COMPATIBILITY MATRIX METHOD

SERGEY GUBIN

ABSTRACT. Article presents the compatibility matrix method and
illustrates it with the application to P vs NP problem. The method
is a generalization of descriptive geometry: in the method, we draft
problems and solve them utilizing the image creation technique. The
method reveals: P = NP = PSPACE C P/poly, etc.

INTRODUCTION

This article presents the compatibility matriz method [1, 2, 3, 4] and
some of the results reported by the author at The Midwest Conference on
Combinatorics, Cryptography and Computing (MCCCC) [5, 6, 7).

The compatibility matrix method is a generalization of descriptive geom-
etry on the combinatorial problems: the problems are "drafted” at first and
then solved with the image creation technique. We prove: the blueprints’
size is polynomial in the problems’ NTIME, and the image creation tech-
nique’s computational complexity is polynomial in the blueprints’ size. And
we apply these results to the P vs NP problem [8].

1. COMPATIBILITY MATRIX

The following definition formalizes the notion of problem’s blueprints.

Definition 1.1. Compatibility matriz B is a symmetric Boolean box ma-
trix with the diagonal Boolean matrices on their major diagonal:

). B = (B,ij Jnxn

2) BiJ = (b:fu)m.-xmj
(1.1) 3). b, € {false, true}

4). b;f,, = b

5. b, = i#jVu=v
- where numbers n, m;, ma, ..., My, and maximum
(1.2) m= {2% m;

are the appropriate sizes of the compatibility matrix. Boxes B;; are compat-
ibility bozes. Those components b)), which equal true are true-components,
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and the rest components are false-components.
Index function of compatibility matrix B is any one-meaning function!

¢:i€[n] = ¢(i) € [mi}

Each index function ¢ defines a 2-dimensional sub-array of the compatibility
matrix which is a grid of components or just a grid:

y
bdwei Yie)

This grid is a solution grid if all its components are true-components, i.e.
if the grid’s index function ¢ satisfies the following functional equation:

(1.3) :?(t')é(j) =true, i,j € [n]

- solution grid in compatibility matrix B is an orthogonal lattice of true-
components, one component per compatibility box.

Further, a true-component bffg}}o = true is a noise if functional equation
1.3 is inconsistent subject to the following constrains:

(1.4) #(i0) = po, 9(jo) = 1o

Otherwise, true-component bffg;?o = true belongs to a solution grid.
Furthermore, inversion of all noisy components in compatibility matrix

1.1 will transform it into its general solution?.

Exercise 1.2. The following Boolean box matrix (as usual, values true and
false are shown with 1 and 0, appropriately) is a compatibility matrix:

BB Ba)_(g 0|1
"\ Ba By )
1 141

In this compatibility matrix, n = 2, m = m; = 2, and mg = 1. So, this
compatibility matrix has two index functions (¢ and ) and two grids of
components, appropriately:

) =1, 62)=1] (1) =2 $(2)=1
1 .1 ..
01
1 .1 . 1|1

1For any integer number N > 1, (N]={1,2,...,N}.

2We could present any solution grid from compatibility matrix 1.1 as a compatibility
matrix of the same box structure as matrix B and whose components all equal false
except those which belong to the grid. Then, the general solution would be the per-
component disjunction of all those "particular solutions”: (as;) V (bi;) = (ai; V bi;).



Index function ¢ creates a solution grid. Components bi? and b2} are noise,

and inversion of them transforms this matrix into its general solution:

1 0|1 1 0]1 0 0|0
G=[o0o0|o)=[o0oo0fo]v[oojo
T 0]1 T 0[1 0 0]0

- it may be seen as the disjunction of all solution grids of matrix B.

Exercise 1.8. The following Boolean box matrix is another compatibility
matrix:

QO = Ol= O
Ol Ol O
OO = O
Ol OO =

O O =IO =

OO O =

In this compatibility matrix, n = 3 and m = m; = my = mz = 2. Then,
there are 8 grids of components in this matrix. Yet, none of them is a
solution grid. Then, this matrix’s general solution equals ((0)2x2)3xa3.

Compatibility matrices are used to encode the natural problems and
sometimes the whole families of the problems. There are not any require-
ments to the compatibility-matriz encoding except the encoding’s adequacy:

Protocol 1.4. There are solution grids in the given compatibility matriz
iff the encoded problem is consistent, i.e. iff it has solutions.

Several examples of the adequate compatibility-matrix encoding are pre-
sented in Section 6. Also, Section 6 specifies domain of the encoding.

Due to Protocol 1.4, solution-grids in the compatibility-matrix encoding
may be identified with the solutions of the encoded problem in the ”topo-
logical sense.” Then, the compatibility boxes are the solution’s 2D-views;
the compatibility matrix itself is an orthographic projection layout display;
and functional equation 1.3 is the image creation technique.

The compatibility-matrix encoding of the decision and search problems
is appropriately the Post and Turing reduction of the problems to the so-
lution grids existence problem (to find a solution grid we may: iterate the
compatibility boxes and the true-components in the current box; nil all
components in the current box and its transpose box except the current
component and its transpose component, and test the resulting matrix on
the solution grids existence; we move to the next component if the current
component is noise, else we move to the next compatibility box).

General solution of the given compatibility matrix is a compatibility
matrix of the encoded problem on its own. And, due to its definition, it



contains true-components iff the given compatibility matrix contains solu-
tion grids. General solution is the useful signal carried by the compatibility
matrix. To compute the general solution, we need inverse the noisy compo-
nents. Such a revitalization of the compatibility matrix is called depletion.

2. SOLUTION GRIDS AND GENERAL SOLUTION

Let’s solve functional equation 1.3 for the given compatibility matrix
1.1 with the compatibility matrix method itself. For that, let’s device
such an adequate compatibility-matrix encoding of the equation’s solutions
which will allow its solution with the naive image creation technique. The
encoding’s idea is illustrated in the following exercise.

Exercise 2.1. [The major observation| Let true-component bjojo = true
be a noise in compatibility matrix 1.1. And let ¢ be a partial index function:

¢:i€sC[n]— ¢s) € [my)

Let 3o, jo € s, and let ¢ satisfy "boundary conditions” 1.4. Let’s use random
walk method and extrapolate partial function ¢ as far as possible.

We iterate set [n] — Dom(¢). For the current iy € [n] — Dom(¢), we
search set [m;,] for any such y;, € [m;,] that

118y i1 -
b”‘": #iy A /\ b¢(")m, = true
i€Dom(¢)

When such y;, is found, we extrapolate function ¢ on set Dom(¢) U {i;}:
Dom(¢) = Dom(¢) U {i1}, #(i1) = u,

After that, we move to the next 4, € [n] — Dom(¢).
Because bj2)o = true is a noise, all these "random walks” will lead into

dead ends, i.e. we will find that for some current i; € [n] — Dom(¢) # 0

v biLit A /\ b(‘;f(‘,.)#= false
HE[my, ] i€Dom(¢)

- we would extrapolate our partial index function ¢ to a total index function
satisfying functional equation 1.3 what is impossible, otherwise.

Exercise 2.1 shows that functional equation 1.3 can be adequately en-
coded in some intrinsic semi-global characteristics of the figure depicted on
compatibility matrix 1.1: global in m but not in n. Then, the compatibility-
matrix encoding of the solution grids will be something like Grobner bases.

