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Abstract

We introduce k-ctrees, which are a natural generalization of trees.
A k-ctree can be constructed by recursion as follows: Any set of k
independent vertices is a k-ctree, and a k-ctree of order n + 1 is
obtained by inserting an (n + 1)*-vertex, and joining it to each of
any k independent vertices in a k-ctree of order n. We obtain basic
properties and characterizations of k-ctrees involving k-degeneracy,
triangle-free properties, and number of edges. Further, we determine
the conditions under which k-ctrees are line, middle, or total graphs.
Finally we pose some open problems, all of them related with the
characterization of k-ctree.

Keywords: k-trees, k-degenerate graph, total graph, line graph,
middle graph, and graph valued function.
2010 Mathematics Subject Classification Number: 05C75.

1 Introduction

All graphs considered here are finite, undirected, without loops and without
multiple edges. We follow the terminology of Harary [3]. Given a graph
G, V(G) and E(G) denote the sets of vertices and edges of G, respectively.
The order of G is the number of vertices of G, and its size is |E(G)|, the
number of its edges. The neighbourhood of a vertex u in G, is the set
consisting of the vertices u; of G which are adjacent to u and each v; is
called neighbouring vertez of u. A subset S of V/(G) is called an independent
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set of G, if no two vertices in S are adjacent in G. A graph G is said to
be n-connected (respectively, n-edge connected), if the removal of any m
vertices (respectively, m edges) from G, (where 0 < m < n), results in
neither a disconnected graph nor a trivial graph.

Multidimensional trees were first introduced by Harary and Palmer
[4). Later, various generalizations of tree-characterization theorems are
developed in a natural way for these multidimensional tree -structures (see,
Dewdney [1], Patil [6]). While trees are usually defined as those graphs
which are connected and acyclic, this class of graphs can be equivalently
defined by the following recursive construction rule: A single vertex is a
tree, and any tree T of order n > 2, can be constructed from a tree T' of
order (n — 1) by inserting an nth - vertex, and joining it to any vertex of
T'. Generalizing this construction rule by allowing the base of the recursive
growth to be a totally disconnected graph of order ¥ (ie., K,) yields a new
class of graphs, which is certainly a new class of higher dimensional trees.
Next, we introduce the definition of these class of graphs.

Definition 1.1. The class of k-ctrees (for k& > 1) is the set of all graphs
that can be obtained by the following recursive construction rule.

1. A totally disconnected graph of order k (ie., Ki) is & k-ctree.

2. To a k-ctree Q' of order n — 1 (where n > k), insert a new nth -
vertex, and join it to any set of k independent vertices of Q'.

In this construction of a k-ctree, the origin K- subgraph is called the
base of k-ctree. According to the recursive definition of k-ctrees, we have

the following facts:
1. 1-ctrees are simply trees.

2. For any k > 3, k-ctrees of order at least (k+3) are non-planar graphs,
because they possess an induced subgraph isomorphic to Kj,3.

2 Basic properties of k-ctrees

Theorem 2.1. A graph G of order p 2> k + 1, is a k-ctree if and only
if V(G) can be labelled vy,v2,v3,...v, so that for each integer i, (where
k+1 < i < p) there exist k distinct unordered labels 41,12, ... ik such that
({viy, Vigs Vigs - - - Viy, ¥i}) = K1,k and deg v = k in ({v1,v2,vs,...vi}).

Roughly speaking, a graph G is a k-ctree of order 2 k + 1 if and only
if G can be reduced to the base (ie., a totally disconnected graph Kj) by
repeated removal of a vertex of degree k.
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Definition 2.2. A vertex v of a graph G is called a star-vertez if all its
neighbouring vertices are independent.

Notice that a graph is triangle-free if and only if each of its vertex is a
star-vertex. The immediate consequence of Theorem 2.1 is the following
result.

Theorem 2.3. A graph G of order > k + 1 is a k-ctree if and only if G
has a star-vertez v of degree k and G — v is a k-ctree.

By repeated application of Theorem 2.3 to k-ctrees we obtain the follow-
ing
corollaries.
Corollary 2.4. Every k-ctree of order p > k has k(p — k) edges.

Corollary 2.5. If G is a k-ctree of order p > 2k + 1, then the set of all
vertices of degree k in G forms an independent set.

Corollary 2.68. If G is a k-ctree of order < 2k + 2, then G is a bipartite
graph.

Corollary 2.7. Every k-ctree G of order p > 2k has §(G) = k. Moreover,
G 1is both k-connected and k-edge connected.

Proof. We prove the result by induction on p. If p = 2k, then by Turan’s
theorem G = K k. If p= 2k + 1, then also G = K} x,;. Hence, the result
is trivial in either case. Assume the result is true for all k-ctrees of order
< n (where n > 2k +1). Let G be a k-ctree of order n 4+ 1. In view of
Theorem 2.3, G contains a star -vertex v of degree k, and G — v is a k-ctree
of order n. Hence, by the inductive hypothesis, 6(G — v) = k, and (G - v)
is both k-connected and k-edge connected. Consequently, the result follows
by the principle of induction. O

Lick and White [5] introduced the concept of n-degenerate graphs. A
graph G is said to be n-degenerate if every subgraph of G has a vertex of
degree at most n. Next, we develop the interrelationships between k-ctrees
and n-degenerate graphs.The following result follows from the recursive
construction of k-ctrees.

