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ABSTRACT: We will study the random perturbation on a linear differential
equation as a nowhere differentiable function. The noise in the historical Langevin
stochastic differential equation will be treated as a nowhere differentiable model
for Brownian motion. A short introduction of Wiener process leading to Ito’s
calculus will be used in derivation of the mean and variance of the solutions to
the Langevin Equation. Computational algorithms were developed and applied
to study the numerical solutions to linear stochastic differential equations. Sym-
bolic computation and simulation of a computer algebra system will be used to
demonstrate the behavior of the solution to the Langevin Stochastic Differential
Equation when the perturbation is density independent.

1 Historical Background:

Brownian Motion: Brownian motion, named after Robert Brown who
first observed the motion in 1827, was eventually analyzed by Albert Ein-
stein [15]. Brown observed that pollen grains immersed in water are ran-
domly bombarded by the molecules of the surrounding medium. Einstein
pointed out that this motion is caused by random bombardment of heat
excited water molecules on the pollen. The mathematical model of Brown-
ian motion has several real-world applications. An often quoted example is
stock market fluctuations. However, movements in share prices may arise
due to unforeseen events which do not repeat themselves, so physical and
economic phenomena are not comparable.

Louis Bachelier, a Ph.D. student of Henri Poincare, introduced Brown-
ian Motion in 1900 as a model for the dynamic behavior of the Paris stock
market [5]. Notice that this took place 5 years before Albert Einstein
developed a physical model of Brownian motion to describe small particles
suspended in a liquid and 23 years before Norbert Wiener gave the first
rigorous mathematical construction of Brownian motion. For that reason,
Bachelier is now considered by many as the founder of modern Mathemat-
ical Finance. See the article by Robert Jarrow and Philip Protter for the
historical summary ([15]).
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Brownian motion is among the simplest of the continuous-time stochas-
tic (or probabilistic) processes and in mathematical language is called sto-
chastic process, whose time derivative is everywhere infinite. Ran-
dom Walk is a good example of a two dimensional discrete Brownian
motion that can be considered as a "drunken man wandering around the
road to his home". More precisely, each of his steps (in both x- and y-
directions) are independent normal random variables.

The origin of the Langevin Equation: Langevin observed random
movement of particles in fluid due to collisions between molecules of the
fluid. Brownian motion was described by Langevin in 1908 [8] through his
famous equation
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where 7 represents the position of the particle and m denotes the particle’s
mass. The force acting on the particle is written as a sum of a viscous
force proportional to the particle’s velocity (in Physics called Stokes law),
and noise term 7(t) representing the effect of the collisions between the
molecules of the fluid.

Readers who are computational expert may find interesting to see some
inter-related of the Langevin’s equation to other disciplines. The organiza-
tion of the paper begins with the derivation of the Langevin equation, pre-
sentation of some examples, nowhere-differentiability, examples of nowhere
differentiable noise, introduction to stochastic calculus, Brownian motion,
Ito’s calculus, computation of the solution- mean - variance, and upper-
lower fluctuations.

1.1 Derivation of Langevin Equation:

In statistical physics, a Langevin equation is a stochastic differential equa-
tion describing Brownian motion using potential theory. The first physical
use of the Langevin equation: potential is constant, so that the acceleration
of

i) a Brownian particle of mass m is expressed as the sum of a viscous
force which is proportional to the particle velocity (Stokes’ law),

ii) a noise term representing the effect of a continuous series of collisions
between the atoms of the underlying fluid (systematic interaction force due
to the intermolecular interactions).Consider a colloidal particle suspended

in a liquid.
On its path through the liquid it will continuously collidﬂr)ith the liquid

molecules. It will experience i) a systematic resisting force R(t) proportional
to its velocity, and directed opposite to its velocity. ii) In addition, the
—)

particles will experience random forces with the resultant F(t).
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The equation (1) can be translated to a linear system of differential equa-
tions —_
dr(t) _ ot d'v(t)

5 = (), =R+ F@ = -Bu@ + F() )

In hydrodynamics the constant of the friction force is given by g = sl"'fﬂ

where 7 is the viscosity of the solvent. The random force F(t) = w(t) is
the average resultant force of the collision of millions of particlg_s_._) Using

standard differential and integral calculus a general solution for v(t) is
t
0B = Re?* + / e~A(t=2) F(5}ds. @)
0

One cauintegrate the first equation in this system to evaluate the position
vector r(t). This will be a determxmstlc solution of the system if we are

certain about the average force function F(t) Due to the uncertainty nature
of the random forces generated by the collisions of particles, the Riemann
integral on the right hand side w111 not be well-defined.

