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Abstract
A bi-level balanced array (B-array) T with parameters (m, N,t) and
index set ' = (g0, p1, . . ., p¢) is a matrix with m rows, N columns,

and with two elements (say, 0 and 1) such that in every (t x N)-
submatrix T* (clearly, there are (’:‘) such submatrices) of T, the
following combinatorial condition is satisfied: every (¢ x 1) vector o
of T* with 7 (0 < i < t) ones in it appears the same number p; (say)
times. T is called a B-array of strength ¢t. Clearly, an orthogonal
array (O-array) is a special case of a B-array. These combinatorial
arrays have been extensively used in information theory, coding the-
ory, and design of experiments. In this paper, we restrict ourselves
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to arrays with ¢ = 4 and ¢t = 6. We derive some inequalities involving
m and u;, using the concept of coincidences amongst the columns of
T, which are necessary conditions for B-arrays to exist. We then use
these inequalities to study the existence of these arrays and to obtain
the bounds on the number of rows (also called constraints) m, for a
given value of p'.

1 Introduction and Preliminaries

For the sake of completeness, we first state some basic concepts and defini-
tions.

Definition. A binary arrey T with m rows (constraints, factors), N
columns (runs, treatment-combinations) and with two symbols (levels) is
merely a matrix T of size (m x N) with two elements (say, 0 and 1).

A certain combinatorial structure imposed on T leads to the definition of
a balanced array (B-array).

Definition. T is called a B-array of strength ¢t (1 < t < m) if it satisfies
the following condition: in every t-rowed submatrix T* (there are (77) such
submatrices) of T, each (¢t x 1) vector ¢ of weight i (0 < i < ¢; the weight
of o refers to the number of 1s in it) occurs with the same frequency p; (say).

The vector p' = (uo, #1,42,...,4:) and m are called the parameters of
the array T. For a given y', the number of runs N is known. Clearly,

N = z::u (:)“'

Definition. If u; = u for each 4, then the B-array T is called an orthogonal
array (O-array), and N = 2! . 4 in this case.

Thus, B-arrays include O-arrays as a special case. Also, the incidence
matrix of a balanced incomplete block design (BIBD) is a special case of
a B-array of strength ¢ = 2. B-arrays have been shown to be related to
various other combinatorial structures such as rectangular designs, group
divisible designs, nested balanced incomplete block designs, etc. B-arrays
and O-arrays of different strengths have been extensively used to construct
balanced fractional factorial designs (FFD) of varying resolutions. For ex-
ample, it has been shown (Chakravarti [5]) that a balanced fractional fac-
torial design T of 2™ (meaning m factors, each at two levels, 0 and 1) of
resolution V is identical to a B-array with two symbols and strength ¢ = 4.
O-arrays have been extensively used in information theory, coding theory,
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statistical quality control, and were used in disproving Euler’s Conjecture
on the existence of orthogonal latin squares. Bose [2] points out the connec-
tion between information theory and design of experiments. Chakravarti
(at the suggestion of C.R. Rao) introduced B-arrays in (5] (under the name
of partially balanced arrays). O-arrays clearly do not exist for every value of
N (the number of treatment-combinations) where as B-arrays do not have
this drawback. For example, to construct an O-array of strength ¢ = 4, the
total number of treatment-combinations has to be a multiple of 16. Thus
for m = 7 factors and t = 4, there does not exist any O-array for N = 44
where as there exists a B-array.

For this paper, we restrict ourselves to B-arrays with ¢ = 4, and 6.
These arrays, under certain conditions, would allow us to estimate all the
effects up to and including two-factor interactions and three-factor interac-
tions (higher order interactions are assumed to be negligible), respectively.
To construct such arrays, for a given index set ' and the maximum possi-
ble value of m, is a very important and complex problem in combinatorics
and design of experiments. Such problems for O-arrays have been inves-
tigated, among others, by Bose and Bush [1], Chopra, Low, and Dios [8],
Hedayat, Sloane, Stufken [13], Rao [18, 19, 20], Seiden and/or Zemach (22,
23, 24], and Yamamoto et. al [28]. The corresponding problem for B-
arrays has been studied, among others, by Chopra, Low, and Dios [10, 11,
12], Chopra and Bsharat (7], Rafter and Seiden [17], Saha, Mukerjee, and
Kayeyama [21], Yamamoto, Kuwada, and Yuan [27], etc. To gain further
insight into the importance of O-arrays and balanced arrays, to study their
relationships to other combinatorial structures, and to gain understanding
of their usefulness to solving problems in design of experiments, the inter-
ested reader is referred to the list of references at the end (which by no
means, an exhaustive list) of this paper, as well as further references listed
therein.

