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Abstract

In this work, we study the structure of the null spaces of matrices associated with
graphs. Qur primary tool is utilizing Schur complements based on certain collec-
tions of independent vertices. This idea is applied in the case of trees, and seems
to represent a unifying theory within the context of the support of the null space.
We extend this idea and apply it to describe the null vectors and corresponding
nullities of certain symmetric matrices associated with cycles.
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1. Introduction

Studying eigenvalues and eigenvectors associated with graphs has long been a
topic of significant interest to both theorists and applied mathematicians (see, for
example, the books [3, 4] or the survey paper [5]).

Our primary objective is to focus on the eigenvectors associated with graphs.
Under various conditions, such as no zero coordinates, we verify interesting prop-
erties on the multiplicities of the corresponding eigenvalues. This idea is not novel
and has been used, to a certain degree, in other works such as [1, 7, 14, 15, 17).
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Here, we consider a unifying approach by utilizing Schur complements, which
seeks to encompass a number of known results along with some new and interest-
ing properties for two families of graphs. It is our hope that these ideas presented
here will continue to produce results on the spectra of graphs. The two families
we concentrate on here are trees and cycles. Both are natural starting points for
investigating spectra of graph type problems, and both have a rich history in this
area, see for instance [2, 8, 12, 14, 15, 17].

We will incorporate the notion of the support of a subspace as a measure of
the “structure” for a subspace (see also [14]), which is formally defined in Section
2. This concept of support along with the incorporation of Schur complements
(discussed in Section 2) leads to some interesting properties. In Section 3, we
apply these techniques to trees and extend them further to the case of cycles in

Section 4.

For integers m,n > 1, the set of real matrices of order m x n is denoted by
M n, and M, ,, is abbreviated to M,,. For a given simple (no loops or multiple
edges) graph G on n vertices, S(G) denotes the set of all real symmetric matrices
A = [aij] € M, such that for i # j, a;; # 0if and only if {,5} is an edge
in G; foreach i = 1,2,...,n, a; is free to be chosen. Using the fact that the
main diagonal of A € S(G) is free, we need only consider homogeneous linear
systems instead of the conventional eigen-equations (Ax = Az) as Aand A — A\J
both lie in S(G). Fora vertex v in G, N (v) denotes the set of vertices of G that are
adjacent to v, and N, (v) denotes the set of pendent vertices of G that are adjacent
to the vertex v. Thus, Np(v) C N(v), for any vertex v. If 4 is a pendent vertex
(i.e., [N(3)| = 1), the unique neighbor of the vertex i, is denoted by /. If Lisa
subset of the set of vertices of a graph G, then the graph obtained by deleting all
of the vertices of L and their incident edges, is denoted by G\ L. For a positive
integer n, K, denotes the complete graph (all possible edges) on n vertices.

For a,8 C {1,...,n}, we let A[a, ] and A(a, B) denote the submatrices
of A obtained by keeping and deleting rows indexed by o and columns indexed
by B, respectively, where both A[c, o] and A(a, &) are abbreviated to A[a] and
A(a), respectively. For A € M,,, the null space of A is denoted by Nul(A), and
z
z2

the nullity of A is denoted by dimNul(A). For a vector z = Tr € R,
Tr4l
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Trt2
andr € {1,2,...,n—1},letz(r) = r, , and for any index set o, we let

Tn
z|a] denote the subvector of = with indices froma. If L C {1,2,...,n}, thenthe
complement of L in {1,2,...,n}, denoted by L¢, is the set {1, 2,...,n}\L.

Definition 1. Consider a matrix A € M, andlet L C {1,2,...,n}. If A[L] is
invertible, then the Schur complement of A[L] in A, denoted by A/A[L], is defined

to be
A/A[L] = A(L) - A[L¢, L]A[L]“A[L, L.

In particular, if A is symmetric, L = {1,2,...,8}for1 < £ < n,and A is
partitioned as
A Agp ]

A=[A'{2 Az

where A, is of order £ x £ and invertible, then

AJAL] = A/An = Az — AL A} Ara.

Throughout this work, the rows and columns of the matrix obtained by the
Schur complement operation inherit the indexing of the original matrix. The same
applies to the labeling of the vertices of the corresponding graphs.

2. Null space of graphs

For a given graph G and A € S(G), we intend to provide an upper bound on
dimNul(A), by using Schur complements of A based on subsets of independent
vertices in G. Let V(G) denote the set of vertices of G. For L C V(G), we let
Np(j) ={s € V(G) : s € N(j) n L}. A subset of the vertices, L, of a graph G
is called an independent set, if there is no edge between any of the vertices in L.