Let’s select k € [n]. And let QX be the set of all k-combinations of n.
Let’s arbitrarily enumerate set QF:

(21) Qﬁ = {q11Q21"'$qCﬁ}



And let’s arbitrarily enumerate each set g, € Qk:

(22) ¢a = {if,15,...,if} C [n}, @ € [Cg]

For each k-combination g, € Q%, let P, be the following Cartesian product:
Py = [mug] x [mig] x ... x [mye]

And let’s arbitrarily enumerate each set P,:

(2.3) P, = {p‘l",p‘z", v ’pﬁnelkl mia }, o€ [Cﬁ

- where p§ = W, us,... ,pf) is a k-tuple from set P,, 8 € [H‘e[k] mia].
And now, let’s compute the following compatibility matrix from the given
compatibility matrix 1.1:

(24)  R(k) = (Rayaa (K))i@kixi@x = (5} 57)1Pay 1x1Pay 1QE IxIQE]
- where the matrix’s components are

ro102 .
(2.5) T = (aF eV gy, "'")qu(z"‘.nf‘). et ufnyy i)
AN (leg=ogV A.‘ =il (it = sz ))

- where bf};, are the components of the given compatibility matrix 1.1.

Exercise 2.2. Let’s compute compatibility matrix 2.4 for the compatibility
matrix from Exercise 1.3 and values k = 1,2,3.
Fork =1 Q} = {gn = (i} = 1),90 = (i} = 2),q3 = (i} = 3)};
={m=@l=Dp==2} Bh={n=E=1p=k=2)}
and Py = {p1 = (u] =1),p2 = (1 = 2)}; and

101 1(1 1
0o 111 1}1 1
T 11 01 1
BD=1 1 1l0 1]1 1
T 11 1[1 0
1 1(1 1]0 1

For k = 2: Qs—{¢11“(11=112—2)02—(11=1§= ),43—(11
2,3=3)}; PA=P,=P={p = (#1—1M2=1)P2"(#1—1#2



2),p3 = (43 = 2,43 = 1),p4 = (uf = 2,ud =2)}; and

(100011001100\
0000[1100[00T1 1
0000/001T1|1 100
000 1/001 1|00 11
1100]0000]10T10
1100[/0100f{0101
B2=|6011/0010[l1010]
001 1/0000/0101
10101 010|1 000
1010[/0101]|0000
0101{1010/0000
\0 101|010 1/0 00 1)
And for k = 3: Qg = {ql = (2% = 1,1,% = 2,7% = 3)}; P = {p1 = (p,} =
Lpyy=Lpi=1),pp=@=Lp=1,p=2)pa=(pi=1,18 =2,43 =
I)P = IJ'?=1,ﬂ2=2,ﬂg=2),1’5=(#?=2y 3=1,u§=1).z’e=(u?=
2,u8=1,u8=2),pr=(i=2,pl=2,pf =1),ps = =2,43 = 2,3 =
2)} and R(3) (0)8x8

Basically, when k > 2, the diagonal components 2.5 encode the compo-
nents of the given compatibility matrix 1.1 while the off-diagonal compo-
nents 2.5 encode the box structure of the given compatibility matrix 1.1.

Lemma 2.3. When k > 2, solution grids in compatibility matriz 2.4 and
solution grids in compatibility matriz 1.1 are in one-to-one relation.

Proof. Let ¢ be the index function of a solution grid in compatibility matrix
1.1. Then, for any k, the following function 9 is the index function of a
solution grid in compatibility matrix 2.4:

viae[lQnll - B € [Pl

- where 3 = () is such that pg = (¢(if), #(i%), ..., ¢(i§)). And, for any
k, matching ¢ — ¥ of these index functions is an injection.

Let 9 be the index function of a solution grid in compatibility matrix 2.4.
Let o € [|Q%|]. Then, 8 = ¢(a) € [|Pal]. Let ga = (i¢,15,...,if) € QF
and pg = (#{,,l‘g yeens uf ) € P,. Due to functional equation 1.3,

Q3O —
rwzal’)w(az) = true
Then, due to the second conjunct on the right side of equalities 2.5, the

following function ¢ is an one-meaning function, and it is an index function
of compatibility matrix 1.1:

¢ 142 € [n] > pf € [my)



- where o € [CE], 8 = ¥(a), and ¢ € [k]. Matching ¥ — ¢ is an injection.
And, due to the first conjunct on the right side of equalities 2.5,

A A\ e =true

2.€Q% i,j€[9a)

Then, when k > 2, index function ¢ is a solution of functional equation 1.3
for compatibility matrix 1.1: b¢(,) () = true, i,j € [n]. O

Due to Lemma 2.3, compatibility matrix 2.4 is a compatibility-matrix
encoding of the compatibility matrix 1.1 when k& > 2. Let’s deplete com-
patibility matrix 2.4 with the following zero propagatwn method: we loop
through compatibility boxes Rq,ay(k) (01,02 € [Ck ]) of compatibility ma-
trix R(k) and iterate the rows and columns in the current box; when the
current row/column completely consists of the false-components, we prop-
agate that value false on the whole matrix R(k) in the direction of the
current row/column; and we continue while matrix R(k) gets finalized.

Exercise 2.4. The zero propagation method transforms compatibility ma-
trix R(2) from Exercise 2.2 into the following compatibility matrix:

100 0[0100[1 00 0)
0000f000O0[00O0O
0000[(0000O0[000O0O
0 00 1/0010/0001
0 0 00|00 0 0[0 000
. 1000{0100/0001
F®={900 1001 0{1000
0000/0000/0000
1000|001 0[1 000
0 000[{0000O0[0000
000000000000
\000101000001)

Let’s notice, there still is noise in compatibility matrix R’(2).

Basically, the zero propagation method realizes the light-ray notion.
And, as in the descriptive geometry itself, it often fails to produce the
general solution because of the geometrical features of the depicted figure
such like concaveness. Nevertheless, we would like this method to work and
transform compatibility matrix 2.4 into its general solution.

Let’s restrict depletion in the zero propagation method to the diagonal
compatibility boxes of matrix 2.4. Then, such restricted zero-propagation



method can be expressed by the following system of material implications®:

[+ 3%+ 3
1) XE;I:S:: = Tﬂ:ﬂ: i
(2.6) 2) Xgig = Viargg=irue X5 @ € [Cal a#

3) true = VBGlPa,] Xg5™

- where a1 € [|QX]l] = [C], B1 € [|Payll = [[Lipey ™i=n], and veriables

X5, g)‘ are the unknown final values of the appropriate diagonal components.

Exercise 2.5. (1) Replacement of all implications in system 2.15 by their
CNF-expressions? will transform system 2.6 into a dual Horn SAT instance.
(2) System 2.6 is monotone: let R;(k) and Ry(k) be two matrices 2.4, and
let® R;(k) == Ra(k); then any solution of system 2.6 for matrix R, (k) is
a solution of the system for matrix Ra(k). (3) Set of solutions of system
2.6 is closed under disjunction®. (4) Material implication is a partial order
on the set of all solutions of system 2.6. (5) If system 2.6 is consistent (it
has solutions, i.e. such true assignments to variables XEIE? which satisfy
all implications in the system), there is unique mazimal solution which
equals the disjunction of all solutions. (6) And that maximal solution can
be obtained with the unit propagation method’.

Minimal solution of system 2.6 is any true assignment A,
(2.7) Xgi g, = g5, € {false,true},

which satisfies all implications in system 2.6 and in which the number of
values true equals CX:

(2.8) > 1=cCk

xyoy
)\5151

3The second group of these implications is present only when k < n.