We will call the random force F(t) W; a noise or perturbation which
causes the solution integral to be undefined in Lebesgue-Steiltjes sense.

1.2 Motivation and Approach:

Many aspects of the Langevin equation and its difficulties in using the
Lebesgue - Stieltjes integral have been studied (see reference Schuss, Z.
1980, p.61, {17]). We would like to use a computational approach to simu-
late the solution of the following stochastic differential equation

d(y(t),t) = —B(t) - y(t)dt + g(t) - dw(?). (4)

After a short review of the materials related to noise, nowhere differ-
entiability, integrability, and stochastic calculus, we will use a computer
algebra system to demonstrate and simulate the solution.

We are assuming that the general solution of the Langevin SDE will
be created by two forces i) deterministic force that can be predicted by
Newton’s law or any set of mathematical modeling postulates. ii} the noise
created by the stochastic force which represents the fluctuation. In other
words, the SDE model has a superposition property. It, is the sum of
the deterministic and the stochastic solution.

Let us call the deterministic solution Y(t) and the non-deterministic
solution X(t). A central notion for stochastic calculus is that of a continuous
random process Z(t) that can be written as the sum of a local nowhere
differentiable function (for example, Brownian motion) and a drift process
Y (a continuous process of locally bounded variation, typically the solution
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of some conventional differential equation). The decomposition Z{t) = Z(0)
+ Y(t) + X(t) is unique and can be thought of as a decomposition of Z
into Y-signal Y plus X- noise [15).

2 Nowhere Differentiability and Integrability:

It is natural to ask the question of under what conditions the Lebesgue-
Stieltjes integral ( LS-integral) exists. In a simpler case, the following the-
orem is a criteria for existence of the Steiltjes integral (S-integral). The
integral [ : g(t)dw(t) exists if the function g(t) is continuous on [a,b] and
w(t) is of finite variation on [a,b]. (see p.230 [4]).

The simplest existence theorem states that if the function f is continuous
and w is of bounded variation on [a, b], then the integral exists. A
function w is of bounded variation if and only if it is the difference between
two monotone functions. If w is not of bounded variation, then there will
be continuous functions which cannot be integrated with respect to w. In
general, the integral is not well-defined if f and w must share any points of
discontinuity, however this sufficient condition is not necessary. How do we
integrate [ b g(t)dw(t) when the function w(t) is not of finite variation?
Integrabifity in Riemann- Steiltjes Sense: We apply the basic ideas
behind the Fundamental Theorem of differential and integral calculus in all
areas of computational science, engineering, and mathematics. Under what
conditions are these two expressions equivalent ?

dy(t) = £ty (D)t + gB)du(s) %)
(0 =3(to) + [ " Flo,u(s)ds + / " gls)du(s) ©)

In the sense of Lebesgue-Stieltjes, the integrands g should be continuous and
w(t) should be absolutely continuous (bounded variation in S-integral).
We conclude that the following is a relation which may be used in the
algorithm for computation ({2},(3],(12]):

b b
/a 9(t) - dw(t) = g(bw(b) — g(a)w(a) — / w(t) - dg(t).

a

Important Note: One can demonstrate that if w is differentiable
then the Lebesgue-Stieltjes integral can be expressed by pure Riemann
integration in the following form, that is

/ o(t) - du(t) = / ot) -/ (t)dt )
(a,b) (a,b]
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Let us assume that the symbol ND represents a class of functions continuous
and nowhere differentiable. It can be verified that
i) if a function w € ND, and g is differentiable on R, then g+w € ND.
ii) If a function w € ND, and f is differentiable on R, and g(z) # 0,Vz €
R, then g-w € ND.
Thus the integrand in the second integral of the integration by parts formula,
will not be differentiable. This should not prevent us to realize that the
integral does exist.

2.1 Nowhere Differentiable Perturbations and Noise:

The concept of the continuous nowhere differentiable function was first
explored by Andre Marie Ampere in 1806 (. [15 ]). He was unsuccessful in
his attempt to demonstrate by example. The first example was presented by
Weirestrass fifty years later. In the practical application of SDE, one of the
characteristics of the random perturbation is the nowhere differentiability
of the noise. We would like to present a few examples.