In this paper, we obtain some inequalities involving parameters m and
y' for B-arrays of strength ¢t = 4 and 6. These are necessary conditions for
the existence of these arrays. Furthermore, we make use of these conditions
to obtain, for a given ', the maximum value of m. We also include some
examples to compare the current results with the results published earlier to
demonstrate that the results presented here are better. In obtaining these
necessary conditions, we make use of the concept of coincidences among
columns and the positive semi-definiteness of the moment matrix.

2 Main Results with Illustrative Examples

The following results can be easily established.
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Lemma 1. A B-array T with indez set u' = (po,p1,...,44¢) and m =t
always erists.

Lemma 2. A B-array T of strength t and index set p’' = (po,p1,-. ., pe)
is also of strength k, where 0 < k < t.

Remark. It is obvious that the elements of the parameter vector of T' (when
considered as an array of lower strength k) are linear combinations of the
elements of the index set u'. For example, if T is of strength ¢ = 4 with
#' = (1o, B1, . - -, Ha), then the index set of T (when considered as an array
of strength 3) is (po + 1, 1 + p2, 2 + p3, 43 + pe). In general, for an array
T of strength t, the jth element (0 < j < k) of the parameter vector of T
(when viewed as an array of strength k) is given by

t—k
A(4,k) = Z (t _1, k)u.-.,.j, where j =0,1,2,...,k, (k<t). (2.1)

1=0

From (2.1), one sees that A(t,t) = u:, A(4,t) = p;, and A(5,0) = A(0,0) =
N.

Definition. Two columns of a B-array are said to have i coincidences if
the symbols appearing in these two columns in ¢ of the rows are the same.

Remark. It is clear that for an m-rowed B-array, the number of coincidences
i must satisfy 0 < ¢ < m.

Lemma 3. Consider an m-rowed B-array T of strength t = 4, and suppose
there is a column (say, the first one) in T having | ones (0 <1 < m) in
it. Let z; denote the number of columns in T having j coincidences with
the first column, and let Ly = Y77 o j*z; (where 0 < k < 4). Then, the
following results must hold:

Lo=ixj=N—1,
j=0

B=3im =3 () (77 men -1,

1=0
o 2 1\ (m =1
= 2z, = | - ; _
L, JZ:OJ z; L1+2.‘z=;(z,)(2_i)[A(z,2) 1],
= AN
La=Zj3xj=3L2—2L1+3!Z(i)(3—i)[A(i’3)_1]’
j=0 =0
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m 4
. N/m-1 ,
Ly= j§=034x]~ =6L3 —11Ly +6L; + 4! '.=E - ('!.) (4 _ 7:)[.4(’1.,4) - 1].
2.2)

Proof. (Outline.) Let us consider some column (say, the first one) of T
of weight I. Now, let us consider any four rows of T'. If the first column
contains (0,0,0,0)T, then clearly it would appear (uo—1) more times within
the remaining columns. Similarly, if it is a 4-vector of weight ¢ (1 <1 < 4),
it would appear (u; — 1) more times amongst the other columns. But the
first column has ! ones in it. Therefore, the number of ways to select four
rows such that there is a 4-vector of weight ¢ (0 < i < 4) in the first
column is (})(7=}). Let T* be the total number of 4-tuples which appear
in columns (other than the first) identical with the corresponding 4-tuple
in the first column. Then, T* = Yi, () (7D (pi — 1). Now zj, the
number of columns (other than the first) having j coincidences (5 > 4),
will contribute (3) to T*. Thus, T* =370, @zs = im0 (3)2;- Equating
the two values of T* gives us (after some algebraic manipulation) the five
results of Lemma 3, for i =0,1,2, 3, and 4. ]

Let us make some remarks on the non-negative definiteness (n.n.d) of the
matrix (even order) of moments. The quantities Ly = 3~ j*z;, (0 < k < t),
are called moments of order k around zero. If t = 2u (even), then the
matrices (for every positive integer )

Ly=N L, Ly - L,
Ly Lo L -ev L
M2/.: = . . .3 . #.+1 (2.3)
Lp Lu+1 L/u+2 te LZ#

are called matrices of moments, and are non-negative definite. This can
be seen by observing the non-negative definiteness of the quadratic form
Y ieolco +arj + azj? + -+ + a,j*)?z; in variables ag, oy, 02, ..., 0.