Yz=y) & (EVy

5For two Boolean matrices (ai;) and (by;), (aij) = (bij) if aj; = by; for all i and j.
Material implication is a partial order on the set of all Boolean matrices.

S1f true assignments

x;;;: = ";:;11 € {false,true} and xgl‘;l‘ = 9;‘11; 1‘ € {false, true}

are the solutions of system 2.6, then true assignment
x1oy 1O g Xy
X181 ="pipy V 0815
is a solution of system 2.6 as well.

TFor dual Horn CONF, the unit propagation method is as follows: for every each
negative single-literal clause —c aka unit, we remove from the CNF all literals ¢ and all
clauses containing literal —c; in this way, we propagate the units while there are any;
the CNF is unsatisfiable iff this propagation will eliminate all literals from a clause;
otherwise, when the propagation halts, we assign value false to all those variables which
created the units, and we assign value true to the rest variables.

10



Due to the third group of implications in system 2.6, the minimal solu-
tions of system 2.6 are in one-to-one relation with the solution grids in
compatibility matrix 2.4 (c1 € [|Q%|] = CE and B; € [|Pa,|]):

(2.9) Agigr = (Plon) = 1) = N (8(i™) = uf)

L€[k]

- where ¢ and ¢ are index functions of the appropriate solution grids in
compatibility matrices 2.4 and 1.1. Therefore, we have one-one reduced the
solution grids problem to the minimal solutions problem.

In the spirit of Ramsey theory, the following mini-max (m is maximum
1.2) is called the uniform threshold for compatibility matrix 2.4:

(2.10) k1 = min{n,m + 1}

Lemma 2.6. For any k > K, any solution of system 2.6 for compatibility
matriz 2.4 is a disjunction the system’s minimal solutions. Particularly,
the system is consistent for k > k1 iff its minimal solutions do exist.

Proof. This lemma hods in the case when system 2.6 is inconsistent because
there are not any solutions of the system in this case. To prove this lemma
for consistent system 2.6, let’s use mathematical induction over n.
For n = k, compatibility matrix 2.4 has only one compatibility box which
is a diagonal Boolean matrix. So, this lemma obviously holds in this case.
Assuming that this lemma holds for some n =1 > k, let’s prove it for

n=Il+1>k
Let o be our system 2.6, and let o~ be the following subsystem of o:
0": Garge; €QF

System o is system 2.6 for the ! x! upper-left box corner B’ of compatibility
matrix 1.1. B’ is a compatibility matrix on its own, and n = [ in B".
Therefore, this lemma holds for o due to our induction hypothesis.

Let R’ be the submatrix of matrix 2.4 appropriate to subsystem ¢’. And
let A be the set of all minimal solutions of ¢” (it is a finite set, |A] < m!):

A={\,22..., 2}
- where each A,¢|a) is a true assignment 2.7/2.8 satisfying subsystem o

(Z)\gz;x 1 = CF). Then, due to our induction hypothesis, any solution
19

Xg g, = Mg, g, of o” (any true assignment X5.5! = ng.g; which satisfies all
implications in ¢°) is a disjunction of some true assignments from set A:

ayay oo
ngigi=\ g
AenCA

11



- where 7 is the appropriate subset of A, appropriate to true assignment
=15, - Let’s notice, this decomposition is not unique, in general.

k
Xa.5) = 055" € {false,true}, ou € [Cpy,]

Then, subset go, € QF of these assignments is a solution of subsystem o".
Then, there is subset § C A such that
k
056 = V A5ia e €
pYT
Then, due to one-to-one relation 2.9,

05101 = \/ (@) =B) =\ A @) =), o, € QF
YT AE8 (€[k]
- where 9, and ¢, are index functions 2.9 of the solution grids in com-
patibility matrices R* and B’ appropriate to the minimal solutions A € §
of subsystem o’ of system o. Then, due to the second and first groups of
implications in system o (where n = [+ 1 > 2), for any minimal solution
) € 6, k-combination ga, € Qf, and k-combination g € Qf,; — QF #0

— g™ien o oo
true = ed’x(al)’lla(al) = V B8 = \/ T84
{ﬂlr:}\?on)ﬁ=tr"’°} {ﬁl";:‘?"l)ﬂ =true}

Then (see Exercise 2.1), because k > &, each partial index function ¢,
A € 0, can be extrapolated from set [I] on set [l + 1] for each 6gi5" = true,
da, € Q{‘_H —QF, due to equalities 2.5 and the rest implications in system o.
Each of these extrapolations satisfies functional equation 1.3 for the given
compatibility matrix 1.1 and creates a minimal solution 2.9 of ¢. And
solution xg!g! = f5'g! of o is disjunction of all those minimal solutions.
Therefore, this lemma holds for n =1 + 1. 0

System 2.6 functions as follows: the first group of implications is an
input; the third group of implications filters the input against a rule; and
the third group of implications tests the result.

Theorem 2.7. For compatibility matriz 1.1:
1). Let’s compute compatibility matriz 2.4 for any k > ky;
2). Let’s compile dual Horn CNF (it will be always satisfiable)

_ 1 o1 e
ha = Argizs X550 A Nayacliiiiore (X615 V Viairgis) X55)

3). Let’s deploy unit propagation method (see Ezercise 2.5) to formula hy
and compute the appropriate satisfying true assignment

a1

Xgig: =g g, € {false,true};

12



4). Let’s compile Horn CNF (it will be always satisfiable)
= ara ij
hi= A nglsl A, GG 1)1 ) 5:'"{, :
aja a a &Y
A /\"'751‘511 "V (), G E{ (T 1) (IR E)) S
5). Let’s deploy unit propagation method® to formula hy and compute the
appropriate satisfying true assignment

5:";/ = 9;;’., € {false,true}.

The general solution of compatibility matriz 1.1 equals ((8},)m;xm; )nxn-

Proof. It is a direct consequence of Lemma 2.3, Lemma 2.6 (we just removed
the third group of implications from system 2.6), and equalities 2.5. a

As a mater of fact, Theorem 2.7 is an analog of Gauss exclusions method.
The theorem resolves the search problem for the compatibility-matrix en-
coded problem. If we have just decision problem, we may rid of the back-
feeds, and everything gets simplified a little. System 2.6 becomes reduced:

(s 4 23
D Xaig = Tai )
(2.11) 2) Xgig = Visrgo=irue X5 @ €[Crl, @ >

3) true = Vﬁe[P;] Xgp"
This system is consistent iff the following dual Horn CNF is satisfiable:

- R Sd -y 31 3%
hs= N\ —xgi5 A A Gy VoA Vg
ralgl oy,c€[|Qk|l,a>a {8Ir515} Be(Pi)

Formula h3 is satisfiable iff there are solution grids in compatibility matrix
1.1. And satisfiability of formula k3 can be tested with the unit propaga-
tion method. Computational complexity of the unit propagation method is
linear in the formula size which is O(m*(C¥)?2). We can control the compu-
tational complexity to some extend with k, k3 < k < n. And the minimal
value of the computational complexity is O(m** (C%')?) when k = &;.
Substitution x§§ = —(g§ transforms system 2.11 into the following

monotone circuit for the decision problems:

1) Caa' = ~Thip
(2.12) 2) C;‘:;‘ll &= Vaelci‘.], a>ay /\{p|,-;11;=gme} 973

3) o & Nsepyap™

8For Horn CNF, the unit propagation method is as follows: for every each positive
single-literal clause ¢ aka unit, we remove from the CNF all literals —~c and all clauses
containing literal c; in this way, we propagate the units while there are any; the CNF is
unsatisfiable iff this propagation will eliminate all literals from a clause; otherwise, when
the propagation halts, we assign value true to all those variables which created the units,
and we assign value false to the rest variables.