Example 1- (Weirestrass Function) On the advanced calculus level,
it can be verified that a function

w(t) = iakcos(bkwt) (8)
k=1

is nowhere differentiable but continuous everywhere, where a and b satisfy
certain relations (0 < a < 1,b€ Z*,and a-b > 1+ 3 * m/(2) (see: (13 ],
page 38-41).

Example 2 (van der Waerden function): The following function
which is continuous and nowhere differentiable, is known as van der Waer-

den’s function (see [1] for van der Waerden 1930) w(t) = 3o, 3'21%2—"1

2.2 Stochastic Integral Calculus:

Suppose that f(t) is a stochastic process and W; is a Wiener process,
then the stochastic integral of f(t) with respect to a process W is a random
variable defined as

= -/[a,b] f(£)dW, = lim ; ftim1)AW (L)

where AWg‘. = W(ti) - W(ti_l).
Stochastic Integral is not consistent with classical integral Calcu-

lus:
It makes a difference in how the independent variable 7; in [t;_1,t;] is se-
lected. We will show the differences through the following example where
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the result will not be consistent with traditional integral calculus. If this
independent variable is selected at the midpoint 7; =(¢;—; + ¢;)/2 the in-
tegral is called Strotonovich integral, which will be consistent with the
regular differential and integral calculus ([2],[11]).

Example 3: Assume g(t) = W; to be the Wiener Process (standard
Brownian motion). Compute fol W,sdW, using stochastic integral.

-Using left hand point:

Iy = [g,1)9(8)dW; = limn .00 3oy 9(tic1) AW (8:) =
limn-—»oo Z?:l Wt,’—[ : AW(t‘)

-Using right hand end point:

I = f[O,l] g(t)th = lim, Z?:l g(ti)AW(ti) =
lim, o0 2?=1 We, - AW(2;)

It can be proved by indirect computation that

L-5L= H-F’lnn—-w(zz;l Wt;-n . AW(ti) - Z?:l Wt.‘?; AW(ti)) =
limﬂ—°°°(z:i=1(wii - Wt-’-l) : AW(tt) = lim‘n—’OO(Zi=1 (AVVt.')2 =

I1(t) = (W2 —t) and I5(t) = 3(W? +t). This computation shows that the
stochastlc integral is inconsistent with the classical integral calculus where
fo zdz = 532 Thus, these two computations do not lead to the same result
but I2 = I1 +t. using the telescope law and gives the following result:

Jo WedW, = § T2, (W2(5) - W(a)) — }[b - of?

3 Brownian Motion and Wiener Process:

In mathematics, Brownian motion is described by the Wiener process; a
continuous-time stochastic process named in honor of Norbert Wiener.
Brownian motion is one of the best known Lévy processes (cadlag stochastic
processes with stationary independent increments) and occurs frequently in
pure and applied mathematics, economics and physics. Let X(t) be the co-
ordinate of a free particle on a real line. In modeling the stochastic process
Einstein was able to show the following properties for Brownian motion:
(i) The increment X (¢;) — X(t2) has a normal distribution for every ¢,
and t; on the real line with (ii) the expectation E{X(t;) — X(¢2)} = 0
and (iii) variance E{[X (t1) — X (¢2)]?} = 2D - |t; — t2|, where D is a phys-
ical constant. iv) Two consecutive events X(t;_1,t;) and X(t;,ti41) are
statistically independent.

Following is a sample path or trajectories of Wiener process, demon-
strated and development by P. Levy 1948, that are continuous but almost
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all nondifferentiable functions {9].
(At)2 -0, At-AW =AW -At—0, AW-AW —dt  (9)

Our objective is to use the Riemann -Stieltjes integral to solve stochastic
differential equations. It will be interesting to examine SDE with nowhere

differentiable perturbation.
Ito’s calculus: According to Ito, for the Brownian motion W; the

Langevin Stochastic Differential equation will be used symbolically
d(y(t),t) = —b(t) * y(¢) * dt + g(t) * dw(t); (10)

if the following integral exists.

y(t) = y(to) +/t —b(s) *y(s)ds + /: g(s)dws; (11)

3.1 Ito’s Chain Rule Formula:

Taylor's expansion of a multivariable function Y = f(¢, X) considered in de-
terministic calculus and expanded to Y2 = f(t2, X2) about a point (1, X1)
will be .

f(t2, Xa) = (01, X0) + H A0+ AX + LEE(A? + Sk At AX +
2H(AX)) + ...