In this setting, it is conceivable that such bounds could be applied to other
related problems, including determination of, or useful bounds on, the maximum
nullity over all A in S(G). Our idea is based on the adjacency in G, and while A
is fixed, it is meant to be arbitrary (up to certain conditions on the main diagonal).
In addition, investigating the nullities of symmetric matrices associated with a
graph and with additional constraints on the main diagonal (such as the adjacency
matrix), are of current research interest.

Our study begins, naturally, by investigating combinatorial constraints on the
nullity for a fixed matrix in S(G) upon consideration of an independent set of
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vertices. The next result, while natural from a purely matrix theoretic standpoint,
does, in turn, provide interesting insight into the influence that the adjacencies in
G have on the nullity of a matrix in S(G).

Theorem 2.1. Consider a graph G on n vertices and let A € S(G). Suppose
L ={1,...,£} is an independent set of vertices in G such that A[L] is invertible,

then

i. dimNul(4) <n—¢,
ii. Az = 0if and only if

1 ,
ziz—(—l:i- Z a,-,-:z:,-,forzEL (1a)
JEN()
and
AJA[L]z(e) =0, (1b)

iii. dimNul(4) = dimNul(A/A[L}).

Proof. Observe that (i) follows as a simple consequence of the rank-nullity theo-
rem in basic linear algebra, and the fact that rankA > rankA[L] = £. Further-
more, since rank(A/A[L]) = rankA — ¢, whenever A[L] is invertible, it follows

that
dimNul(A/A[L]) = n — £ — (rankA — £) = n — rank(A) = dimNul(4),

which establishes (iii).

Upon closer inspection of the linear system Ax = 0, we see that if A € 5(G)
is partitioned in the following form, where Ay, = A[L] € M, is diagonal

_ | An A
A—[Asz Azz]’

then, for 7 € L, the ith row of the linear system Az = 0 is of the form a;;z; +
)" aijz; =0. Since Ay is invertible, a;; # 0 foralli € L,
JEN()

1 .
;= —a—ii Z aijTj, forie L, V)]
jeN(d)

and hence (la) holds. It is useful to note that since L is an independent set of
vertices, A[L] is diagonal and is assumed to be invertible. To show (1b), observe

256



that the (4, k) entry of AT, A[L]~1A;2 equals

QjtQtk 3)

teNGHNN (k) %t
tel

Thus, the jth row of A/A[L]x(£) is

(a_.,-,-— Z Jt)z,+ Z ajx — Z -‘%zt—k Tr. (4)

teNz () 2t k=t FENGINN ()

Let r; denote the jth row of A and let A’ be the matrix obtained from A by
performing the elementary row operations ——-7-13 +r1; = r;, forall i € L and
j=£¢+1,...,n, with aji # 0. Then, the Jth row of A’z is precisely (4). This
holds for allJ € L¢ andsince A’[L¢, {1,...,n}|z(€) = O, then A/A[L)z(¢) = 0.

For the converse, suppose (1a) and (1b) hold. From the partitioned form of A,

assume
Ay A z } n
Al, As z3 Y2

From (1a), we have y; = 0. Hence A;171 = —Aj272. Using (1b), we have

0= Azzwz - ATzAﬁlAng = Azzmz - A'IT2A1-11(—A11.’I:1) = Y2. O

For a symmetric matrix A = [a;;] € My, the notation I'(A) is used to denote
the simple graph on vertices {1,...,n}, where there is an edge between vertices
iand j (i # j) if and only if a;; # 0; ay; is immaterial in the determination of
T'(A). For a given graph G on n vertices and A € S(G), let L; be a maximal set
of independent vertices of G where the corresponding diagonal entries of A are
nonzero. Apply Theorem 2.1 to obtain the matrix A/A[L,] of order n — | L, | with
the same nullity as of A. This process can be repeated until either the resulting
matrix is of order 2 x 2, and hence has nullity at most two, or the resulting matrix

is of the form
0 B
Bt C |

where a maximal set of independent vertices, say L with |L,| = s, is labeled first,
0 € M,, and C has zero diagonal entries. In the case of trees and cycles, we can
label the vertices (isolating independent sets) so that the resulting graph at each
step of this method is well-defined, and is in fact of the same type, and therefore,
a similar argument applies on the resulting graph. For example, if T is a tree, then
the vertices of T can be labeled so that under the conditions of Theorem 2.1, T\ L
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is a tree, and for any A € S(T), the matrix A/A[L] is in S(T\L).

3. Trees

In this section, Theorem 2.1 is applied to the case of trees to present alter-
nate and elementary proofs for several known results. This is one motivation for
applying our unifying approach with regard to the spectra of acyclic matrices.