13



In this circuit, values —rg!g! are an input, and value (o is output. The
output equals false iff the compatibility-matrix encoded problem is con-
sistent. The circuit’s depth and width are O(m*Ck). The circuit’s depths
and width can be controlled with &, and their minimum is O(m*1CJ*).

Strictly speaking, circuit 2.12 is not uniform. Yet, it can be fixed with
the protocoling of enumerations 2.1, 2.2, and 2.3 for different box structures
of compatibility matrix 1.1. And the number of the different box structures
can be reduced with, for example, the padding of the smaller compatibility
boxes by the rows/columns entirely filled with false. Then, systems 2.6,
2.11, and 2.12 can be tabulated and wired. It would reduce the compati-
bility matrix method to the compatibility-matrix encoding.

Another approach to the uniformity is to rid of the references to the
components of compatibility matrix 2.4 in the indices of system 2.6 and its
derivatives. It can be accomplished with, for example, the replacement of
compatibility matrix 2.4 by the following compatibility matrix:

(2.13) S(k) = (Saya (k)1 ixi@] = (88187 1P, 1x1Pag 1@ IxIQX|

- where

(214) g = A b,
(iyl‘)’(jv")e{(i;’l)Pf‘)y"-)("zl1“21)}U{(£‘:21sz )‘.__,(i:Z’”fﬁ)}

- where bf{,, are the components of the given compatibility matrix 1.1. And
with the replacement of system 2.6 by the following system:
D xgg o e
(2.15) D Xeg = VeernXpg o7 o
Xaips = Vpellp.) Xpgs» @ % 1
3) true = BE[|Pay I] ngg“‘

It will even reduce uniform threshold 2.10: everything above can be edited
for compatibility matrix 2.13 and system 2.15 in assumption k > kg, where

(2.16) Ko = min{n, m}

Still, matrix 2.4 and its derivatives seem to be easier for the preprocessing.

3. COMPATIBILITY BOXES

Solution grids in compatibility matrix 1.1 are in one-to-one relation with
the true assignments satisfying the following Boolean formula?:

(3.1) a=A\ D xr AExiv-xd)

i€[n] p€lm;) -b},

g is the XOR operator.

14



The one-to-one relation is as follows:
X, = (8(3) = ), i € [n], p € [my]

- where ¢ is index function of a solution grid in compatibility matrix 1.1.
The O(m?n)-time replacement of all XOR operators in formula g, by their
CNF-expressions'® will one-one reduce formula g; to CF

(3.2) =N V XA AExv-xd)

i€n] pefmi) 5,

And Cook-Karp equivalence transformations!! [9, 10] will one-one reduce
CF g, to a 3CF. In the 3CF, every couple of the slack literals £ and —¢ can
be replaced by two variables {; = £, {2 = —§, and constrain

(L@ ¢ =true) & ((G1VE)A (=G V(2) = true)
Because of the XOR operators in g, these constrains can be reduced:

(61 ® (2 =true)lg, & (=(1V (2 = true)

Substitutions {; = £, {2 = —¢ in the 3CF and adding clauses —{; V =2
to it will one-one reduce that 3CF into formula 3.2 for a compatibility
matrix with the compatibility boxes of size 3 x 3 or less. When needed, the
compatibility boxes whose size is less than 3 x 3 can be always padded!?.
Therefore, the following analog of Cook’s 3SAT theorem [9] holds:

Theorem 3.1. Compatibility matriz 1.1 is O(m?n?)-time one-one reducible
to a O(mn x mn) compatibility matriz with the 3 x 3 compatibility bozes.

The O(m?2n?)-time one-one reduction of the given compatibility matrix
1.1 to a compatibility matrix with the 3 x 3 compatibility boxes may be
included in the compatibility matrix method in the preprocessing. Then,
the tabulation/wiring of enumerations 2.1, 2.2, and 2.3 for the 3 x 3 com-
patibility boxes will reduce the time-complexity of the compatibility matrix
method to O(m%n?) and the space-complexity to O(m®n8): the O(m*n?)-
depth/width circuit 2.12 performs paralle] O(m*n*)-time computing.

Any particular protocol for enumerations 2.1, 2.2, and 2.3 for compat-
ibility matrices with the 3 x 3 compatibility boxes will make the sets of
the appropriate systems 2.6 and 2.15 (and the sets of their derivatives) the
sparse sets. And computation of the implicants (the right sides) in the
first groups of implications in the systems will be Karp reduction of the
problems allowing the compatibility-matrix encoding to those sparse sets.

0 y®.. Bz (TVYV...VIAEVHA...(EVEA...AFVIA...
yvyvzv...e@VyV-EA(EVZV..) e ...
12Ror example, z < (zV-E) A(zVE) & ...
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4. SYMMETRIES

Compatibility-matrix encoding allows another interpretation which may
well serve as the encoding recipe: there is a placeholder for the solution
of the given problem; the placeholder is partitioned in n parts which may
overlap; there are options for each of the parts - set O; for part ¢, m; = |O;|;
there are n? 2-ary relations p;; C O; x O; among the options - the diago-
nal relations p;; are the inclusion relations, and the off-diagonal relations
pij, © # j, are the compatibility relations; the parts and their options are
enumerated; and compatibility boxes B;; are the appropriate graphics of
relations p;;. Then, the problem itself is a system of relations:

(4.1) (zi,%;5) € pijy 1, € [n]
- where variables z; € O; are the unknown options for the placeholder’s

parts. And the problems allowing the compatibility-matrix encoding are
the only problems allowing binary decomposition 4.1.

Exercise 4.1. Along with compatibility relations we could use the con-
tradictory relations. Basically, the contradictory matriz is negation of the
compatibility matrix:

-B = ("Bij)nxn = (("b:f;,)m.-xm,-)nxn
The contradictory and compatibility matrices are De Morgan dual.

Relabeling of the placeholder’ parts and the parts’ options, remodeling
of the placeholder and its partition, and reducibility among the problems
allowing the compatibility-matrix encoding all that may be seen as sym-
metries in the set of all compatibility matrices: the relabeling transforms
the given compatibility matrix into a congruent compatibility matrix!®; the
remodeling is covered to some extend by Theorem 3.1; and partition of the
problems on consistent and inconsistent is covered to some extend by The-
orems 3.1 and 2.7 - computational complexity of the partition’s projection
is polynomial in the compatibility matrix’s size. Let's see other partitions.

