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Abstract

Let G, be the set of all simple loopless undirected graphs on
n vertices. Let T be a linear mapping, T : Gn — Gn for which
the independence number of T'(G) is the same as the independence
number for G for any G € Gn.. We show that T is necessarily a vertex
permutation. Similar results are obtained for mappings preserving
the matching number of bipartite graphs, the vertex cover number of
undirected graphs, and the edge independence number of undirected

graphs.

1 Introduction

Let G,, denote the set of all simple loopless undirected graphs on n vertices.
In this paper we will investigate transformations of G, which preserve of
some functions mapping G, into the nonnegative integers. These func-
tions include the independence number, the vertex cover number, the max
matching number which is the edge independence number, the edge cover
number and others. For example, we address questions like, if T : G, = Gn
is a linear map such that the vertex covering number of an element G € G,
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is the same as the vertex covering number of T(G) for every G € G,,, what
can be said of the structure of T'?

In section 2 we give necessary definitions and notation; in section 3 we
will investigate matching number preservers in bipartite graphs; in section
4 we will discuss the structure of independence and cover number preservers

in undirected graphs.

2 Preliminaries

We will assume that the reader is familiar with the basic concepts of graph
theory and matrix theory. See [5, 8, 9, 11] for basic definitions. We call a
graph on n vertices an edge graph if the cardinality of the edge set is one,
that is if the edge set of a graph is {ab} where a and b are vertices of G and
ab is the edge joining vertex a to vertex b, then the graph is an edge graph
and is denoted E, 4. A star graph is a graph all of whose edges are incident
with a single vertex. If this vertex is the vertex a and there are n — 1 edges
in the graph we call it a full star and is denoted S,. If the vertex set of
G is V = {v1,v2, -+, vn} we shorten the notation to V = {1,2, - -,n} and
use the notation S; to be the full star centered at v; and E; ; to denote the
edge graph whose edge set is {v;v;}.

Let G € G,,. There are several numbers associated with G:

e The (vertez) independence number of G, a(G), is the size of a largest
subset of the vertex set of G which induces an edgeless graph.

o The vertex cover number of G, B(G), is the size of a smallest set of
vertices which are incident with every edge in the graph,

o The edge independence number of G, &'(G), is the size of a largest set
of edges of G no two of which are adjacent.

e The edge cover number of G, 8'(G), is the size of a smallest set of
edges that are incident with every vertex of G.

This list is obviously very incomplete, however it includes most of the
numbers associated with G that we will be investigating.
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Note that some of these numbers are known by other names and de-
scriptions. In particular, the edge independence number, o/(G), is also the
size of the largest matching in the graph G. In [1], the star cover number
was defined to be the smallest number of full star graphs the union of whose
edge sets contains (perhaps properly) all the edges of the graph. The star
cover number is the same as the vertex cover number, 3(G).

Let B be the set {0, 1} with Boolean arithmetic, that is all the arithmetic
is the same as for real numbers except that 1 +1 = 1. Let M, »(B) be the
set of all m x n (0,1)-matrices, and if m = n we write M,(B). Also, we
let S,(.O)(IB) denote the set of all A € M,,(B) which are symmetric with all
diagonal entries equal zero. A line of a matrix is a row or column of that
matrix. The term rank of a matrix A € M, »(B), tr(A), is the minimum
number of lines that contain all the nonzero entries of A.

Let G € G, and A(G) € M, (B) be the adjacency matrix of G. Then,
for H,G € Gn, A(HUG) = A(G) + A(H), where G U H is the graph on
the same vertex set as G and H and whose edge set is the union of the
edge set of G with the edge set of H. We use the term sum of graphs to
mean the union and write G + H = G U H. Since the graphs in G, are
undirected loopless simple graphs, G, & s (B). Because of this, when we
are interested in a property of graphs as it applies to the adjacency matrix,
we do not distinguish between the notion of graph and matrix, so that the
independence number of a matrix, c(A) is the same as the independence
number, a(G), of the graph, G, where A(G) = A. Likewise, the term rank
of a graph is the term rank of the adjacency matrix. Similarly, E; ; denotes
not only the edge graph but also the matrix whose only nonzero entry is

one in the (%, j) location.