Suppose T is a tree on n > 3 vertices, that is, T is a connected graph on n
vertices with no cycles. Let L, be the set of pendent vertices of T', and L; denote
the set of pendent vertices of T\ UjZ] L;. Label the vertices of T so that the
vertices of L, come first, and the vertices in L;_; come before the vertices in L;.
With this labeling, if A € S(T'), then A is of the following form where the block
Aij € M|L, x|, denotes the adjacency of vertices in L; to the vertices in L;

Ay A ... Ai

A{z Az ... Ay
A= : .. :

Aclrk Ag}e o Akk

We call such a labeling a pendent labeling. Since each L;, fori =1,...,k—1,is
the set of pendent vertices of a tree, all of the diagonal blocks A;;,i = 1,...,k—1,
are in fact diagonal matrices. The last set of vertices, Ly, obtained from the pen-
dent labeling of a tree T, contains either one or two vertices. Otherwise, there is a
tree with n > 3 vertices where all of the vertices are pendent, which is impossible.
Throughout this work, trees are labeled with the pendent labeling unless otherwise
stated.

Lemma 3.1. Consider a tree T with the pendent labeling and let A € S(T). If
A[L,] is invertible, then

1. A[LS$, L1]A|L,| Y A[L,, L§] is a diagonal matrix.
2. The diagonal entry of A[L$, L1]JA[L,}~*A[L,, 25] corresponding to the

. . . as;
vertex t of the original tree T is equal to at g

iENR(t) i
Proof.

1. Since a set of pendent vertices is an independent set, Theorem 2.1 can be
applied. On the other hand, if ¢ is a pendent vertex, then t ¢ N(j) N N(k)
for any j, k, j # k. This implies that all of the terms in (3) are zero, except
possibly the diagonal entries.
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2. The sum Z a—‘_f is equal to the sum in (3) in the proof of Theorem 2.1,
€N (1) G

forj =k. m]

The next result is a basic consequence of Lemma 3.1 and will be an important
fact needed in this section,

Corollary 3.2. Under the hypotheses of Lemma 3.1, the matrices A/A[L;] and
A(L,) have equal off-diagonal entries. Therefore, A/A[L,] € S(T\L,).

Let A® = 4, AM) = A/A[ng, and A®) = AG-1/AG-D[L,] for s =
1,...,k — 1. Using Corollary 3.2, A®) € S(T), foreach s € {0,1,...,k — 1},
where T, is obtained from the tree T by deleting the vertices in Ui_; L;. We let
To=T.

Lemma 3.3. Suppose a tree T has vertices partitioned as Li,..., Ly with the
pendent labeling. If all upper left blocks A(*)[L,,,] of the Schur complements
A®) s = 0,1,...,k — 1, are invertible, then dimNul(A) = 0. That is, A4 is
invertible.

Proof. Consider the equation Az = 0. By repeating the proof of Theorem 2.1 for
each A®[L,41), s =1,2,...,k — 1, we know that all of the entries of = can be
written as a linear combination of the entries of z corresponding to the vertices in
Ly. But Ly has either one or two entries. So the last equation A*~Vz[Ly] =0
implies that either =, = 0, or z,—; = z, = 0, depending on the size of L,. By
backward substitution, this implies that z = 0. Thus, Az = 0 has only the trivial
solution, which means A is invertible. ]

For a vector z = [z;] € R™, the support of z, denoted by sup z, is the set
of indices i € {1,2,...,n}, where z; # 0. If S C R" is a set of vectors, then
the support of S, denoted by sup S, is the set of indices i € {1,2, ...,n}, where
z; # 0 for some z € S. It is not difficult to verify that, if S is a subspace of R®
andsup S = {1,...,n}, then S must contain a vector z in which each coordinate
of z is nonzero. Such a vector is called a fotally nonzero vector. Our first fact
deals with the case that there is a totally nonzero null vector for a matrix in S(T').

Theorem 3.4. [14, Thm. 1] For atree T on n > 3 vertices and A € S(T), if
sup Nul(A) = {1,2,...,n}, then dimNul(4) = 1.