Theorem 2.7 gives the general solution of compatibility matrix 1.1. Then,
the following Boolean equation gives an exterior rectangular estimation of
the relation created by the problem encoded by compatibility matrix 1.1:

(4.2) /\ v X}, = true
icln] 8%,

And this estimation is exact: Boolean equation 4.2 is consistent iff the
encoded problem is consistent. The vertices of rectangle 4.2 are solutions

137wo square box matrices are congruent if they can be transformed one into other
with the permutations of the same rows and columns of boxes and with the permutations
of the same rows and columns of components inside of the rows and columns of boxes.
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of the following Boolean equation:
(4.3) /\ @ xf‘ = true
i€(n] O:f"

This equation is the affine case in Schafer’s classification [10]. And its
solutions can be expressed either by system of linear inequalities or even
by system of linear equations in Euclidean space RZietm ™ = RO(mn);

Zﬂe[mi] xZ‘ = 1, 1 Eﬁ[’n] Eu&[m‘] .’EZ_‘ = 1, 1 E“['n]
(4.4) . <a:“i P 01, -6, & z, =0, by,
T
— u —

Relabeling of the placeholder’s parts and the parts’ options in system 4.1
will rotate coordinates in this Euclidean space. And the asymmetric solu-
tion sets of these systems will "rotate” along with the coordinates. There-
fore, systems 4.4 are asymmetric in the sense of Yannakakis’ theorem [11].

With Theorem 3.1, system of linear equations 4.4 in the appropriate Eu-
clidean space R2(™") can be obtained in the time polynomial in mn. The
set of all such linear systems can be partitioned with the congruence of the
systems’ matrices - projection of this partition is linear in mn. And each
of the equivalence classes can be presented by the system in which

32Y12Y12..>2 > 120

wno oQgmmIOm)

Therefore, this partition of the problem allowing the compatibility-matrix
encoding - the partition based on the exterior estimation 4.4 and relabeling
of the placeholder’s parts and the parts’ options in system 4.1 - is another
sparse set along with the sparse sets of Boolean systems 2.6, 2.15, and their
derivatives which were described earlier at the end of Section 3.

Let’s notice, the sparse sets described in Section 3 consist of the "uni-
versal algorithms” while the sparse set described in this section consists of
the "encodings”. In the other words, the difficulty of the problems allowing
the compatibility matrix encoding can be dissolved by the "lucky choice”
of the placeholder, the placeholder’s partition, and the partition’s labeling.

Exercise 4.2. Boolean equation 4.3 is Karp reducible to 25AT through the
replacement of the XOR operators by their CNF-expression and usual self-
reducibility of the resulting CNF. Therefore, for the problems allowing the
compatibility-matrix encoding, all cases in Schafer’s classification are Karp
reducible each to other except the case reserved for intractable problems,
and that case lays outside of the compatibility matrix method’s domain.

We have discussed the symmetry based on the exact exterior rectangular
estimations 4.2 and 4.3. But, there are the similar interior estimations.
The solution grids in compatibility matrix 1.1 are in one-to-one relation
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with the true assignments satisfying Boolean formula 3.1. And formula 3.1
is self-reducible with the following equivalence transformations:

(z®Y®...02)AEVX)ANFVY)A...A(2VZ) & XVYV...VZ

- where variables z,y,...,2z are independent and formulae X,Y,...,Z are
independent of variables x,y, ..., 2. These equivalence transformations will
transform formula 3.1 into the following formula (computational complexity
of this direct reduction will be exponential-time, in general):

(4.5) a= AN (Pxirn A =

iENC[n] pelmy) REM;C[m,]

- where N # @ and some M; = [m,] in the case of unsatisfiable formula 3.1.
Exercise 4.3. Formula 3.1 for the compatibility matrix from Exercise 1.3:

(3 ®x) A VIR A VD AV XD A (5 V R

EX% ®X§; A(XTVX3) A (X5 VX7)

X1 © X2

BAmviiag)

EX ® X%; ARV X2) NGV X)

Xi ® x3

(x exg)

(g vx) AV D) A (B v 33) A (R V x2)

§Xj ® x§; ARV X2 A (B VXT)

X1 ® X3

gxé ® xgg ALV ) ARV XT) ARV X)) A (G V X3)

X1 © X2

(GAXL VAR

(i ®x3)

X AXIAX: =91

We see, M3 = [m3] = {1,2} in formula 4.5 for that compatibility matrix.
In the case of a compatibility matrix with the larger compatibility boxes,
the length of the newly created all-negative OR-clauses can increase at the
beginning of the equivalence transformations. But, the length is bounded
by the number of remaining XOR-clauses. So, it will decrease at the end.

151

>8>0 >>8>>>8>>0

Boolean equation g,"= true defines vertices of rectangle
/\ V X}, = true
i€EN p€lmi]-M;

This dimensionally degenerated rectangle lays inside of the solution set of
system 4.1. And this interior estimation is exact: there are solution grids
in compatibility matrix 1.1 iff this rectangle is not empty. Thus, all above
for exterior rectangle 4.2 holds for this interior rectangle.

18



Exercise 4.4. Formula 4.5 is not unique and depends on which XOR-
clauses we choose to exclude from formula 3.1. Suppose, we have excluded
the ith XOR-clause. Then,

- where each f;; is an exponential-size all-positive DNF on the remaining

variables. These implications create an AND-OR-NOT circuit of the linear
depth. Unlike circuits 2.12, this family of circuits is nonuniform.

5. SIMILARITY TO QUANTUM COMPUTER

System 4.1 reassembles quantum computer: variables z; act like qubits,
compatibility relations p;; act like entanglement, and the system itself acts
like superposition. And the following exact deterministic algorithm, which
is called depletion by multiplication, reassembles Grover’s algorithm [13].

Theorem 5.1. For compatibility matriz 1.1:
1). Let’s compute compatibility matriz 2.13 - matriz S(k);
2). Let’s iterate compatibility bozes zn compatibility matriz S(k) and re-
compute the current box with formula'4

Q%
(5.1) Saraa(k) = [\ Sara(k) - Saoy (k)

a=l
3). Let’s loop these iterations until compatibility matriz S(k) got finalized.
The final value of compatibility matriz S(k) is general solution of compati-
bility matriz 2.13 if k > 0.5k9, where Ko is uniform threshold 2.16.

Proof. Conjunction 5.1 depletes compatibility matrix S(k) because the
diagonal compatibility boxes are diagonal Boolean matrices. This algo-
rithm will stop after O((m*CE)?) loops because there are (m*Ck)? true-
components in compatibility matrix S(k) at most.

Due to the compatibility matrices’ symmetry,

Q% 1Rk
N Sora(k) - Saas®) = N\ 5515 A 5528)1Pu, IxIPay|
a=1 a=1 ge|Pq|

Therefore, solution grids in compatibility matrix 2.13 are invariants under
transformation 5.1. On other hand, due to equalities 2.14, the solution grids

14e use the following Boolean matrix multiplication "-":

(aiu) . (bm') = (V Qip A buj)
73

- where the number of columns in (a;,) equals the number of rows in (b,;). And formula
5.1 is the power of box matrix S(k) in the sense of the Boolean box matrix multiplication.

19



in compatibility matrix 2.13 are in one-to-one relation with the solution
grids in compatibility matrix 1.1:

V@) =8 & N @G =u)
(E[k)
- where ¥ and ¢ are index functions of the appropriate solution grids in
compatibility matrices 2.13 and 1.1. Then (see Exercise 2.1), while compat-
ibility matrix S(k) for k > ko/2 contains noise, there always will be such

indices ay, a9, @ € [|Q%|] = [C¥] that sgig2 = true and

V sgianses =V obgen \ o = false
BE|Pal| BE€[mig) €[]
for some 9 € ga, %1,%2,..+,%k € ga; Y gay, and the appropriate indices
Ko, ¢ € [k], from k-tuples pg, € Pa, and pg, € Pa,. Therefore, when
k > ko/2, the looping will continue while there is noise in matrix S(k). O

Formula 5.1 is a definition of the power of box matrix S(k) in the re-
spect to the Boolean box matrix multiplication. Therefore, because of the
conjunctions in the formula, the number of loops in the algorithm cannot
be greater than the length of the longest path in the graph (with loops)
whose adjacency matrix is compatibility matrix 2.13 after the replacement
of false by 0 and true by 1. It is Ck-partite graph. So, the number of
loops in the depletion by multiplication algorithm is O(C¥). And the time-
complexity of the depletion by multiplication algorithm can be estimated
as O((m*C¥)4) while its space-complexity is O((m*Ck)?), k > xo/2.