Let G and H be graphs with the same vertex set. We say that G
dominates H, written G > H, if the edge set of H is a subset of the edge
set of G. Similarly, if H and K are two m x n matrices we say H dominates
K, written H > K if k; ; # 0 implies that h; ; # 0.

The following is a theorem of Gallai, (1959) See [9, Theorem 8.17].
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Theorem 2.1 Let G € G,, with no isolated vertices, then

a(G) + B(G) = n and o/(G) + f'(G) =n.

An easy observation is that if G has isolated vertices, say p vertices
of G are isolated, then o/(G) + #/(G) = n — p, and the other equation is
unchanged.

A transformation on M, »(B) is linear if it is additive and T'(O) = O.
Also, a transformation on G, is linear if the image of the union of two graphs
is the union of the images of the two graphs and the image of the edgeless
graph is empty. Let T¢ : G, — G, be a linear transformation on G,.
Then, define the transformation Tjs : S (B) —» s (B) by Tm(A(G)) =
A(Ts(G)). Similarly, for a transformation Tps : SO (B) — s (B) define
TG : Gn — Gn by T(G) = T (A(G)) where A(G) is the adjacency matrix
of G. In this way we see that the set of linear transformations on G,
is isomorphic, in a natural way, to the set of linear transformations on
s (B). Thus, we will not distinguish between transformations on S’ (B)
from transformations on G, We write T(G) or T(A) as appropriate.

Let W C Gn. A linear transformation T : G, — G, is said to preserve
the set W if G € W implies that T(G) € W. We say that T strongly
preserves the set W if, G € W if and only if T(G) € W. We similarly
define preservers of sets of matrices. Let ¢ : G, — Z, where Z, is the set
of nonnegative integers. Then we say that T preserves (strongly) preserves
w if T(strongly) preserves all the sets W; = {G € G,,|¢(G) = i}. Further,
for some fixed i, we say that T (strongly) preserves ¢ = i if T (strongly)
preserves W;.

The investigation of preservers of sets and functions has been an active
area of research in the past few years. The study of linear preservers began
with Frobenius in 1896 and for most of a century, all of the problems con-
sidered were preservers of sets and functions of matrices over fields or rings.
In 1984, Beasley and Pullman (2] came out with the first article on linear
preservers of sets of matrices over a semiring, specifically over B. Results
of Beasley and Pullman that we will use in the sequel are summarized in:
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Theorem 2.2 (3, 4] Let T : Mmn(B) = My »(B) be a linear operator.
Then the following are equivalent:

1. T preserves term rank,
2. T preserves term ranks 1 and 2,
8. T strongly preserves term rank k for some 1 < k <n,

4. There are permutation matrices P and Q such that T(X) = QXP
for all X € My o(B); or, m = n and T(X) = QX'P for all X €
My n(B) where Xt denotes the transpose of X.

Note that in graph theoretic terms the characterization of T in part 4,
when m = n and Q = P, is that T is a vertex permutation.

Note that preservers of a single term rank were not characterized in
Theorem 2.2. Let W be any subset of My, »,(B) and let T be any trans-
formation on M, »(B) whose image is a subset of W. Then T preserves
the set W. In the investigation of preservers of sets of matrices over the
Boolean algebra B, an additional condition has to be added to T to have
any hope of characterizing T. This condition is usually that T is bijective
(or equivalently surjective or injective), that T strongly preserves the set or
that T preserves two or more (usually disjoint) sets. Of these conditions,
the condition that T be bijective is the most restrictive, and that T pre-
serve two sets is the least. If W C M, o(B) and W # M, n(B) then, if
the image of T is a subset of W, T is not bijective, T does not strongly
preserve W and T cannot preserve two disjoint sets unless they are both
in W, however, T preserves W. If T preserves a function, like term rank,
then clearly T preserves two disjoint sets.