Proof. Consider a pendent labeling for T" and suppose = € Nul(A) is a totally
nonzero vector. There is such a vector since sup Nul(4) = {1,2,...,n}. Using
the pendent labeling, for each i € L, the ith row of the equation Az = 0 is of the
form a;iz; + aszi = 0. Since z;ai T+ # 0, we have a; # 0, so the diagonal
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submatrix A[L;] has nonzero diagonal entries, and therefore, it is invertible, and
AW = A/A[L;) € S(T\L1) = S(Ty), by Corollary 3.2. Since z is totally
nonzero, repeating the above argument for s = 2,..., k — 2, we deduce that each
of the submatrices A(*){L,.,] of the Schur complements A®), s =0, 1,...,k—2
are invertible, and A(®) € S(T%), by Corollary 3.2. Moreover, using Theorem 2.1
repeatedly, the entries of = corresponding to the vertices in LiU...ULg.q are
all nonzero scalar multiples of the entries of Lx. So dimNul(4) < |Li| < 2.
If |[Lx] = 1, using the fact that A is not invertible, the proof is complete. If
|Lx| = 2, then the last system of equations obtained by the above process is
A®=Dzg(L,] = 0, where A%~ is a 2 x 2 nonzero matrix and z[Ly] is a totally
nonzero vector with 2 entries. Therefore, the entries of z{ L] are multiples of each
other, that is ,—1 = az,, for some c # 0. Thus every entry of = can be written
as a nonzero scalar multiple of z,,, which implies dimNul(A) = 1. O

See also [14] for additional results making use of the notion of support on the
null space of trees and the corresponding nullities.

According to the previous theorem totally nonzero null vectors forces main
diagonal entries associated with pendent vertices to be nonzero. As an example
consequence, it follows that the (0,1) adjacency matrix of a tree can never have a
totally nonzero null vector. In particular, there must existan i with 1 < i < nsuch
that z; = 0 for all null vectors z. Equivalently, the ith standard basis vector must
be in the range of this (0,1) adjacency matrix associated with a tree. Along these
lines, it makes sense to consider those A € S(T') with nonzero main diagonal.
For instance, the subcollection of positive semidefinite matrices in S(T').

Using Theorem 2.1, restricted to the positive semidefinite case in S(T') allows
us to recover a known fact which previously relied on rather powerful results (see
also [9]). Recall that a real symmetric matrix is positive semidefinite if it has
nonnegative eigenvalues.

Corollary 3.5. Suppose T is a tree on n > 3 vertices. If A € S(T') is a positive
semidefinite matrix, then dimNul(A) < 1.

Proof. Let A € S(T) be a positive semidefinite matrix. It is clear that if ai; = 0,
thena;; = a;; = 0,forall j =1,...,n. Therefore, the diagonal entries of A can-
not be zero (otherwise there would be zero entries corresponding to some edges of
T, which contradicts A € S(T')). This implies that A[L,] is invertible, and thus,
the Schur complement A/A[L;], is also a positive semidefinite matrix (see [10,
Thm. 7.7.6]). Now, using Theorem 2.1 repeatedly, we have dimNul(4) < 1. O

If A is a symmetric matrix with an eigenvalue A, the algebraic multiplicity
of ) is denoted by mult 4(A). Now that the positive semidefinite case has been
studied, we have the next result as a basic consequence.
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Corollary 3.6. Let A € S(T) with spectrum o(A) = {A1,)z2,..., A} If Ay <
A2 ... < A, thenmult4 (A1) = mult4 (M) = 1.

Proof. The matrix A’ = A — M\ € S(T) has eigenvalues 0 < Ay — \; <
... £ An — Ay, so it is positive semidefinite. Therefore, using Corollary 3.5,
mult4(A;) = dimNul(4’) = 1. To show that mult4(),) = 1, note that the
matrix A” = — A+, I € S(T) haseigenvalues0 < Ap—An_1 < ... < An—2Ay,
so it is positive semidefinite, and hence Corollary 3.5 implies the desired result. O

It has long been known that the eigenvalues associated with a path are distinct
(see [6]). Recall that a path, P,, consists of vertices vy, vs,..., v, and edges
U1V2, Va3, ..., Un—1Vy,. In fact, it is easy to verify that if 1 and n are pendent
vertices of Py, then for any A € S(P,), from the equations Az = O and z; = 0,
it follows that z = 0. Hence using null vectors only, we may also deduce that for
any A € S(P,), the eigenvalues of A have multiplicity one (that is, they are all
simple).

Restricting matrices in S(T") to contain a totally nonzero null vector implies
that the dimension of the null space was at most one. From this we were able to
recover some results on the nullities of positive definite matrices associated with
trees.

A natural place to move forward is to consider other graphs with large collec-
tions of independent vertices, such as cycles. However, even for cycles, there exist
matrices with nullity more than one, but they have totally nonzero null vectors.