The depletion by multiplication is filtering of the compatibility boxes
each against others. Before the filtering, we may use Theorem 3.1 and split
the given compatibility matrix 1.1 into the O(mn) compatibility boxes of
size 3 x 3. It will make ko =3 and k£ > 2 > 3/2. Then, in full compliance
with Baker, Gill, and Solovey’s theorem [14], the number of loops in the
depletion by multiplication will be controllable with k from O(m?2n2) when
k =2, up to O(2™") when k =~ mn/2, and down to O(1) when k ~ mn.

The splitting of the compatibility matrix and selection of k = 2 will
minimize the time-complexity of the depletion by multiplication algorithm,
which will be O(m8n8), and the space-complexity of the algorithm, which
will be O(m#n*). The time- and space-complexities swapped in the mono-
tone circuit 2.11 and the depletion by multiplication ”quantum algorithm.”
So, it seems, these approaches are on Pareto frontier of the computational
complexity of the compatibility matrix method.

Indeed, the depletion by multiplication works as well for compatibility
matrix 2.4 and k > 0.5%;, where &, is uniform threshold 2.10.

Exercise 5.2. The depletion by multiplication works directly on compat-
ibility matrix 1.1 when m < 2, where m is maximum 1.2. For example, for
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the compatibility matrix from Exercise 1.3,

B2 =Biy1-B12AB12 - Baa ABy3 - By =
_(1 oY 1oy, (1oY /10 [01) (1 0)_
“\0 1 01 01 01 1 0 01 -
1 0 10 01 00
=(5 9)~(s1)~(Y2)=(55)

There is no need to continue the depletion because it will just propagate this
false-box Bj2 all over the rest of compatibility matrix. It is a pattern of
unsatisfiability when formula 5.1 produces (and it will always do so sooner
or later for the inconsistent problems) a compatibility box completely filled
with false. When the pattern of unsatisfiability is detected, the depletion
by multiplication may be stopped with the decision "No.”

6. APPLICATION TO THE P vs NP PROBLEM

6.1. SAT. Let f be the given CNF:
(6.1) f= N V L. L € {ga,~zs | a € A}
i€[n) pemy
- where z, are independent Boolean variables, and L,ﬂ are the variables’
literals. The problem is to decide whether or not f is satisfiable.
The following box matrix ((bf}',,)m,. xm; )Jnxn is a compatibility matrix for
SAT instance 6.1:
(6.2) b, = (i #iVR=v)A(i=5V L, #Li)
Solution grids in this compatibility matrix are in one-to-one relation with
the index-distinct implicants in the following DF of formula 6.1:
f= V L} AL2 A ALR,
(81,82, 0 )E[M1] X [m2] x... X [m4]
The one-to-one relation is:
- 2 n
¢ & Lioy ALy Ao ALY

- where function ¢ is the index function of a solution grid.
For SAT, Theorem 3.1 becomes exactly the Cook’s 3SAT theorem. Then,
Theorem 2.7 positively resolves the P vs NP problem and more:

P =NP C P/poly

And, in full compliance with Fortune and Mahaney’s theorems [15, 16],
monotone circuits 2.12 and the congruence classes of linear systems 4.4 are
examples of the NP-complete sparse set.
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Exercise 6.1. There is not CNF whose compatibility matrix 6.2 is com-

patibility matrix from Exercise 1.3.
Really, let’s assume the opposite. Let f be a CNF whose compatibility

matrix 6.2 is the above matrix B. Then,
f=(LivI) ALV I ALYV LY)
Then, there is the following contradiction:

b2 = false = L}=-L3

b =false =» Ll=-I3 } = -L2=L1=-L}=12

b3} = false = LZ=-L}

6.2. Subgraph isomorphism. Let g; = (V}, E1) and g2 = (Vz, E2) be
two graphs. The problems is to decide whether or not there is injection
¥ : Vi = V5 such that

(u1,u2) € By = (Y(u1),¥(u2)) € Ep
Let’s arbitrarily enumerate the graphs’ vertex sets:
Vi = {un, v, ..., yyyh Vo = {wr,we, ... w1}

Let A; = (a,‘,-)|v1|x|v,| and A; = (a'?j)l"zlxlval be the appropriate Boolean
adjacency matrices of graphs g, and gs:

a'c!j = ((ui,4;) € Ey), a?j = ((v,v)) € Ey)

The following box matrix B = (Bj;)|v;|x|v;| is a compatibility matrix for
the Subgraph isomorphism problem:

fiva)s z =J
(63) By = ~lw, i#3i A —aly
A2, i#] A at;j
- where I}y, is the V2| x |V3| Boolean identity matrix!®, and matrix =iy

is the per-component negation of matrix Ijy,,. Solution grids in this com-
patibility matrix are in one-to-one relation with the injections in question:

¢ &3 = (1 = wagay, Uz Wo(z), - U] > Wo(ua)y)
- where function ¢ is the index function of a solution grid.

15411 diagonal components equal true, and all off-diagonal components equal false.
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Exercise 6.2 (Clique). For the k-Clique problem adjacency matrix of
graph g; is

( 0 1 1 1 1 1 )
1 0 1 101 1
1 1 0 1 1 1
A = ..
11 0 1 1
1 1 1 1 0 1
\1 1 1 .11 0/,
And compatibility matrix 6.3 is
(Lvy Ax Az o Ay Ay Ay )
Ay Iy A . Ay A A
Av Ay Ly o Ay Ay Ay
s T T
Ae Ay Ay . Ly Ay Ay
Ar Ay Ay . Ay Ly A
\ 4 4 A . A A Iy /.

This compatibility-matrix encoding is Karp reduction of the k-Clique prob-
lem to the k-Clique problem in a k-partite graph. And this k-partiteness
unfastens Razborov's super-polynomial bound {17] on the problem’s circuit
complexity (later tightened by Alon and Boppana [18]) with the O(k?n?2)
"slack variables” added to Razborov’s indicator f of the C2 arguments.

The solution grids problem itself is an instance of the n-Clique prob-
lem in a n-partite graph with O(mn) vertices: we just nil in compatibility
matrix 1.1 all its diagonal components to obtain an adjacency matrix of
that graph. The n-partiteness of this model is the major benefit of the
compatibility-matrix encoding (See Exercise 2.1).