Assume At — 0, thus, the Taylor’s expansion will be

dY = Y dt + 2hdx + L[ Th(dt)? + Leledt - dX + Sh(dX)?) + ...

Apply the relation (13) as a principle of Brownian motion X in the Taylor’s
formula

dY = &dt + 2LdX + L[%h(d0)? + Lt - dX + Zh(dX)?) + ...
and use (dt)2 — 0, dt-dX — 0, and (dX)? — dt :
dY = %at + BLdX + 3 &L (dX)?) + ...

This relation is known as Ito’s chain rule formula for stochastic dif-
ferential equations.
af of 1,8%f

ay, =Pt + 9 ax, + 1191
t +ax, 9%+ 5l5x7

ot an (dXi)2] (12)

189



3.2 Density Independent Random Perturbation :

The following Langevin DE with random coefficients b and ¢ will be ex-
amined by random perturbation function w(t) at time ¢. In the following
Maple codes, random initial values, drift coefficient, and diffusion will be
assigned at the beginning of the simulation. The solution produced can be
considered a deterministic trajectory, with all initial parameters selected
randomly. In the following program we can observe simulations for the
trajectories and their asymptotic limits.

> with(plots);

> SDEL := diff(v(t), t) = -b*v(t)+c*w(t);

> solnl := dsolve(SDEL, v(t));

> b := (1/100)*(rand(1 .. 9))(); ¢ := (1/10)*(rand(1 .. 6))();

> w := proc (t) options operator, arrow; (rand(1 .. 6))() end proc;

> SDE2 := diff(v(t), t) = -b*v(t)+c*w(t);

> soln2 := dsolve(SDE2, v(t));

> soln3 := subs(_C1 = m, soln2);

> myplotl := {seq(subs(m = i, rhs(soln3)), i =-10 .. 10)};

> plot(myplotl, t = -15 .. 150, v = -10 .. 50, color = blue);

50 ST

40 43
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i
! i
— - i .
0 50 100 130
7
Simulation of the trajectories of deterministic Langevin Equation.

Fig. (1)

-10 -,

3.3 Random Solution, Mean, and Variance

Density Independent Model: Assume that the random force function

g(t) =c ( in the relation R(t) = ¢ - dW,) is not proportional to the density
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function Y. That is
dXt = —bXtdt +c- de) XO = X(to) (13)

This is a symbolic form only in the Ito sense. Using a deterministic linear
differential equation the solution will be

t
X, = Xoe™® + / c- e~ t=s)lgw,, forallt>0 (14)
0

Since E(W;) = 0 at any moment t, then E( jot e~%(¢t—3)dW,) = 0. As a result
E(X:) = E(Xo)-e™® (15)

To find the variance of the solutions, we will use the variance properties:

Var(X:) = E(X?) — |[E(X,)]? = E{Xe™® + fo°c . e~ ¥t-8)dW, )2 —
{E(Xo) - e~™}?

=E{Xge—2bt +92. Xoe—bt . fOt c- e---b(t-s)d]'/V9 + [c fOt e—b(t—s)dW8]2} _
[E(Xo)]? - e~}

=Var(Xo) - e~ + %[1 — e

2
Var(X:) = Var(Xo) - e~ + %[1 — e2t] (16)

(for further information see [6],[7],[16]).

4 Numerical Approximation to the Nowhere Differ-
entiable Perturbed Langevin Equation:

We presented nowhere differentiability of the noise in the Langevin differ-
ential equation. It was also demonstrated that the fundamental theorem of
calculus fails in Lebesgue-Steiltjes sense. Imposing a Wiener process can
help us to introduce Ito’s integral calculus but it is inconsistent with the
existing calculus (see {10}, [12]). The following Computational Algorithm is
developed to satisfy the stochastic process. In the initial step, parameters
are selected randomly and will not stay constant for the next step of time
increment. In fact, the position at the end of each step will be considered an
initial position for the next step. We call this algorithm a dynamic random
algorithm [14]. The following Maple program was used to approximate the
solution to the random perturbed differential equations.
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4.1 Simulation of the Solution of the Langevin Equa-
tion:

For a deterministic initial value problem the necessary conditions for ex-
istence and uniqueness of a solution to the differential equation has been
studied extensively. For a stochastic differential equation the approach will
be different. In fact for any certain initial conditions, there will be infi-
nite possibilities for the random choice of trajectories. Thus, we see the
solutions with their expectation and variances.