4. Cycles

A cycle C;, consists of vertices vy, va, . . ., Un and edges vyvz,v0v3,. - ., Un—~1¥n,
vnvy. In this section, we review a well known result on the nullity of matrices in
S(Chr). In the case for which all of the diagonal entries of A € S(C,,) are zero,
the structure of the null vectors of A € S(Cy,) are explicitly described. For the
cases for which all of the diagonal entries are nonzero, or there are both zero and
nonzero diagonal entries, an algorithm is provided that will implicitly determine
the structure of the null vectors. It will be advantageous to introduce different
labeling schemes on the vertices for each case.

The first type of labeling of Cy,, is the usual method of ordering the vertices of
acycle. That is, they are orderedas vy, va, . . . , Un, Where vy vg, V203, . . . , Un—1Vn,
vp vy are the edges of C,,. We call this labeling a consecutive labeling. The next
result offers a basic upper bound on the nullity of a cycle, which is known, see for
instance [5]. However, our approach relies heavily on eigenvector structure as in
Section 3.
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Theorem 4.1. For the cycle C; on n vertices, dimNul(A) < 2. Therefore, the
multiplicity of each eigenvalue of a cycle is at most two.

Proof. Suppose C,, is labeled by the consecutive labeling, and let A = [a;;] €
S(Cy). Consider the linear system of equations Ax = 0 for a vector z € R™.
Then, the submatrix A’ = A[{2,3,...,n — 1},{1,2,...,n}] € Mp_3, has
linearly independent rows, therefore, it has rank n — 2. Hence dimNul(4) < 2. O

In order to explicitly describe the null vectors of A € S(C,), we consider two
base cases: (i) all of the diagonal entries of A are zero (discussed in Subsection
4.1); (ii) all of the diagonal entries of A are nonzero (discussed in Subsection
4.2). Each case is described below and is then extended algorithmically, with
some limitations, to the case of arbitrary main diagonal in Subsection 4.3.

4.1. Zero Diagonal Entries

Using the consecutive labeling, the following results characterize the eigen-
vectors of a matrix A € S(Cy), when all of the diagonal entries are assumed to
be zero. In the following results, addition in subscripts is taken modulo =.

Lemma 4.2. Let n = 2k > 4, and consider A € S(C,,), with a;; = 0, for all
i=1,2,...,n Then A is singular if and only if

Q12 ( 1 k H _22i,2i+1
Q1,2 Q2i41,2i+2

and in this case dimNul(A) = 2. Moreover, every nonzero null vector z of A is
either totally nonzero, or satisfies the following property

z; =0 < 2441 #0,foralli =1,.

Proof. Suppose Cy, is labeled consecutively. Using rows rq,74,...,T2k-2, T2k,
and rows 1,73, . .., T2k—1, respectively, each of the components of a null vector
x can be written in terms of z; or 25 as

To ! I3 = -;g:cl Ty Tk = -—;‘:; 2
: = 8340812 . = %23
T4 : Ty = @qsazs L1 T3 @ T4 a4 T2
: = 943622
Ts @ Tg = @56234 T2
a2i—1,2i
Tok—2 1 Tak—1 = (—1)*? H —==g
=1 a2, 2t+l
- 42i,2i+1
. ke . g
T2k Toh-1 = —giBozy Tok-1iTa=(-1)F IH;—M
i=1 i+1,2i+2
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If A is not invertible, then there is a nonzero null vector of A, thus either z; # 0
or zp # 0, which in turn implies either rows ro,_o and 7o, give the same value for
Zak—1 orrows r; and rox_; give the same value for z2x, or perhaps both equations
hold. That is, at least one of the equalities below must hold

_412k =(-1) k H a2i-1,2i (5)
Q2k—1,2k iy 02i,2i+1
or
a2i,2i+1
e e ©)
01 2% o1 B2+, 2i42

However, by direct computations we can show that (5) and (6) are, in fact, equiv-
alent. Hence if A is not invertible, then (5) (equivalently (6)) holds. Clearly, if
(5) holds, then A is not invertible as well. The equivalence between (5) and (6),
also implies that if A is not invertible, then every null vector of A is of the form

T = T191 + T2g2, Where

[ ! -0
0 1
—812
aszs 0
0 - 223
a= . 192 = as4
0
__0G1ak 0
G2k—1,2k 212 J
i 0 i L ap2k

Since g1, g2 are linearly independent vectors, the nullity of A is two. To show the
last statement, we consider the following cases.

1. Ifzy =25 =0,thenz =0.

2. If z; = 0,z # 0 (or zz = 0,z 7# 0), then the vector z is a scalar multiple
of go (or g1), which has the properties in the statement of the theorem.