Theorem 2.8. Every k-ctree is a k-degenerate, triangle-free graph.

Corollary 2.9. Every k-ctree G of order p > 2k + 1 contains an induced
subgraph isomorphic to Ky x41. Moreover, G has no subgraph isomorphic
to Krytk+1-
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Proof. We prove the result by induction on p. Suppose G is a k-ctree of
order p = 2k + 1. Then G contains k(k + 1) edges, and it is a triangle-
free graph. Therefore by Turan’s theorem G = Ki r41. Assume the result
is true for all k-ctrees of order < p — 1, where p > 2k + 2. Let G be
a k-ctree of order p. By Theorem 2.3, G has a star-vertex v of degree
k, and G — v is a k-ctree. By induction, G — v has an induced subgraph
isomorphic to K k+1. In view of Theorem 2.8, G is k-degenerate. Hence, G
has no subgraph isomorphic to Ki4+1,x+1. However, it contains an induced
subgraph Ki x+1 (m]

3 Characterizations of k-ctrees

Theorem 3.1. A graph G is a k-ctree of order p, where (k+1) < p £
(2k + 1) if and only if G = Ky p—k-

Proof. The proof follows by the repeated application of Theorem 2.3. O

First, we establish two lemmas, to develop one more characterization of
k-ctrees.

Lemma 3.2. Every k-degenerate, triangle-free graph of order p > 2k,
contains at most k(p — k) edges.

Proof. We prove the result by induction on p. Every triangle-free graph
of order p = 2k, contains at most %’ = k? = k(p — k) edges. Assume
that the result is true for all such graphs of order < p. Let G be a k-
degenerate, triangle-free graph of order p. Suppose the result is not true.
Then |E(G)| > k(p — k) = k(p — k — 1) + k. Since G is k-degenerate, it
follows that 6(G) < k. Consequently, there exists a vertex v of degree at
most k in G. Hence, [E(G — v)| > k(p — k — 1). This is a contradiction
to the induction hypothesis that (G — v) has at most k(p — k — 1) edges.
Hence, the result follows by the principle of induction. O

Lemma 3.3. Every k-degenerate, triangle-free graph G of order p > 2k,
and size k(p — k), has 6(G) = k.

Proof. 1If p = 2k, then obviously G = K; x and hence 6(G) = k. If p > 2k,
and G is a k-degenerate, triangle-free graph having k(p — k) edges, then we
prove the result by contradiction. Suppose 6(G) < k. Then there exists a
vertex v of degree < k in G. Moreover, |E(G —v)| > k(p — k — 1). In view
of Lemma 3.2, we have |E(G — v)| < k(p — ¥ — 1). This is a contradiction
to the fact that G — v has at most k(p — k — 1) edges. Hence, 6(G) > k.
Since G is k-degenerate, it follows that 6(G) < k. Thus, 6(G) = k. O
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Theorem 3.4. Let G be a graph of order p > 2k. Then G is a k-ctree if
and only if G is o k-degenerate, triangle-free graph of size k(p-k).

Proof. The necessity follows directly from Corollary 2.4 and Theorem 2.8.
We prove the sufficiency by induction on p. If p = 2k, then G = Ky i and it
is obviously a k-ctree. Next, we assume that any k-degenerate, triangle-free
graph of order m (where 2k < m < p) and size k(m — k) is a k-ctree. Let G
be a k-degenerate, triangle-free graph of order p > 2k and size k(p—k). In
view of Lemma 3.3, §(G) = k. Consequently, there exists a star-vertex v of
degree k in G. By the inductive hypothesis, G — v is a k-ctree. Therefore
by Theorem 2.3, G is a k-ctree. a

Deflnition 3.5. A graph G is a maximal k-degenerate, triangle-free graph
if for every edge e € E(G), either G+e is not k-degenerate or G+e contains
a triangle.

Corollary 3.8. Every k-ctree is a mazimal k-degenerate, triangle-free graph.

4 Applications of k-ctrees to line, middle and
total graphs

Definition 4.1. The line graph L(G) of a graph G is the graph whose
vertex set coincides with the edge set of G and in which two vertices are
adjacent if the corresponding edges are adjacent in G, (see [3]). The nt*
-iterated line graph L™(G) is defined in a natural way as follows:

LY(G) = L(G), and L*(G) = L(L""Y(G)) for n > 2.

In this section, we determine all graphs whose nt"-iterated line graphs
(for n > 1) are k-ctrees. Beineke ([3], p.75) has shown that a graph is
a line graph if and only if it has none of nine specific graphs as induced
subgraphs, and this includes Kj 3.