We now present the main results for B-arrays with ¢t = 4.

Theorem 1. Consider a B-array T of strength t = 4, with index set ' =
(0, 1, - - - i24), and with m constraints. Let | (0 < < m) be the number
of ones in some column (say, the first) of T, and let z; be the number of
columns having j (0 < j £ m) coincidences with the first column. For T to
erist, the following conditions must be satisfied:

LoLy > L3, (2.49)
LoLoLg 42010303 > LoLg + L?L‘l + Lg, (25)
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where Ly = E;-';oj"xj, 0<k<4.

Proof. (Outline.) We obtain M, (a 3 x 3 matrix) from (2.3) by setting
p# = 2. This is a n.n.d matrix which means that all of the determinants of
its leading principal minors are greater than or equal to 0. Clearly, there
are only two such minors: one is a 2 x 2 and the other is the entire matrix
M,. Conditions (2.4) and (2.5) are obtained by expanding (respectively)
the determinants of the following leading principal minors of Mj:

Lo L Ly
(Ii" fl) Mi=|L, L, Ls|.
1 Lo Ly Ls La

Remark. We have already expressed [see (2.2)] Li in terms of the pa-
rameters of array T. Thus, inequalities (2.4) and (2.5) involve only the
parameters m and u;s of array T. Given El , these inequalities would only
involve m.

a

Next, we present the main results for ¢t = 6.

Theorem 2. Let T be a B-array of strength t = 6, with m rows, indez set
', and having a column (say, the first one) withl ones, (0 <! < m), in it.
For T to exist, the following conditions must be satisfied:
LoL, > L3, (2.6)
LoLaLy+2L1LaL3 > LoL2 + L2L4 + L3, 2.7
LoLoLyLg +2LoL3LaLg + L%Lg +2L,LoL3L¢ + 2L1L3L§
+2L3L3Ls + L3L2 + L3 >
LoLng + LoLgLs =+ LgLﬁ + L%L,;Ls + 2L1L§L5
+2LyLaLyLg + L3Lg + 3L, L2L,, (2.8)

where Ly = 337" j*25, 0 < k < 6 and z; being the number of columns of
T having exactly j coincidences with the first column.

Proof. (Sketch.) We take 1 = 3 in (2.3) and use the property that the
determinants of each of its leading principal minors (i.e My, My, and Mg)
are greater than or equal to 0. a

In order to express each Ly in terms of the parameters of array T, we
merely quote results for t = 6, corresponding to the ones given in Lemma
3fort=4.
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Lemma 4. Let T be a B-array of strength t = 6, having m rows, index
set p/, and having a column (say, the first one) with | (0 <1 < m) ones in
it. Let Ly = Y ;- j%x;, where 0 < k < 6, and z; denote the number of
columns of T having exactly j coincidences with the first column. Then for
T to exist, the following conditions must be satisfied:

Lo=z.’l:j=N—1,
j=0

L=3om =3 () (7m0 -1,

=0
L 2 1\ (m—1
L2=ij,-=L1+2!Z(.)(2 .)[A(i,Z)—-ll,
j=0 i=0 \! —t
™ S N\ (m—1
3 - ;
L3=j§oja:,-_3L2—2L1+3!iz=;(i)(s_i)[A(z,3)—1],
m 4
4 AWE R ,
'L4=§OJ z,-=6L3—11L2+6L1+4!§(i 4y JJAGH -1,

m
Ls=)_ j%t; = 10Lq — 35L3 + 50L — 24L, +

=0
5> () (72 e -

=0

m
Ls =Y j%z; = 15Ls — 85L4 + 225L3 — 274L; + 120L; +
=0

6! i (i) (’:_‘:) [A(i,6) — 1]. (2.9)