3. If 7129 # 0, then by the structure of vectors g; and go, the vector z is
totally nonzero. |

By a similar method to the proof of Lemma 4.2, we can extend this to the odd
case as follows (using the same notation as above)

k— k—1
(-1) lal 2k+1 H Q21,2 (*1)k01.2k+1 H 02i41,2i+2
1 32i,2i+1 Q2k,2k+1 1y 0262i+1
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This implies that (—=1)*¥~1 = (—1)*, which is a contradiction. Therefore, z; =
zo = 0. This implies that z = 0, which means A is invertible (see also [13],
where cycle expansions of determinants could also be considered).

Lemmad43. Letn =2k+1,k>1, A€ S(Cp),and a;; = 0,2 = 1,2,...,n
Then A is invertible, that is dimNul(A4) =

Describing the nullities of matrices in S(C,) with zero main diagonal via
explicit descriptions of the their null vectors leads to a better understanding of
the null space structure of cycles and perhaps even beyond to include graphs that
contain cycles (such as unicyclic graphs), and perhaps to an elementary proof of
the converse to Corollary 3.5.

Note that, in the case of n even, when the nullity of A is two, there is a to-
tally nonzero null vector. That is, when sup Nul(4) = {1,2,...,n}, we have
dimNul(A) = 2. Thus, Theorem 3.4, which holds for trees, is not valid for the
case of an even cycle.

4.2. Nonzero Diagonal Entries

Suppose G is a graph and let v be a vertex of G. For A € S(G), with ayy # 0,
the graph I'(A/a,,, ) is well defined where A/a.,, is the Schur complement of a,,,
in A. Suppose u and w are adjacent to v. Then, using (3) in the proof of Theorem
2.1, the (u,w) entry of A/ay, = [a( ] equals @y, — 2ux2, Figures 1 and 2
describe the relationship between the graph G and I‘(A/ a.,,.fj for two neighbors of
v; adjacencies among non-neighbors of v are unchanged from G to I'(A/a..).

The following remarks are immediate consequences of the above definition.

1. In general, the entry o) = ayy — Sus@au can be both zero and nonzero
depending on the matrix A. Therefore, if there is an edge between u and
w in G, there may or may not be an edge between v and w in the graph
T'(A/ay,). Thatis, it is not possible to predict the graph I'(A/a,,) in gen-
eral.

2. If N(v), the set of neighbors of v, forms an independent set in G, then
T'(A/ayy) is the graph obtained from G by deleting v and all of its incident
edges, and adding all edges between pairs of vertices in N(v).

Regarding Remark 1, when studying some specific families of matrices, it
is possible to predict the graph I'(A/A[L]). For instance, if A is a weighted or
generalized Laplacian matrix associated with a graph G (see [16] for a definition),
then using Lemma 4.5, the (u, w) entry of A/A[L] is nonzero, if u and w have a
common neighbor v € L. Therefore, for any vertex v € L, every pair of vertices
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Quy Qyw
Quytyw
CGuyw — =15
- e = ~— — .
a a
Quy Auw Cyw Aoy — U2 Oy — 2

Figure 1: I'(A/a,,), when there is an edge between two neighbors of v

Qyy
Qyy Qyw
— Guylyy
= o Guv °
a " a2 T a2
= v o e

Figure 2: I'(A/a.y ), when there is no edge between two neighbors of v

u,w € N(v) are connected by an edge in I'(A/A[L]). This follows from the
following fact.

Proposition 4.4. Let G be a graph on n vertices and suppose v; and v, are not
adjacent. Then for A € S(G) with ay, v, Gvsv; # 0,

(A/Aln1])/(A/A1])[ve] = A/A[v1, v2).
Proof. Since v; and vy are not adjacent, the vertices of G can be labeled so that A
is of the following form
avlul 0 "’1
A= 0 Gue, T2 |.

TIT ’I‘g‘ A22

It is straightforward to see that

(A/A[vl])/(A/A[vl])[vg]=A22—al rTry = =2 tTry = A/Afo1,v). O

1) Quavy

Lemma 4.5. Suppose A € M, is a (weighted) Laplacian matrix associated with
a connected graph G onn > 4 vertices, and let L be an independent set of vertices
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in G. Then, forv € L and u,w € N(v), the (u,w) entry of A/A[L] is nonzero.
Moreover, A/A[L] is a Laplacian matrix associated with I'(A/A[L}).