3 The Bipartite Case

In this section we will investigate linear preservers of numbers associated
with bipartite graphs. A graph is bipartite if the vertex set of the graph can
be partitioned into two sets X and Y such that every edge in the graph has
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one incident vertex in X and the other in Y. We will let B(X,Y) be the set
of all bipartite graphs with bipartition X,Y. Since the orders of the sets
X and Y is the only consideration for our study, we let B,, , = B(X,Y) if
|X| =m and |Y| = n. Note that B,, n C Gmin-

Let G € Bnn = B(X,Y), where X = {vy,v2,"-+,vn} and ¥ =
Um+1,Um+2,° ", Um+n}. Lhen, the adjacency matrix of G is A(G) =
[ B g for some matrix B € My, »(B). B is called the reduced ad-
jacency matrix of G. Notice that for G € Bm a, ¢/(G) is the size of the
largest matching in G. Transformations that preserve perfect matchings
were investigated in [7]. In that article, the transformation was required to
be bijective, but not necessarily linear.

A classical theorem of D. Ké6nig, 1936, see [6, page 164, Theorem 8.2.2),
is:

Theorem 3.1 Let G be a bipartite grapk with reduced adjecency matriz
B, then the term rank of B is the size of a largest matching in G, that is
tr(B) = o/(G).

We now characterize the linear preservers of o':

Theorem 3.2 Let T : By, , = B n be a linear transformation. Then the
following are equivalent:

1. T preserves o';
2. T strongly preserves o/ = k for some k, 1 < k < min{m,n};
3. T preserveso’ =1 and o’ = 2;
4. T is a vertex permutation.
Proof. If G € By n, and the reduced adjacency matrix of G is B then

a'(G) = tr(B) by Theorem 3.1, thus, the theorem follows by applying
Theorem 2.2. ]
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4 Preservers of Undirected Graph Numbers

In this section we will investigate the preservers of the vertex independence
number, the vertex cover number, the edge independence number, and the
edge covering number of an undirected graphs in G,. We let K, denote the
complete loopless simple graph in G, and also the matrix in s (B) with
all entries one except the diagonal entries which of course are all 0. Let
O = K, be the edgeless graph or the zero matrix, the matrix all of whose

entries are 0.
We begin with a result recently obtained by Beasley, Kang and Song

(1]:

Theorem 4.1 IfT: S,(lo)(IB) — S,(,o)(lB) is a liner operator then the follow-

ing are equivalent:

(i) T preserves the star cover number;
(ii) T preserves star cover number 1 and T(K,) = Kn;
(iii) T preserves star cover numbers 1 and 2;

(iv) There erists a permutation matriz P such that T(X) = P*XP for
every X € S,(lo)(IB).

4.1 The vertex cover number and vertex independence
number.

We observe that the star cover number of a graph is precisely the vertex
cover number of that graph. so a corollary to the above theorem is:
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Corollary 4.1.1 IfT : G, — G, is a linear operator then the following are
equivalent:
(i) T preserves the vertex cover number, 8
(ii) T preserves B =1 and T(K,) = K,;
(iii) T preserves B =1 and B = 2;
(iv) T is a vertez permutation.
Theorem 4.2 If T : G, — G, is a linear operator then the following are
equivalent;
(i) T preserves the (vertex) independence number, o
(i) T preserves o =n —1 and T(K,) = Kp;
(i) T preservesa=n—1anda=n - 2;
(iv) T is a verter permutation.

Proof. By Theorem 2.1, a(G) + B(G) = n, so if T preserves o = k, T
preserves the 8 =n — k . By Corollary 4.1.1 the theorem follows. |

4.2 The edge independence number.

We now characterize the edge independence number, o/, also known as the
max matching number. We will use without reference that the set of graphs
of edge independence number 1 are precisely the set of star graphs together
with the set of three cycles. If n = 2, There are only two graphs in G,, and
hence, If T preserves o', T is the identity.

Recall that a mapping is nonsingular if T(X) = O implies X = O, where
O is either the zero matrix or the edgeless graph. Note that for graphs or
for matrices over B, nonsingularity is not equivalent to invertibility. For
example, if G is any nonempty graph in G, and T(X) = G for every X €
Gn, X # O, and T(O) = O, then T is a nonsingular linear operator on G,
but clearly, T is not invertible.
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Theorem 4.3 Let T : G3 — G3 be a liner operator. Then, T preserves o
if and only if T preserves the set of graphs whose edge independence number
is 1 if and only if T is nonsingular.

Proof. Since every nonempty graph in Gz has edge independence number
1, the theorem follows by the definition of nonsingular. [ ]

Define the operator L : G4 — G4 by Li(Ey4) = E2 3, L1(E23) = E14
and L,(E; ;) = E;; for all {1,5} # {1,4},{2,3}. Then it is easily checked
that L; preserves o’.

