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Abstract

We give necessary and sufficient conditions to decompose A copies,
where necessarily A > 2, of the complete graph K, into so called "2-
petal”, "stem-infinity”, "barbell”, and "box-edge” graphs, all with
four vertices and five edges.

1 Introduction

Definition 1.1 A balanced incomplete black design [BIBD], specifically a
(v, k, A)-BIBD, is a pair (V, B), where V is a set of v elements and B is a
collection of subsets, or blocks, of V' such that every block contains exactly
k points and every pair of distinct elements is contained in exactly A blocks.

A (v, k, A)-BIBD can also be considered as a decomposition of AK, (A
copies of K,) into Kj’s.

For example, a Fano Plane is a combinatorial design with V' = {1, 2, 3,4,
5,6,7} and set of blocks B = {{1,2,4},{2,3,5}, {3,4, 6}, {4,5,7}, {5,6,1},
{6,7,2},{7,1,3}} where any pair of distinct points in V are in exactly one
block in B. If we interpret a block {a, b, ¢} as a complete graph on three
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vertices a, b, and c, then one can say that the blocks in B partition the
set of edges of K7 such that each edge of K7 occurs in exactly one block
or K3. In other words, we get a decomposition of the complete graph K-
into seven K3’s.

There is much work done on decomposing complete graphs into sub-
graphs with four vertices and five edges [1). However, little work has been
known to the authors on the decomposition of complete graphs into copies
of a multisubgraph except [4], [2], and the work on ternary designs. Since
the acceptance of this paper, there is some more work done on multigraph
decompositions, see for example, (3], [5] and [6].

In this paper, we decompose complete graphs into four of the possible
ten connected multigraphs with four vertices and five edges shown below.

Table of connected multigraphs on four vertices and five edges:

There will be Mz"_;.ll subgraphs in a decomposition of AK,, if it exists.
Hence, the necessary conditions for the existence of a decomposition of AK,
into connected multigraphs with four vertices and five edges are

A>2 v
A = 0(mod 5) allv>4
A=1,23,4(mod 5) | v=0,1(mod 5)

In other words, for such a decomposition to exist, A must be a multiple of
5 if v is not = 0,1(mod 5).

We note that the theory of the PBD closed sets may have provided
us with a quick method of such decompositions but unfortunately for v =
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0, 1(mod 5), the PBD closed sets leave too many exceptions. Hence, our aim
is to give general cyclic decompositions with appropriate interpretations of
the difference families. If A is odd, then each edge must occur singly an
odd number of times in an odd number of multi-subgraphs. This leads
to some interesting anomalies and keeps the the problem of decomposing
into different multi-subgraphs intriguing as the necessary conditions may
be sufficient for one multigraph but not for another. For example, 5Ky
cannot be decomposed into 2-petal graphs (see 2.11), whereas 5Ky can be
decomposed into box-edge subgraphs.

2 Decomposition of AK, into “2-petal” graphs

First, we would like to decompose AK, into 2-petal graphs. We call such a
decomposition a 2-petal decomposition.

A 2-petal graph with vertices a, b, ¢, and d:

c

d

For convenience, we will denote a 2-petal graph with vertices {a, b, ¢,
d} and the edge set {ab, be, bc, bd, bd} by <a, b, ¢, d>.

Remark 2.1 Difference sets and difference families provide a powerful tool
in the construction of classical combinatorial designs. An interpretation of
such difference sets and difference families are useful for these designs as
well.

A *difference family” solution of the decomposition of AK,, into 2-petal
subgraphs is a set of " difference sets” such that all differences {1,2,..., ¥}
modulo v, for v odd, and {1,2,..., §} for v even, occur the necessary num-
ber of times at the "required” locations. By the differences at the "re-
quired” locations in the case of 2-petal graphs, we mean the differences
between the elements at the first and second locations counted once, the
differences between the second and third locations counted twice, and the
differences between the second and fourth locations counted twice, so a
difference set <a, b, ¢, d> gives the differences between a and b once and
differences between b and c as well as between b and d twice.
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Throughout this paper similar interpretations will be needed and from the
context it will be clear which differences need to be taken into consideration.

21 A=2

Recall, for A = 2, v = 0,1(mod 5) is a necessary condition for a 2-petal
decomposition of 2K, to exist.

We note that for v = 5 and v = 6, difference set solutions do not exist,
but a decomposition is given below.

Example 2.2 A 2-petal decomposition of 2Kp is
<1, 2, 3,4>,<2,1,4, 5>, <3,5, 2, 4>, and <5, 3, 1, 4>.

Example 2.3 A 2-petal decomposition of 2Kg is
<1, 2,3, 4>, <2, 1, 4, 5>, <3, 5, 2, 4>, <5, 3, 1, 4>, <5, 6, 1, 2>, and
<5, 6, 3, 4>.

Given A = 2, v = 10t, we can get a 2-petal decomposition of 2K, by a
difference family. The difference sets will be constructed modulo (10t — 1)
and the size of the difference family is 2t.

Theorem 2.4 The difference family for the decomposition of 2K, where
v = 10t into 2-petal graphs is given by

{<00, 0, ¢, t+1>, <00, 0, t +2, t + 3>,
<1,0,t+4,t+5>,<1,0,t+6,t+7>, ...,

<t-1,0,5t—4,5—-3> <t-1,0, 5t -2, 5t — 1>}.

This as well as many difference family solutions given in this paper
work because each difference occurs the required number of times at the
"required” locations (Remark 2.1).

