5)-VCS, since a
subset X with |X| = 2 cannot recover the image if X is not a dominating
set of G. Thus the participants 1 and 2 cannot recover the secret image by
superimposing their shares.

Example 2.2. Consider the graph G = C7 = (1,2,3,4,5,6,7,1), the cycle
on 7 vertices. Then ¥(G) = 3. Also the set of all y-sets of G is given by 'y =
{{1,2,5}, {1,3,5}, {1,3,6}, {1,4,5}, {1,4,6} ,{1,4,7}, {2,3,6} {2,4,5},
{2,4,7},{2,5,6}, {2,5,7}, {8,4, 7}, {3,5,7}, {3,6, 7}} . The set of all max-
imal forbidden sets are given by Zy = {{1,2,3,4},{2,3,4,5},{3,4,5,6},
{4,5,6,7}, {5,6,7,1},{6,7,1,2},{7,1,2, 3} }. The basis matrices S° and S!
for a I' p(G)-VCS are given below.

[0 01 00111
00001111
0 0011101
=101 011100
01111000
01110010
_01100011J
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Sl=

—=-—-0 000
O M- = —00C0
OO M=M= OO
COOC+HEFHLHKEO
= OOOOKr
= OOOO MM
OO OO = =
i e el e

For this VCS, we have m =8 and a = 31-.

We observe that for the VCS obtained by using the CA method, the
pixel expansion m = 2!Z4!-! = 64. Further the cardinality of the union of
any two sets in g is at least 4. Hence the pixel expansion M, for the VCS
7

obtained by using Theorem 1.4 is given by M, = Y 9|Botai-1)UBo(an| -2 >
i=1

28. Thus we have a substantial improvement in the pixel expansion.

Example 2.3. Let n > 4 be an even integer and let G = K,, — M, where
M is a perfect matching in K,. Then v(G) = 2 and any subset S of V(G)
with |S] = 2 is a minimum dominating set of G. Hence any I'p(G)-VCS is
the same as (2, n)-VCS.

We observe that for any integer k > 2, the (k, k)-VCS is the I'p(G)-
VCS where G = Ky, the empty graph on k vertices. If k¥ < n, then the
(k,n)-VCS can be realized as a I'p(G)-VCS if and only if k = 2 and n is
even, as shown in the following two Theorems.

Theorem 2.4. Let G = (V,E) be a graph of order n with v(G) = 2. Then
any subset S of V with |S| = 2 is a dominating set of G if and only if n is
even and G = K, — M where M is a perfect matching in K,.

Proof. Since v(G) = 2, we have A(G) < n—2.1f n = 2, then G = K,
= Ky — M. Suppose n > 3. Let u € V and select v € V such that v is
nonadjacent with u. Let z € V — {u,v}. Then S = {z,v} is a dominating
set of G and since u is nonadjacent to v, it follows that u is adjacent to
z. Thus deg u = n — 2. Thus G is (n — 2)-regular, so that n is even
and G = K, — M where M is a perfect matching in K,,. The converse is
obvious. O

Corollary 2.5. The (2,n)-VCS where n is odd, cannot be realized as a
I'p(G)-VCS of a graph G.

Theorem 2.6. There is no graph G of order n such that v(G) = k > 3,
k < n and every subset S of V with |S| = k is a dominating set of G.
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Proof. Let G = (V, E) be a graph of order n with 7(G) = k, where 3 < k <
n. Suppose every subset S of V' with |S| = k& is a dominating set of G. If G
has an isolated vertex v, then any subset S of V with |S| = kandv ¢ S, is
not a dominating set of G. Hence it follows that G has no isolated vertices.
Choose a subset S = {v1,v3..., %} such that the induced subgraph G[9)]
has no isolated vertices and v;,vx are not adjacent in G. Since § is a
minimum dominating set of G and (S) has no isolated vertices, it follows
from Theorem 1.7 that every v; € S has a private neighbor w; € V — S.
Thus w; is adjacent to v; and is non-adjacent to every vertex in S — {v:}.
Now S; = {v1, w1, ws,...,we—1} is not & dominating set of G, since vy is
not adjacent to any vertex in S;, a contradiction. o

Corollary 2.7. Any (k,n)-VCS with k > 3 cannot be realized as a T'p(G)-
VCS of a graph G.

Theorem 2.8. Let G be a graph with verter set V = {1,2...,n}. Let
Y(G) = 2 and let X1,Xa,....,Xa C V be the set of all y-sets of G. Then
there ezists a VCS for the access structure Up(G) with m = d27~1 and
a= g

Proof. Let B® and B! be the basis matrices for & (,)-VCS. Then B° and
B! are vy x 27~! matrices. Let X; = {i1,4s,...,i,}. Let S?(resp.S!) be the
n x 27~1 matrix whose i* row is the j** row of B%(resp.B!) and each of
the remaining rows is a vector all of whose entries are zero. It follows from
Theorem 1.2 that if X C V and X 2 Xi, then w(S}, ) — w(S%,) =1 and
for any subset X that does not contain X;, the matrices S} X] and S?[X]
are equal up to a column permutation.

Now let S° = [S{0S00.--05J] and §' =[S} 05} o--- 0 S1]. We claim
that SO and S! are the basis matrices of a VCS for the access structure
To(G).

Let X C V and X € F. Then X does not contain any X;, i = 1,...d.
Hence SP[X] and S}[X] are equal up to column permutation for each i and
so S°[X] and S?[X] are also equal up to a column permutation. Now let
X € Q. Then X contains at least one X;, and hence w(Sk) — w(5%) >
w(Sh) - w(S%,) = 1.

Hence S° and S* are the basis matrices of a VCS for the access structure
I'p(G) with pixel expansion m = d27~! and relative contrast o = zi-r.