Theorem 4.4 Let T : G4 — G4 be a liner operator. The following are

equivalent:
1. T preserves the edge independence number, o'

2. T preservesa’ =1 and o/ = 2;

8. T is a vertexr permutation, T = Ly, or T is a composition of these

two.

Proof. Since all nonempty graphs in G4 have independence number 1 or 2,
clearly (1.) is equivalent to (2.). Also, we clearly have that (3.) implies
(1.). We now show that (1.) implies (3.).

Suppose that T preserves the edge independence number but does not
preserve the set of star graphs, then, since every star has edge independence
number 1, the image of some star is a 3 cycle. Without loss of generality
we may assume that T'(S1) = C3(1, 2, 3), where C3(1, 2, 3) is the three cycle
Ei2+E1 3+ Es3.

Suppose that the image of an edge graph dominated by S) is not an
edge graph, but the sum of at least 2 edge graphs.

Suppose that T(FE;2) = C3(1,2,3). Then, since a'(Ej 2 + E24) = 1,
we have that o (T(Ey,2 + E2,4)) = 1. That is, o/(C3(1,2,3) +T(E2.4)) =
1. Thus, T(E24) is dominated by C3(1,2,3). But then, since a'(Ey3 +
E,4) = 2, we must have that T'(E5 4) contains an edge not in C3(1,2,3), a
contradiction. Thus, T(E; o) # C3(1,2,3).
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Suppose that T'(E) 2) contains two edges, then, without loss of gener-
ality, we may assume that T(E) ;) = E) 2 + E1,3 and that T(E;3) > Ey .
Since T'(S;) = C3(1,2,3), we have that T(E) 4) < T(E, 2 + Ey 3). Since
o/(Ey2 + Ey 3 + Ea3) = 1, we have that o (T(Ey + By 3 + Ey3)) = 1.
But, since T(E} 4 + E2,3) S T(Ey 2+ E13+ E23) and o/ (Ey 4 + Ep 3) = 2,
we must have that o/(T'(Ey2 + F1 3 + E,3)) is at least 2, a contradiction.
Thus T'(E; 2) is an edge graph. It follows that the image of any edge graph
dominated by S, is an edge graph.

Thus, we may assume that T(Ey2) = Ey 2, T(E13) = Ejzand T(Ey 4) =
Eyj3.

Now, o' (E1,3+E2,4) = 2, thus, o' (T(E1,3+E2,4)) = o/ (E13+T(E24)) =
2,50 T(E3,4) 2 Ez,4. That is, T(E24) = E2,4+ X. for some X € G4. Simi-
larly, a'(E1,4+E2,3) = 2, thus, a’(T(EM +E2'3)) = a'(Ez,a +T(E2,3)) =2,
so T(Ep3) = E14. That is, T(Ep3) = Ey 4+ Y. for some Y € G4. Also
o'(Er2 + E34) = 2, thus, o/(T(Ey,2 + E3,4)) = &' (E12 + T(E3,4)) = 2, so
T(E34) > E3,4. That is, T(E34) = E3,4 + Z. for some Z € G,.

It follows that T(E1'4 + E2,4 + E3,4) = Ez,a + E2'4 + E3'4 +X+Y 4+ 2.
That is T(S4) = C3(1,3,4) + X +Y + Z where C3(1, 3,4) is the three cycle
on vertices v1,vs, and vs. It follows that T'(S4) = C3(1,3,4) and as above,
we have T(E3 4) = E3 4 and T(E3 4) = E3 4.

Similarly, T(E2,3) = F1,4. That is T is the operator L;.

We now assume that for each ¢ = 1,.-.,4 there is some j such that
T(Si) £ Sj. Now if two stars are mapped into the same star, say T'(S; +
S2) £ S; with out loss of generality, then we have a contradiction since
o/(S) + S2) = 2 while &/(S1) = 1. That is T permutes the stars, or, T is a

vertex permutation. a
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Theorem 4.5 LetT : G, — G, If n > 5, then the following are equivalent:

1. T preserves the edge independence number, o'
2. T preserves o' =1 and T(K,) = Ky;

3. T preservesa’ =1 and o' = 2;

4. T strongly preserves o’ = 1;

5. T is a vertex permutation.

Proof. Clearly (1.) implies (8.), (8.} is equivalent to (4.), (5.) implies (1.),
and (5.) implies (2.). We begin by showing that (2.) implies (5.).