Proof. Consider a labeling of vertices for which the vertices v, u, w appear in
the given order. We know that A is an irreducible singular M-matrix (see [11,
Section 2.5]), so rankA = n — 1, and every proper principal submatrix of A is a
nonsingular M-matrix. Suppose L = {v} and u,w € N(v). Then the principal

submatrix of A
Qyy CQyu CQuw

A, u,w] = [ Oy Guy  CGuw

Guwy Quwu OCuuw

is an invertible M-matrix, and hence is inverse positive (see [11, Section 2.5]). In
particular, the (2, 3) entry of A[v,u,w]™! is positive, i.e. 1 A_vl'u’w (ByvOuw —
Quvlyw) > 0. Thus, ay,, — 2422w < 0, which means the (u, w) entry of A/A[L)
is negative. Straightforward computations show that the diagonal entry in each
row (or column) of A/A[L] equals to the sum of the off diagonal entries of that
row (or column), thus A/A[L] is a Laplacian matrix associated with ['(A/A[L]).
If L has more than one vertex, then using Proposition 4.4 repeatedly completes

the proof. ]

For any weighted Laplacian matrix A of a given graph G, Spielman in [16]
studied algorithms that provide a fast method to solve the linear system of equa-
tions Az = b. Various methods are investigated in [16] which either provide
the exact solution for the linear system or an approximation of the solution. One
method to give the exact solution of the linear system Az = b is Gaussian elimi-
nation. In order to perform a fast Gaussian elimination on a positive semidefinite
matrix A, one may find a permutation matrix P such that Cholesky factorization
of PT AP may be computed easily; see [16). We note that finding such a permuta-
tion matrix is equivalent to a re-labeling of the vertices of G. Lemma 4.5 implies
that performing Cholesky factorization on a maximal independent set of vertices
in G, reduces the homogeneous linear system Ax = 0 to one of smaller size,
namely A/A[L]z(L) = 0. Moreover, in this case A/A[L] is a Laplacian matrix
for the graph I'(A/A[L]). This graph is obtained from G by deleting the vertices
of L and joining every pair of vertices {v,w} in G\L with a common neighbor
v € L by an edge. Clearly, this process can be repeated on the graph I'( A/A[L)).

Returning to cycles, consider a vertex v in the cycle C,, n > 4 with a,, # 0.
Suppose u, w are neighbors of v. Since there is no edge between u and w, using

Figure 2 and Theorem 2.1, the symmetric matrix A/ay, = [ag-’)] is in S(Cn-1)
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with o
_ﬁn:ﬁm, lf (%]) = (u,w)

2
a(v) _ Cuu — %‘::’ if (3,7) = (u,u)
g 2
Qyw — Suw o f (%.7) = (w$ w)

Gyy '’

aij, otherwise.

Using Theorem 2.1, this process can be performed simultaneously on a maximal
independent set of vertices, say L, with a,, # 0, for all v € L;, and from the
above identities the resulting graph is a cycle, that is ['(A/A[L,]) = C,_z,).
Now, if n > 4, and all of the diagonal entries of A are nonzero, then the vertices
can be labeled so that Theorem 2.1 can be applied repeatedly on the largest in-
vertible diagonal submatrix of each resulting matrix. We call such a labeling an
alternate labeling, and define it as follows: consider the vertices of C,, lying on
the circumference of a circle where the edges are part of the circumference. Begin
by labeling some vertex of Cy,, 1. Moving in a clockwise direction from vertex
17, name the second unlabeled vertex ¢ + 1. Repeat this process until all of the
vertices but one are labeled. The last unlabeled vertex is then labeled n. Figure 3
shows an alternate labeling of C;. Having this labeling, a matrix A € S(G) can

Figure 3: An alternate labeling of Cy

be partitioned in the form

_ | Au Ap2
4= [ AL Axn ]

where A;; € M|y is a diagonal matrix. Let L = {1,2,...,|%]}. In the case
of nonzero diagonal entries, Aj; = A[L] is invertible, thus using Theorem 2.1,
dimNul(A4) = dimNul{A/A[L]). Moreover, in the equation Az = 0, each z;,
i € L is alinear combination of two variables z, and z, where r,s € {|3] +
1,...,n}, and the linear system Az = 0, can be reduced to A/A[L]z(|}]) =
0. Now, if the diagonal entries of the matrix A/A[L] are nonzero, the above
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process can be repeated since the inherited labeling is precisely in the desired
from. Furthermore, if at each stage the resulting diagonal block corresponding
to an independent set of vertices is invertible, then Theorem 2.1 can be reapplied
until the resulting graph has either 3 or 4 vertices, depending on n. This provides
an algorithm to compute the nullity of a matrix A € S(C,), when the diagonal
entries of both the original matrix and resulting matrices at each step are nonzero,
an example for this case is the class of positive semidefinite matrices in S(Cy).
The algorithm has the following properties: (i) Theorem 2.1 can be applied to a
maximal independent set of vertices; (ii) if the resulting graph at each step has
at least 3 vertices, then it is still a cycle; (iii) the resulting graph at each step, has
already been labeled so that Theorem 2.1 can be applied to a maximal independent
set of vertices.