Corollary 2.9. For the graph G = Cj,, there erists a L'p(G)-VCS with
m=3.2""1 and a = z5h=.

Proof. Clearly ¥(Csa) = n and the number of v-sets in Cs, is 3. Hence
by Theorem 2.8 there exists a (I',m)-VCS for the access structure with
m=3.2"1and a = g5i=. a



Remark 2.10. Let X;, X, and X3 be the y-sets of Cs,,. Then any maximal
forbidden set for the access structure I'p(Csn) is of the form (X1 — {y1})U
(X2 — {y2}) U (X3 — {y3}), where y; € X;. Thus the number of maximal
forbidden sets is n® and hence the pixel expansions for the VCS constructed
by using CA method is 27°-1_ Also since the sets X1, X2, X3 are disjoint,
the pixel expansion M, for the VCS obtained by using Theorem 1.4 is
given by M, = 2272 4 27-1 = (271 1 1)27~1, Thus we have a substantial
improvement in the pixel expansion.

Example 2.11. For the complete bipartite graph G = K, », there exists
a VCS for the I'p(G) access structure with m = 2 and a = . Let X
and Y be the bipartition of K n. Since ¥(Kmn) = 2 and any subset of
the form {z,y} where z € X and y € Y is a y-set of G, it follows that
S§% = [1m4n ©0myn] and St = 10’"22'" ] , where 1,(0,) denotes the

n n
n x 1 vector with all entries one (zero) form the basis matrices of a I'p(G)-
VCS withm =2 and a = ;.

Theorem 2.12. For the graph G = K, — C,, there exists a I'p(G)-VCS
withm=n+1and a= 3i7.

Proof. Let V(K,) = {1,2,...,n}. Let G = K, — E(C,) where C,, is the
cycle (1,2,...,n,1). Clearly 7v(G) = 2. The collection of maximal forbidden
sets Z)s and the basis I for the I p(G)-access structure are given by Zy =
{{1,3},{2,4},...,{n-2,n},{n-1,1},{n,2}} and To = E(Kn) - Zpm. Let
By = {1,3},B; = {2,4}...,Bn_2 = {n —2,n},Ba-1 = {n— 1,1} and
B, = {n,2}. Let N = (n;;) be the n x n matrix defined by

- 0 ifi e Bj
711 otherwise.

Let M = (m;) be the n x n matrix defined by

moo {0 ifi=j
PE11 ifi#g

Let S° = [0 o0 M] and S! = [1 0 N] where 1 and 0 are respectively n x 1
matrices with all entries 1 and 0 respectively. Then S® and S* are nx (n+1)
matrices and every row in S° and S? has exactly two zeros. We claim that
5% and S! are the basis matrices of a I'p(G)-VCS. Let X € Q. Then
{X| > 2 and there exists a y-set Y C X. Hence it follows that S[Y] has
no zero column, so that w(S%) = n + 1. Further w(S%) = n, and hence
w(Sk) — w(S%) = 1. Now let X € F. If |X| = 1, then clearly S°[X] and
S'(X] are equal up to column permutation. If |{X| = 2, then S°[X] has
only one zero column and it follows from the definition of N that §[X]
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also has only one zero column. Hence S°[X] and S![X] are equal up to
column permutation. m]

Remark 2.13. For the access structure I'p(G) where G = K,, — C,, we
have [Zp| = n and hence the pixel expansion for the VCS constructed by
using CA method is given by m = 2"~1. Also || = ﬁ'—‘,:rll —n and the
union of any two sets in I'g has at least 3 elements. Hence if M, is the
pixel expansion for the VCS constructed by using Theorem 1.4, then we
have M, 22&“) = ﬂ"-é—’l)-—n. Clearly M, > n+1 for all n > 6 and
thus for the VCS given in Theorem 2.12, we have substantial improvement
in the pixel expansion.

Theorem 2.14. Let G be any graph of order n and let H = Go Ky. Then
there exists a Tp(H)-VCS, with optimal pizel expansion m = 271,

Proof. Let V(G) = {v1,vs,...,v,} and let u;,us,...,u, be the vertices
adjacent to vy, vy,..., v, respectively. Clearly v(H) = n and To(H) =
{{a},6},...,al} : af € {u;,%:}}. Hence |To| = 2" and

Iy = {{'01,. <o Vi1, Vigl ...vn}U{u1,...u,'_1,u,'+1 ...un} :i=1,2, ...,n}

is the set of maximal forbidden sets. By Theorem 1.3 there exists a VCS
with pixel expansion m = 2"~! and contrast a = 1/2"~1. We now prove
that this pixel expansion m and the relative contrast « are optimum. Let
S0 and S? be the basis matrices of a Lp(H)-VCS. Let X = {v1, v, <13 Un}.
Then X € Q. Let 59 = §°[X] and ST = S'[X]. Since X € Q, w(Six) —
w(.g'B x) 2 1. Let Y be a proper subset X. Then |Y| < n,and Y € F. Hence
§3[Y] = S0[Y] and ST [Y] = S'[Y] are equal up to column permutation.
Thus 5% and 57 are the basis matrices of a (n,n)-VCS and hence by Theo-
rem 1.2 the pixel expansion m of any I'p(H)-VCS is at least 2*~1. and the
relative contrast is at most 1/2"~!. Hence the above VCS is optimal. O

3 Conclusion

In this paper we have investigated the problem of constructing a VCS for
the strong access structure I'p(G) whose basis is the set of all minimum
dominating sets of a given graph G with v(G) > 2. This problem can be
further studied for other families of graphs for which all the v-sets are
known. The problem of constructing a VCS for other access structures
arising from a given graph is another direction for further research.
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