Theorem 4.2. For any non-trivial graph G, the line graph L(G) is a k-
ctree if and only if when

1. k=1 G=P, (form>2).
2. k=2; G is one of the graphs: 2K,, Py and C,.
3. k>3, G=kK,.

Proof. Suppose L(G) is a k-ctree of order p > k. We discuss three cases
depending on &: .
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Case 1. k= 1.

Then L(G) is a tree. Assume G has a vertex u of degree > 3. Then any
three edges of G incident with u form Kj 3. Consequently, L(G) contains a
triangle K3. This is impossible due to the fact that L(G) is a tree. Hence,
A(G) < 2. This shows that each component of G is either a cycle C,, (for
n > 3) or a path P, (for m > 1). Assume a component of G is a cycle C,,.
Then L(G) has a component isomorphic to C, itself. This is impossible
because L(G) is a tree. Consequently, each component of G must be a
path. In this situation, G cannot contain more than one component, each
of which is a path. Otherwise, L(G) cannot be a tree. Therefore, G must
be a path.

Case 2. k=2,

If p > 5, then it is easy to check that L(G) contains a forbidden subgraph
isomorphic to Kj 3. This proves that p < 4. In this case, L(G) is isomorphic
to one of the graphs: K3, K and Cy. Consequently, G is isomorphic to
one of the graphs: 2K3, P; and Cj.

Case 3. k> 3.

If p > k + 1, then by Theorem 3.1, L(G) contains an induced subgraph
isomorphic to Kj . This is impossible, since k > 3. Therefore, p = k.
Immediately, L(G) = K}, and hence G = kK.

It is easy to prove the converse of all three cases. (]

By repeated application of the above theorem to the iterated line graphs,
we obtain the following result.

Corollary 4.3. For any nontrivial graph G, the nth- iterated line graph
L*(G) (for n 2 2) is a k-ctree if and only if when

1. k=1; G = Ppyn- (form>2)
2. k=2; G is one of the graphs: 2P, 41, Ppys, and Cj.
3. k>3; G=kPpy.

Definition 4.4. The middle graph M(G) of a graph G (introduced in (2]},
is the graph whose vertex set is V(G) U E(G) and two vertices of M(G) are
adjacent if they are adjacent edges of G or one is a vertex and the other is
an edge of G incident with it. The n** -iterated middle graph M™(G), is
defined in the following way:

MYG) = M(G) and M™(G) = M(M"~1(G)) for n > 2.

Definition 4.5. The total graph [3] of G, denoted by T(G) is defined in the
following way. The vertex set of T(G) is V(G) U E(G). Two vertices z,y
in the vertex set of T'(G) are adjacent in T'(G) in case one of the following
holds:
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1. z,y are in V(G) and z is adjacent to y in G.
2. z,y are in E(G) and z,y are adjacent in G.
3. zisin V(G), y is in E(G), and ,y are incident in G.

Finally, we determine all graphs, whose nth-iterated middle graphs (for
n > 1) or total graphs are k-ctrees. Hamada and Yoshimura [2] showed
that for any graph G, M(G) = L(G*), where G+ is the graph obtained
from G by adjoining a pendant edge uu’ at every vertex u of G. In view of
Theorem 4.2, we have the following observations:

When k =1. If L(G*) is a tree then G+ must be a path, which implies
that G is either K, or K.

When k = 2. If L(G*) is a 2-ctree then G* must be isomorphic to 2K,
or P,, which implies that G is either K3 or K.

When k& > 3. There is only one graph G* = kK, whose line graph
L(G*) is a k-ctree, and hence G = K. Since M(G) = L(G*+), the above
discussion proves the following result.

Theorem 4.8. For any nontrivial graph G, the middle graph M (G) isa
k-ctree if and only if when

1. k=1; G is either K| or K,.
2. k=2; G is either K5 or K.
3 k>3 G=K,.

An immediate consequence of the above theorem, are the following
results.

Proposition 1. For any graph G, the total graph T(G) is a k-ctree if and
only if G = K.

Proof. Notice that for any non-trivial graph G, T(G) has a triangle, so the
result follows from Theorem 2.8. a

Corollary 4.7. There is only one graph, whose nt* middle graph (for
n > 2) is a k-ctree for 1 < k < 3. This graph is K.

5 Open problems

We now pose four problems, which all are related with the characterization
of k-ctrees.

1. Let G be a k connected, triangle-free graph with p > 2k vertices, and
6(G) = k with |E(G)| = k(p — k). Then, is G a k-degenerate graph?



2. Let G be a triangle-free graph with p > 2k vertices, k(p — k) edges
and Kk+1,k+1 free. Then, is J(G) =k?

3. Let G be a k-connected, triangle-free graph with p > 2k vertices,
k(p — k) edges and which is & Kgy1,x41 free graph. Then, is G a
k-ctree?

4. Let G be a graph, and let k be the smallest integer for which G is a
maximal k-degenerate, triangle-free graph. Is then G a k-ctree?
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