To create an algorithm representing a Markovian phenomena, we used
a Maple procedure in order to have random choices for fluctuations in a
certain time interval [t;,¢;11]. As a Markovian process, in every step, the
system does not remember the past information and chooses new random
values for w and sigma=c for the Langevin Equation:

dy(z)
do

In the following programs, the function g(t) in (4) is considered as a random
constant real number c=sig. Maple reserved the symbol sigma for other
applications.

> Langevinl := proc (icl, b, n)

local i, w, sig, eq, s, ¢, ic, {, g;

c[1] := 05 ic[1] := y(c[1]) = icl;

for i ton do

w := (1/10)*(rand(1 .. 9))(); sig := (rand(1 .. 9))();

eq := diff(y(x), x) = -b*y(x)+sig*w;

s[i] := rhs(dsolve(ic[i], eq, y(x)));

c[i+1] := 100*i/n; ic[i+1] := y(c[i+1]) = evalf(subs(x = c[i+1], s[i]));

fli} := s[i]*Heaviside(x-c[i]) *(1-Heaviside(x-c[i+1]))

end do;

g :=seq(fli], i = 1 .. n) end proc;

> plot([Langevin1(20, 0.45e-1, 100)], x = -10 .. 100, discont = true);

= —b-y(z) + o - w(z). (17)

192



B PSSR SR O

o ) 20 a0 ) 60 80 " 100
The solurion ao the Langevin Equnnon with density independent
fluctunti R perunmbations sigma and w are generated inside the
program loop.
Fig.(2)

e
b
A
|
!
|
i
|
|

:;

| I

f :
|

< ] saan s
=] >t ad
Y, S T —
-20 o 20 40 60 80 100 120 130

x
Omne path for a random trajectory of soludon to Laongevin Equation when
the perturbati on we=rand(1l..9)0/100 is density independent

Fig. (3)

Simulation on the initial conditions when the drift coefficient
b=.085.

> ¢[1] := 2.50;

> for i to 5 do c[i+1] := cli]+2;

f[i] := Langevin(0.85e-1, cli], 50) end do;

> g:=seq(flij,i=1.. 5);

> plot([g], x =1 .. 50, discont = true);
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Simulation on initial conditions in L angevin Equation with driftb=.085.
Fig. (4)

Simulation on the drift coefficient b:

> b[1] := 0.4e-2;

> for i to 5 do b[i+1] = bli]+0.25¢e-1;

f[i] := Langevin(bli], 25, 150)

end do;

> g :=seq(fli,i=1. 5);

> plot([g], x = 1 .. 150, discont = true);
Simulation on the &ift codficents bfi]

5 ! I { E/\/-’
! i i Ny

)}
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Drift coefficients b[i] begin from .004 and change with the increment of 025 to create sanple
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4.2 Upper and Lower Fluctuations:

The solution mean and variance which were demonstrated in previous sec-
tions by formula (15) and (16) respectively will be used in the following
computation algorithm. The idea is to find the interval (u —k-o,u+k-0)
for special case k=1. We will evaluate mean and variance in every short
time interval to present and demonstrate the upper and lower fluctuations.
If we choose m0 (initial mean) and v0 (initial variance) as the random
initial solution mean and random initial variance respectively in every step
then the upper and lower fluctuations will not be a continuous process due
to presence of fluctuations. To demonstrate the result, recall the program
(see appendix) for upper and lower fluctuations.
> p2 := plot([Langl(50, 0.95e-2, 50)], x = -10 .. 100, color = red, discont

= true);
> p3 := plot([Lang2(10, 0.95e-2, 50)], x = -10 .. 100, color = blue, discont
= true);
> display({p2, p3})
Upper and lower fluctuations
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These are the graph of upper (pr+o) and lower (p-0) fluctuations for two

initial vatues of ic=50 and 10. The procedure is com puted with constant
parametres b=0093 and r=50.