Note that, here at the first step, only | 3 ] of the diagonal entries corresponding
to the vertices in L need to be nonzero, and not all of the vertices of C,,. Sim-
ilarly, at each step we only need nonzero diagonal entries for the corresponding
independent set.

4.3. Both Zero and Nonzero Diagonal Entries

In the previous two subsections, the null vector structure and corresponding
nullity for the extreme cases of either all main diagonal entries are zero or all main
diagonal entries are nonzero were described.

A natural progression would then be to consider the situation of a matrix in
S(Cy) with arbitrary main diagonal. We could proceed as in Subsection 4.2 by
reducing the size of the cycle according to independent vertices with nonzero
main diagonal entries (we alluded to this in Subsection 4.2, when we noted the
algorithm would still apply as long as there were a sufficient number of nonzero
main diagonal entries).

The procedure, unfortunately, is tedious to carry out since at each stage we
need to check for nonzero diagonal entries associated with collections of indepen-
dent vertices, and such conditions cannot be verified combinatorially before hand.
One strategy would then be to reduce as much as possible the number of vertices
to produce a smaller sized cycle, and not disturbing the nullity. From here another
inductive technique may be applied. To this end, we are still pursuing other algo-
rithmic ideas in hopes of getting a better handle on nullities with an eye towards
maximum nullity of a graph. The following example illustrates the algorithm in
the case of both zero and and nonzero diagonal entries for cycles.

Example 4.6. Consider A € S(C57) with three nonzero diagonal entries lying on
a path on three vertices of C. Following the alternate labeling given in Figure 3,
and without loss of generality suppose ajjazeage # 0. Then A € S(Cr) is of the
following from
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1 2 3 4 5 6
1 i a1l 0 0 Qi4 0 aie
7 4 1 2 0 agz 0 0 azs Qg6
3 0 0 0 0 ass 0
3 A=4 ]| a4 O 0 0 0 0
5 0 Qs Qass 0 0 0
6 a6 ag¢ 0 0 0 oag
5 2 7| 0 0 azy Q47 0 0
Figure 4: Crand A € S(C7) with a11a20a66 # 0
For L; = {1, 2}, we have
7 4 1 3 4 5 ]
° 3 0 0 aszs 0
of o - o e
3 A=) ax 0 -t sz
o 0 -mm oo oo
7 asz a7 0 0
5 *2

Figure 5: L = {1,2} and A®Y) = A/A[L1] € S(Cs)

with

Then Ly = {4,5} and

7 4

[ J [ ] 3
3[>.6 A = 6

5® *2

1

=844, -
A1 an:L‘,;

=82 p.
T2 a2 Ts

7

a6
e
a22 Te.

3

2
azzal,
a2s

_ 26835

azs
az7

— 820835
az2s

a66

—816a47
a4

asr

7
0
0
Q37
Q47
0
0
0

— 218247

ajja
14

Figure 6: L = {4,5} and A®® = AW /AM[L,] € §(C3)

with

Finally, L3 = {3} and

Tyg=-—-HU87q 4 9-‘:%'-‘;‘7-3:7

a4

a.
Ty = J:é:ﬁ.ﬁ.zs_
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7 4 1
6 7

[ ] [ ]
2
— %24 -~ a16aq7 azsazga3zy
3. \‘6 A(a) = 6 [ age %22 aie, + gaagas ]
10847 az25a20837 gi1aqy 835 aiz
7 L "o + Senazn al,  aaad,

Figure 7: Lz = {3} and A®) = A® /AR [L4] € S(K)

with 2
Q25026 Q3037

X3 = Tg — 5 T7.
Q222035 Q22035

By substituting backward we have

a
ass
a25a37 aze
Iy = ————T7 — —T¢
az203s azz
aq7
Ty = ——27.
ai4
Hence every null vector of A is of the from
B — 9247 - - - %47
sy Momesry | 0 2y |
Ta22 76 T azpass 7 — o " agaass
azsaze _ G8zsaa7 azsaze __G@zpa37
022035 76 G003, L7 a2z03s a22a2,
= _.‘a‘_ﬁ.xe_}.m&x!“_ilx,, =g _;:f. + z7 aaa
14 14
.Z_ﬁlx7 0 237
35 1 ass
ZTe 0
| z7 J L 0] . 1
Solving the equation Az = 0 given by
2
— %26 — 816847 | 925026037
866 — ap, a4, + 92235 Te | _ 0
—8iga47  azsG26@37 Sufyr _ 2250 T ?
aiq + azaass aj, az2a35 7

will completely describe the null space of A.
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