Exercise 6.3 (Graph isomorphism). Graph isomorphism problem is the
Subgraph isomorphism instance when |V}| = |V;| and |E;| = |E,|.
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Exercise 6.4 (Path and Cycle). The k-Path/Cycle problem is a Subgraph
isomorphism instance when graph g has adjacency matrix

c )

(0 1 0o . 0 o
0 1 . 0 0 0
0 1 0 . 0 0 0
4= L
0 0 0 . 0 1 0
0o 0 0 . 1 0 1
\c 0 0 0 1 0/,,

- where ¢ = 0 for the Path and ¢ = 1 for the Cycle. Compatibility matrix
6.3 is

(IIVzI A2 -l e oy oy C )
Ar Iy A2 T Sl Sy oy
iy Ar Dy e oy Sl Sy
B= . . . . . -
o I (V) (AT (AR VI (18
“lvy) Dy -l o A2 Ly Ag
\ C  olyy -l - -hvy A )kxk

- where C = —I}y;| for the Path and C = A; for the Cycle.
The Hamiltonian path/cycle problem is the instance when & = |V3|.

6.3. QSAT. Let F be the following quantified CNF in prenex normal form:
(6.4) F = Q12:1Q273 ... Qrzr f

- where matrix f is CNF 6.1; Q1,Q3,...,Qk € {V,3} are quantifiers; the
number of quantifiers equal the number of variables in formula f, k = |A];
and variables z1,zs, ..., T} in formula f are enumerated in the order of the
quantification. The problem is to compute F.

The following CF is equivalent CNF f:

k
F=fA Nava) & f
=1



Let’s compute truth table for each clause ¢; in CF f’, i € [n + k]:

# True assignments Clause ¢;
1 The 1st true assignment to The 1st meaning
the variables in clause ¢; of clause ¢;

|Ti| | The |T;|th true assignment to | The |T;|th meaning
the variables in clause ¢; of clause ¢;

- where length |T;| of table T; equals 2!°! for the clause ¢; in CNF f (|| is
the length of clause ¢; and i € [n]), and |T;| = 2 for the added clauses z;VZ;
(l € [k], i=n+1,n+2,...,n+k). In the terms of system 4.1, the numbers
of strings in table T; will be options for parts in the solution partition aka
clause ¢;. And the appropriate compatibility relations are: the pth string
in truth table T; and the vth string in truth table T; are compatible if
meanings of all variables in these true assignments do not contradict each
other (the same variables have the same true assignment), and the uth
and vthe meanings of clauses ¢; and ¢; both are true. Let’s graph all these
compatibility relations in the appropriate spaces [|T;|] x [|T;|] and aggregate
those graphics in a box matrix in accordance with the clauses’ indices:

(6.5) B = (Bij)nxn = (02, )1 Tx1T)) (n+4) x (n+)

Compatibility boxes in compatibility matrix B are arranged as follows:

Compatibility boxes Mixed
for clauses in CNF f compatibility
B= in the clauses’ order boxes
- Mixed Compatibility boxes
compatibility for clauses z; V %,
boxes l=12,...,k (Rk) X (k)

Solution grids in compatibility matrix B are in one-to-one relation with the
true assignments satisfying both formulae f* and f:

variables in clause ¢; have
¢ & their ¢(i)th true assignment from
the truth table for clause ¢;

- where ¢ is index function of a solution grid in compatibility matrix B and,
thus, the same variables in different clauses have the same assignments.
QCNF 6.4 can be expressed by SAT instance 3.2 for compatibility matrix
6.5 subject to the following constrains on compatibility boxes B;j, i, > n
(these 2 x 2 compatibility boxes are located in the lower-right corner, and
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these constrains express leaves in the splitting tree of formula F):

<7 ] Qn=V Q=3
Qi—n =V [| B} AbY A B A DY, = true | (b, V bi5) A (b5, V by) = true
Qin =3 || B ADL VO A, =true | bY, Vb, Vb Vb, =true
The following substitutions may be done in these constrains:

b, = x; A

- where xf‘ and xJ are the appropriate variables in formula 3.2 for com-
patibility matrix 6.5. And the constrains may be replaced by their CNF-
expressions and added to formula 3.2. There will be O(m?n?) clauses in

the resulting CNF, where O(mn) is the size of matrix f. And satisfiability
of that CNF will indicate whether or not F' = true. Therefore,

PSPACE = NP
- compatibility matrix method Karp reduced QSAT to SAT.

6.4. Reachability. Let g = (V, E) be a (multi)digraph (loops are allowed).
The problem is to decide whether or not there are k-walks and k-paths
starting in V; C V and finishing in V, C V.

Let A = (auv)|v|x|v| be a Boolean adjacency matrix of digraph g (see
Subsection 6.2). Let’s define powers!® of matrix A:

A% =1lv; AP = AP714, p>0; AP = (A7P)T, p< O

- where I|y, is the |[V| x |V| Boolean identity matrix. Let’s D; and D; be
Boolean diagonal matrices indicating sets V) and V; appropriately. Then,
the following box matrix is a compatibility matrix for the problem:

B = (Bij) (k+1)x (k+1)

- where

Dy, i=j=1

Ly, i=jé¢{l,k+1}
(6.6) B;; = Dy, i=j=k+1

A7~ %3 and it is the Walk problem
-Jly) AA’?, i#j and it is the Path problem

Solution grids in this compatibility matrix are in one-to-one relation with
the k-walks/paths in digraph g:

1—
(6.7) ¢ 43 (v, Vp(2)s - - - 1 V(k)s Vo(k+1))

- where function ¢ is the index function of a solution grid. This example
will help us to find domain of the compatibility matrix method and more.

16We use the following Boolean matrix multiplication: (@ip)(byj) = (V,, aip Abyj).
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Let M = (X,T,Q, 8, Qinit, Qaccept, Qreject) be a Turing machine, deter-
ministic or not:

§ C (Q — (Qaccept U Qreject)) X I' x @ x I’ x {(—-,—)}
Let function tpr : s € Z* = tp(8) € NU {0} = {0,1,2,...,00} be the
time during which machine M computes strings s € £* and accept or reject
them. Let T)s be the time-complexity of machine M:
Ty =sup{tm(s) | s € L*}
Let’s assume that machine M is such that
Tm < oo

Then, we can compute compatibility matrix 6.6 of the Ths-walks for the
following digraph g and sets V; and V5:

9=(@,QxQ), Vi =Qinit, V2 = Qaccept
Let B be that compatibility matrix:

B = ((6}2,)1Q1x1Q1) (Tse+1) % (Tas +1)

Solution grids in compatibility matrix B are in one-to-one relation 6.7 with
the Tps-walks in digraph g. Let C = {c} be the set of all computational
threads of machine M. Then, |¢| < Ty +1foranyce C. Andeachce C
creates a (|¢| — 1)-walk in digraph g. Let’s agree to continue each such walk
by the Tps — |¢| + 1 loops in the case of |c|] < Tps + 1. And let w, be that
Tam-walk in digraph g (possibly ending with the added loops) which was
created by computational thread ¢ € C. Then, there are index functions
¢. in compatibility matrix B which are matched to walks w, by one-to-one
relation 6.7. Then, the following compatibility matrix does exist:

B’ = (0)i@ixt@)@m+0xTu+1) V¥ V (BF (14.0)101x1@1) (T + 1) (Tar +1)
ceC

- where b;’;(‘.) be(s) BTC the appropriate components of our compatibility ma-
trix B. And solution grids in compatibility matrix B’ are in one-to-one
relation with the accepting computational threads of machine M:

de &3 w, &3 ¢
- where c are accepting computational threads.