Fig. (6)

4.3 Discussion:

A quick review of the history of research on the evolution of the stochastic
differential equations will guide us through a variety of views and applica-
tion of Langevin’s equation which may be considered a simplest form of the
stochastic differential equations. In addition this rich history will show how
this problem posed many challenges from integration theory, analysis, and
probability theory for many brilliant mathematician for centuries. These
problems are also linked to many disciplines in physics, mathematics, busi-
ness, and economics. The theoretical nature of nowhere differentiability
and integrability of this phenomenon might not be possible to explain for
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lay people. However it is possible to present and demonstrate the solu-
tion to them by computational approach or simulation. Mathematically,
we created, imposed, and added a nowhere differentiable perturbation on
a differential equation in an arbitrary small subinterval. We solved the
differential equation in that subinterval and continued this process in the
next time interval. The algorithm designed and presented in the article
connects all piecewise solutions for random inijtial points, random parame-
ters, and random perturbations. Numerical computations can be achieved
by computer algebra system (CAS) or any spreadsheet. We presented our
approach in MAPLE.

4.4 Further Research:

- Notice that the random noise is not selected from a certain random prob-
ability distribution. To meet the conditions of Wiener process. The noine
could be selected from a normal distribution N(0,1).

- The original Langevin equation has a perturbation which is density
independent noise. To study a perturbation, the function g in the Langevin
differential equation (10) may be selected g(¢,y(t))as a function of t and
density y(t).

- According to the Chebychev’s theorem, for some positive k:

1
p[u+k-a$Y§y—k'0]$1—F. (18)

Further study may be useful to demonstrate the computation within k -
sigma standard deviation (k # 1).

- Readers who are interested in developing the research further may ap-

ply the algorithm to other linear or nonlinear perturbed differential equa-
tions.
Acknowledgement: The following algorithm originally was developed us-
ing computer algebra system Maple (Appendix (I) and (II)) It was used also
for a random perturbation in logistic differential equations [14]. This latest
modification was applied to find the mean solution, variance, upper/lower
fluctuations in the Langevin equation.
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Appendix:

IT

I- Program for upper fluctuations:

> restart;

> Langl := proc (icl, b, n)

local i, w, sigma, eq, s, m, m0, v, v0, ¢, ic, f, fl,

g; ¢[1] := 0; ic[1] := y(c[1]) = icl; mO := icl;

for i to n do

w = (1/10)*(rand(1 .. 9))(); sigma := (rand(1 .. 9))();

v0 := (1/100)*(rand(1 .. 9))();

eq := diff(y(x), x) = -b*y(x)+sigma*w;

sli] := rhs(dsolve({ic[i], eq}, y(x)));

m[i] := evalf(m0*exp(-2*b*c[i]));

lei[l]: (V(if;eXI}(f*b*C[il)*-(l/ 2)*(1-exp(-2*b*c[i]))/b) ~(1/2);
1| := mj1|+vli|;

c[i+1] := 100*i/n; icfi+1] := y(c[i+1]) = evalf(subs(x = c[i+1], sli]));

f[i) := f1[i]*Heaviside(x-cli])*(1-Heaviside(x-c[i+1]));

m0 := sli]

end do;

g:=seq(f(i,i=1.. n)

end proc;

Program for Lower Fluctuations:

> restart;

> Lang2 := proc (icl, b, n)

local i, w, sigma, eq, s, m, m0, v, v0, c, ic,f2, p, h;

c[1] := 0; ic[1] := y(c[1]) = icl; mO := icl;

for i to n do

w = (1/10)*(rand(1 .. 9))(); sigma := (rand(1 .. 9))();

v0 := (1/100)*(rand(1 .. 9))();

eq := diff(y(x), x) = -b*y(x)+sigma*w;

s[i} := rhs(dsolve({icli], eq}, y(x)));

mli] := evalf(m0*exp(-2*¥b*c(i]));

i) := (vO*exp(-2*b¥elil)+(1/2)*(L-exp(-2¥befi))/b) ~(1/2);

£2[i] := mli}-v[i);

c[i+1] := 100*i/n; icfi+1] := y(c[i+1]) = evalf(subs(x = cli+1], s[i]));

pli] := f2[i]*Heaviside(x-c[i])* (1-Heaviside(x-c[i+1]));

m0 := sli]

end do;

h :=seq(pi],i=1.. n)

end proc;
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