Suppose that T preserves o' = 1 and T(K,) = K,. Then, T(S;) is
either a star or a three cycle. Suppose with out loss of generality that
T(S1) = C3(1,2,3). Since T(Kn) = K,, there is some (r,s) such that
T(Ers) 2 E45. But since o/ (Ey » + Eys) =1, o/ (T(Ey,» + Ers)) = 1. But,
T(E1,r) £ C3(1,2,3) and is nonzero, and T(E.;) = E45. It follows that
o (T(Eyr + E;;)) 2 2, a contradiction. Thus the image of a star must
be a star and since the edge independence number of the sum of two full
stars is two, T maps distinct stars into distinct stars, that is T is a vertex
permutation. That is, (2.) implies (5.).

We now show that (3.) implies (5.).

Suppose that T does not preserve stars. Then we may assume as in the
proof of Theorem 4.4 that T'(S;) = C3(1,2,3).

Suppose that the image of an edge graph dominated by S; is not an
edge, but the sum of at least 2 edges.

Further, suppose that T(E;2) = C3(1,2,3). Then, since o/(E;2 +
Es4) = 1, we have that o/(T(Ey 2 + E34)) = 1. That is, o/(C3(1,2,3)
+T(E2.4)) = 1. Thus, T(E» 4) is dominated by C5(1,2,3). But then, since
a'(E13 + Ea4) = 2, we must have that T(E, 4) dominates an edge not in
C3(1,2,3), a contradiction, thus, T(E, 2) # Cs3(1,2,3).

Suppose that T(E;,2) dominates two edges, then without loss of gener-
ality we may assume that T(F; 3) = E1 2 + E; 3 and that T(E13) 2 E3 3.
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Since T'(S,) = C3(1,2,3), we have that T(Ey4) < T(E),2 + E3). Since
o/(E12+ E1,3+ Ea3) = 1, we have that o/ (T(Ey2+ E1,3+ E23)) = 1. But
since T(Ey,4 + E23) < T(Ey2+ Ey 3+ Eo3) and o/ (Ey 4 + By 3) = 2, we
must have that o/ (T'(Ey2+ E1 3+ E» 3)) is at least 2, a contradiction. Thus
T(E,,2) is an edge. It follows that the image of any edge graph dominated
by S is an edge.

Thus, we may assume that T'(E 2) = Ey 2, T(EF1,3) = E13and T(Ey 4) =
E,3. Suppose with out loss of generality, that T(F;5) = E;2. Then
o'(Ers + E3s) = 1 and o/(Ey2 + Ess) = 2. But T(Ey5 + E35) =
T(Er2 + Es5), a contradiction, Thus, T maps stars to stars.

We now have that for each i = 1, - .-, n there is some j such that T'(S;) <
S;. Now if two stars are mapped into the same star, say without loss
of generality that T'(S; + S2) < Si, then we have a contradiction since
a'(S) + S2) = 2 while &/(S;) = 1. That is T permutes the stars, or, T is a
vertex permutation. [ ]

4.3 The edge covering number.

We now turn our attention to the preservers of the edge cover number of
G, B'(G).

Note that there are only two graphs in G, the edgeless graph and the
graph with one edge. Thus, T preserves 3’ if and only if T is the identity
transformation. We thus assume that n > 3. Observe that the set of graphs
whose edge cover number is 1 is precisely the set of edge graphs. Thus, if
T preserves edge cover number 1, then the image of any edge graph is an
edge graph. Let £ be the set of edge graphs in G,,.

Lemma 4.5.1 Let T : G, — G, be a linear operator. If n > 3 and T
preserves 8’ =1 and B’ = 2 then T maps € bijectively onto itself. Further,

T is a bijection on G,.