Theorem 6.5. The compatibility matriz method’s domain consists of those
Turing-decidable problems whose time-complexity is finite. And any such
problem allows an adequate encoding by a compatibility matriz whose size
is linear in the problem’s time-complezity.
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Proof. We just have seen that any Turing-decidable problem of the finite
time-complexity allows such an encoding. And on the other hand, we have
seen in the previous sections, any problem which allows the compatibility-
matrix encoding can be solved by a decider (Sipser’s decider [19], Kozen’s
total Turing machine [20]) in the time polynomial in the compatibility ma-
trix’s size. O

Exercise 6.6. For the given NDTM of the finite time-complexity, we can
replace the polynomial time-bound in the Garey and Johnson’s proof [21]
of Cook-Levin theorem [9, 22] by the machine’s time-complexity. Then, the
argument will produce a SAT instance with a quadratic number of clauses
and variables, quadratic in the machine’s time-complexity. And compati-
bility matrix 6.2 for that SAT instance will be another compatibility-matrix
encoding of the given NDTM.

Theorem 6.5 validates all the above results for the Turing-decidable prob-
lems whose time-complexity is bounded by a finite function. And the results
may be summarized as the following complements to Savitch’s theorem [23]:

NTIME(t) C DTIME(t®), NSPACE(s) € DTIME(s'6)
And it directly proves

P = NP = PSPACE
EXPTIME = NEXPTIME = EXPSPACE
k-EXPTIME = k-NEXPTIME = k-EXPSPACE, k > 2

- and so on for other complexity classes closed under Karp reduction.
Compatibility-matrix encoding 1.1 is Post reduction of the encoded prob-
lem to the following finite recursive language!”:

L =[m]o[mso...0[my]

And any finite recursive language allows the compatibility-matrix encoding
due to Theorem 6.5. So, domain of the compatibility matrix method may
be called FINITE.

7. COMPATIBILITY TENSOR

Turing-decidable problems can be encoded with their multidimensional
views as well as with their 2D-views - it is often even easier. The multidi-
mensional views will create the multidimensional Boolean box arrays aka
Boolean tensors. And these blueprints can be formalized as follows.

17957 is the concatenation operator.



Definition 7.1. Compatibility tensor T of the (§)-valency is a symmetric
k-dimensional array of the Boolean k-dimensional arrays:

1). T = (Tilig...ik)nxnx e Xn
(7 1) 2)' 7:112 A = (t;‘ll"ﬁ‘z ”;‘k )m1 Xmz X..Mmg
: 3). tpie, € {false,true}
4. topg o=t

5). t;}:‘z‘z "Iu. = A ,pe[k](iaiié‘lﬁ V fa = U8)

- where numbers n,m;, my, ..., M, and maximum m = maX;e[s) ™; are the
tensor’s sizes; and number k is the tensor’s dimension. The k-dimensional
boxes!® T} 4,...;, are called compatibility boxes. The components ¢j1/2--%
which equals true are true-components, and the rest components of the
tensor are false-components.

The tensor’s index function is any one-meaning function

¢: 1€ [n] » ¢(i) € [my]

Each index function creates the following k-dimensional sub-array of the
tensor which is called grid of components or just grid:

{t¢(t1)¢(tz) B(ik) }M,iz v--uikeln]

This grid of components is a solution grid if all its components equals true,
i.e. if its index function satisfies the following functional equation:

(7.2) ;}(‘")4:(12) B(in) = TTUE G102, 0k € [n]

- solution grid in compatibility tensor T is a k-dimensional orthogonal lat-
tice of true-components, one component per compatibility box.

Further, true-component t"""2 ‘5‘:‘ = true is a noise if functional equa-
tion 7.2 is inconsistent subject to the following constrains

¢(i1) = #1, ¢(iz) = #2: cery ¢(ik) =

Otherwise, true-component t:?.‘,'zg'%‘g belongs to a solution grid.

Inversion of all noisy components in compatibility tensor will transform
it into its general solution. The general solution is a compatibility tensor on
its own. And the general solution of tensor 7.1 contains {rue-components
iff compatibility tensor 7.1 contains solution grids.

Exercise 7.2. Any compatibility matrix 1.1 is a compatibility tensor of
the (3)-valency; the matrix’s major diagonal is a compatibility tensor of

1830me of the boxes will dimensionally degenerate when m; = 1 for some i € [n].
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the (})-valency; and for any k > 1, the following conjunctions create a
compatibility tensor of the (§)-valency:
B = A bk,
(il”)u(jyv)e{(il1“1))(iﬁrﬂz)v-"(ikiﬂk))
- where i1,12,...,% € [n] and (u1, p2,..., k) € [My] X [my,] X ... % [my,].
Compatibility tensors are used for encoding of problems exactly as the
compatibility matrices. And the only requirement is the encoding adequacy:

there are solution grids in the compatibility-tensor encoding of the given
problem iff that problem is consistent, i.e. iff it has solutions.

Exercise 7.3. Let compatibility relations in system 4.1 be k-ary relations:
Piyig...ix g 0i| X Oiz X.ooo X Oik

- where (partially) diagonal relations are the appropriate (partially) inclu-
sion relations. Then, the k-ary graphics of these relations will create an
adequate compatibility-tensor encoding of the system.

Everything from the previous sections can be edited for the compati-
bility tensors. Yet, let’s notice, the solution grids existence problem for
compatibility tensor 7.1 is Turing-decidable: we just iterate all Hie[n m;
index functions of the tensor and test them with equation 7.2. Theretjore,
due to Theorem 6.5, any compatibility tensor allows the compatibility-
matrix encoding. The encoding can be done with the following protocol: in
the compatibility matriz of a compatibility tensor, the matriz’s off-diagonal
compatibility bozes encode the tensor’s box structure while the matriz’s di-
agonal compatibility bozes encode the tensor’s components.

Exercise 7.4. For compatibility tensor 7.1, the protocol can be realized
as follows (in the enumeration invariant form):

(7.3) B = (Bajaz)nkxnt = ((bg,‘gf)mm my XTTEzy Mg Inkxnk

- where
a = (zé,zé,,z}‘) € [n]¥;
as = (7,11, i3,...,12) € [n]¥;
Br=(ui, 43, .., 1}) € [ma] x [myy] x ... x (myl;
Be=(u},13,...,p}) € [maz] % [migl Xove X [mi?,];
and
bt =(n#mVEg) A (m=aev A Gl #i2, v By, = Ha3, )i

w .wze[kl

1.1 .1
o1 1112...3,‘ )
where tg, =t wlud. o 8T€ the tensor’s components.

For example, compatibility matrix 2.4 is a rationalization of compatibil-
ity matrix 7.3 for compatibility tensor 1.1.
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8. CONCLUSION

This article presented the compatibility matrix method a generalization
of descriptive geometry on the combinatorial problems. In the method,
problems are encoded by the "blueprints” of their solutions, and the so-
lutions themselves become an orthogonal-lattice pattern in the encoding.
Such a regularization of the problems allows perform parallel testing of all
guesses with the efficient deterministic algorithms - the article presented a
few. The encoding is Post reduction of Turing-decidable problems to finite
recursive languages, and computational complexity of the compatibility ma-
trix method is basically polynomial in the computational complexity of that
reduction. Further, domain of the compatibility matrix method is exactly
the class of finite recursive languages. The class was called FINITE. And,
because any Rado’s busy beaver [24] belongs to FINITE (it is easy to see),

ELEMENTARY c FINITE C R

And, the compatibility matrix method shows, the time and space complex-
ities of the problems in class FINITE are polynomially equivalent.
There are some demos of the compatibility matrix method at [25].
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