=0

3 Discussion with Illustrative Examples
of the Results

In order to check the existence of B-arrays for a given value of m and p’,
and/or to find the max(m) for a given y/, a computer program was pre-
pared. We use conditions (2.4) and (2.5) for arrays with ¢ = 4, conditions
(2.6), (2.7) and (2.8) for t = 6. In all instances, we take I = 0. The B-array
T will not exist if at least one inequality is contradicted. T' may exist if all
of the inequalities are satisfied. The conditions presented in this paper are
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necessary conditions for the existence of B-arrays. To obtain max(m) for
a given p', we substitute into each condition, the value of u’ which yield
mequa.htles involving only m. We then check each value of m, starting with

=t (= 4 or 6) and continue until the inequality is not satisfied. Let us
suppose the first time contradiction occurs is at m = k+1, (say). Then, we
list k as the maximum value of m, i.e max(m) < k. It is clear that finding
max(m) for a given y’, is tantamount to accommodating more factors in a
experimental situation and thus could lead to cost savings. Next, we give
some illustrative examples for ¢ = 4 and 6 and compare the present results
with those published (7, 9, 10, 12]. In all the cases, we find that (2.5) for
t =4 and (2.8) for t = 6 give us the best results.

Ezamples. (t = 4): Take, for example, u' = (8,8,8,1,4), which was used
in [10, 11]. From (2.4) and (2.5), we obtain (respectlvely) m < 12 and
m < 10, while results in [10] give us max(m) > 500 and those in [11] give
us m < 11. Thus, m < 10, obtained by using (2.5), is the best one. Simi-
larly for p' = (4,4,4,4,3) and (4,1,1,5,1), we obtain (respectively), using
(2.5), m < 8 and m < 4. Correspondmg results for these two particular
arrays are m < 11, m < 5 in [10], and m < 10, m < 4 in [11]. Thus, (2.5)
is either better or does as good a job compared to earlier published results.

Ezamples. (t = 6): Now, let us consider some a.rrays found in earlier
papers [9] and [11]. Take the following values of u: (1,1,2,1,4,1,1),
(4,4,3,2,3,4,4), (1,2,1,1,4,3,2), (9,8,8,8,6,7,8), a.nd(8775668)
We use (2.6), (2.7), and (2.8) and list the max(m), for each u'. The best
values of m are m < 7, m < 11, m < 6, m < 9 and m < 19, respectively.
In [11], the corresponding results arem<8 m<13, m<8 m<9and
m < 23, respectively. The inequalities in [9] give us the following max(m):
m<9 m<18 m <10, m <12 and m < 36. The first set of results is
better. These computations clearly demonstrate the improvements on the
earlier values of max(m), for some values of y'.

Remark 1. It was observed, while computing, that the values of max(m)
for arrays with “ (f" = Gy s Byl [ — b) and (l“ O Hy ey ey ey by e — b)
with 0 < a,b <1, (a = b # 0), are quite sharp for several cases. These
arrays are very near O-arrays in the sense that we need to attach (to each
one) a vector of weight zero and/or a vector of weight m. For example, for
t = 4, we consider p’ = (5, 6,6, 6,5), (5,6,6,6,6), (4,5,5,5,4), (7,8,8,8,7),
(8,8,8,8,7), (36,37, 37, 37, 36), (37, 37, 37, 37, 36), etc. and see that the val-
ues of max(m) are 8, 9, 7, 7, 9, 20 and 24, respectively. For ¢t = 6, we take
¥ =(2,33,3,33,2), (3,3,3,3,3,3,2), (3,4,4,4,4,4,3), (3,4,4,4,4,4,4),
6,7,7,7,7,7,6), (8,9,9,9,9,9,8), etc. and see that the values of max(m)
are 7, 9, 8, 8, 10 and 13, respectively.

178



Remark 2. We do not obtain much useful information about max(m) for O-
arrays. However, for O-arrays with index set 4 = 1, we obtain max(m) < 7
for t = 6, and max(m) < 5 for t = 4. It is not difficult to check that
O-arrays with t = 6 for m = 7, and t = 4 for m = 5 do exist and can be
easily constructed.
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