Proof. Since T preserves the set of edge graphs, we only need show that
Tis1—1 on £. Suppose that two distinct edge graphs are mapped to a
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single edge graph, say T(E) = T(F') where E and F are edge graphs. Then
T(E+F) =T(E) is an edge graph, but 8/(E+ F) = 2 while §/(T(E+ F) =
1, a contradiction. Thus T is a bijection on £. Because T is a bijection on
£, the number of distinct edges in the image of a graph is the same as the
numbers of distinct edges in the graph, Thus T is a bijection on G,. [ ]

Lemma 4.5.2 Let T : G, = Gn, n > 4. Then, if T maps the set of full
stars bijectively onto the set of full stars, T is a vertex permutation.

Proof. If T(S;) = Sj,, then the mapping ¢ — j; is a permutation, otherwise
the union of two full stars would be mapped into one, a contradiction. ™

In th following theorem we will make use of these observations on subsets
of Gn:

o B/ =1is theset;

e (' =2 is the set of graphs with exactly two edges;

e 3’ =n —1 is the set of full stars.

Theorem 4.6 Let T : Gz — G3 be a linear operator. Then the following

are equivalent:

1. T preserves the edge cover number, §';

2. T strongly preserves the set of edge graphs;

3. T is a vertex permutation.
Proof. Since the set of graphs with edge cover number 1 is precisely £, we
see that (1) is equivalent to (2). Further by Lemma 4.5.1, if T preserves

B, then T is a bijection on £, and for n = 3, any bijection on £ is a vertex

permutation. [ |
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Theorem 4.7 Let T : G4 — G4 be a linear operator. Then the following
are equivalent:

1. T preserves the edge cover number, f';
2. T preserves 8/ =1 and B’ = 2;

3. T preserves B/ =2 and 5/ = 3;

4. T strongly preserves B' = 3;

5. T is a vertex permutation.

Proof. 1t is easily shown that (1) = (2) and (1) = (3) = (4) and (5)
implies all the others.

Suppose (2) that T preserves edge cover numbers one and two. Then
by Lemma 4.5.1, T is a bijection on the set of edge graphs, and hence, T
preserves ' = 3. That is (1) & (2). Since T maps full stars, the only
graphs with edge cover number 3, to full stars, T must be a bijection on
the set of full stars, that is T is a vertex permutation by Lemma 4.5.2.

Suppose (4) that T strongly preserves 8’ = 3, then full stars are mapped
to full stars, bijectively. Again, by Lemma 4.5.2, T is a vertex permutation.
| ]

Theorem 4.8 Ifn > 5 and T : G, — G, is a linear operator, then the
following are equivalent:

1. T preserves the edge cover number, f';
2. T preserves 8’ =1, ' =2 and B’ = 4;
3. T preserves ' =n—1, and f' =n - 2;
4. T strongly preserves B/ =n —1;

5. T 1is a vertex permutation.
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Proof. 1t is easily shown that (1) = (2) and (1) = (3) = (4) and (5)
implies all the others.

Now, suppose (2), that T preserves edge cover numbers 1, 2, and 4. By
Lemma 4.5.1 T is a bijection on the set of edges. Suppose that T does not
preserve full stars. Suppose without loss of generality that T'(S;) = G and
G is not a full star. Then there are three edges in G which do not form
a three star. These three edges must be 1) a 3-path, 2) a 2-path and a
disjoint edge, or 3) three disjoint edges. So the image of a three star in 51,
say E) 2 + Ey 3 + E1 4, is one of these three possibilities. Say without loss
of generality T(E1,2) = Ey 2.

If T(Ey2 + By 3 + E1,4) is a 3-path, which must have edge cover num-
ber two, the the image of any additional edge can increase the edge cover
number at most one, but the addition of any other edge graph dominated
by 81, say E\ 5, to Ey 2+ Ey 3+ Ey 4 gives a graph with edge cover number
4, and the image must have edge cove number at most 3, a contradiction
since T preserves 8’ = 4. Thus, the image of Ey 3 + E1 3 + E1,4 is not a
three path. In either of the other two cases, the addition of any edge to the
image must have edge cover number at least 3, but E; o+ Ey 3+ E1 4+ Ea3
has edge cover number 2 and its image must have edge cover number a least
three, contradicting that T preserves 8’ = 2. Thus, T is a bijection on the
set of full stars and by Lemma 4.5.2, T is a vertex permutation. That is
(2) = (5).

Suppose (4) that T strongly preserves 8’ = n — 1, then T is a bijection
on the set of full stars, and by Lemma 4.5.2, T is a vertex permutation. &
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