Example 2.5 When v = 10, ¢ = 1, so there are 2t = 2 difference sets in
the difference family: <o, 0, 1, 2>, and <00, 0, 3, 4>.

When v = 10t + 5, there are 2t + 1 difference sets, as given below.

Theorem 2.6 The difference family solutions for the decomposition of
2K, where v = 10t + 5 and v > 15 into 2-petal graphs are:

{<00, 0, ¢, t+1>, <0, 0,t+2, t+ 3>,
<1,0,t+4,t+5>,<1,0,t+6,t+7>, ...,

<t-1,0,5t—4,5—-3>, <t—-1,0,5t -2, 5t — 1>} U

{<5t+2, 0, 5¢, 5t +1>}.
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Proof. Note that the last difference set uses the difference 231 = 5t +2
only once because once the difference set is generated, the pair 0 and 5t+2
will occur again halfway through the generated set, allowing the difference
of 5t + 2 to occur twice, as required. (]

Theorem 2.7 Given v = 5s, if the decomposition of 2K, into 2-petal
graphs exists, then the decomposition of 2K,4, into 2-petal graphs also
exists. The decomposition of 2K,y1 can be obtained by determining the
decomposition of 2K, tn addition to the following difference sets, which
provide the remaining edge set:

{<l,v+1,s4+1,s+2> <1, v+1,5+3, s+4>, ..,
<s,v+1,58—3,55—2>,<s,v+1, 5s—-1, co>}.

Example 2.8 A 2-petal decomposition of 2K, is the difference family of
2K, together with <1, 11, 3, 4>, <1, 11, 5, 6>, <2, 11, 7, 8>, <2, 11, 0,

co>,

We note that v + 1 is the new point, as oo was used in the original
difference set.

Lemma 2.9 The necessary conditions are sufficient for the eristence of
2-petal decomposition of 2K,,.

2.2 A=3
Theorem 2.10 3K, ’s cannot be decomposed into 2-petal graphs.
Proof. The number of 2-petal graphs in 3K, is Mlﬂo'—ll, but 3—”(;’0;11 <

ﬂ"z;ll. If A is odd, then, 3‘1(-1'-’0_—12 must be > (g), as every edge must come
singly at least once. Hence, such a decomposition does not exist. ]

23 X=5

Recall, for A = 5, v > 4. However, for the 2-petal graphs in particular, 5K4
cannot be decomposed, as shown below.

Theorem 2.11 5K, cannot be decomposed into 2-petal graphs.
Proof. There will be six 2-petal graphs if a decomposition of 5K exists.

Let the vertex set be {1,2,3,4}. As every edge has to come singly at least
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once, each of the four vertices has to come 3 times as degree one vertex or
degree five vertex. So let z; + z; = 3 for i = 1,2,3, and 4 where z; and
z; stand for the number of graphs where the vertex i occurs as degree one
vertex and degree 5 vertex respectively. Let y; be the number of graphs
where the vertex 7 occurs as degree two vertex. Clearly z; + y; + z; = 6
and z; + 2y; + 5z; = 15. There must be a vertex, WOLG say vertex 1,
which comes as degree 1 vertex in at least two of the six graphs in the
decomposition or in three graphs as z;+2; = 3. If 1 = 2, theny; +2; = 4
and 2y, + 5z; = 13. There is no integral solution for the pair of linear
equations, hence z; must be 3. This means there is at least one vertex,
WOLG say vertex 2, which must come as a degree one vertex in exactly
one 2-petal subgraph. Therefore we have y; + 22 = 5 and 2y; + 525 = 14.
As 3 + 22 = 3, this system of linear equations does not have an integral
solution. [

If 220-1 > (), then 2 > 1. In other words, if A > 5, then 5K,’s can
be decomposed for v > 5.

Given A = 5 and v odd, or v = 2¢t + 1, the number of difference sets
modulo (2t 4 1) needed is t.

Theorem 2.12 Given v = 2t + 1 > 5, the difference family solutions for
the decomposition of 5K, into 2-petal subgraphs is:
{<0,1,2,3>,<0,2,4,5>,<0,3,6,7>, ...,
<0,t-1,2t-2,2t-1>}U{<0,¢t 2t t+1>}

On the other hand, for v+1, the differences {1,2,..., 232} (mod v) can
be achieved by taking all difference sets from the solution for v together
with a difference set <0, oo, 1, 2> as noted in the following theorem.
Therefore, if a difference family solution for the decomposition of 5K, v
odd, is given, then by including the different set, <0, oo, 1, 2>, we get the
decomposition of 5K, ;.

Theorem 2.13 Suppose we have a difference family solution {Dy, D, ...,
D 21 } for the decomposition of 5K, for v odd, then the difference family

{D1, Ds,..., Dui_l , D} gives a decomposition of 5K, where D = < 0, oo,
1,2 >.

Proof.  Let the point set for 5Ky be {00,0,1,...,v—1}. As {Dy,...,

D»_}l_ } is a difference family for 5K,, all differences {1,...,”—;—1-} occur
exactly 5 times at the required locations. The "blocks” generated by D
account for the pairs with co. =
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Lemma 2.14 The necessary conditions are sufficient for the ezistence of
2-petal decomposition of 5K,.

24 Any A\ >2

Theorem 2.15 For any A > 1, where A # 3, AK, can be decomposed
into 2-petal subgraphs when v = 0,1(mod 5) and v > 4. Also, when A =
0(mod 5), AK, can be decomposed for all v > 5.

Proof. When A = 0(mod 5), say A = 5m for any integer v 2 5, AK,
can be decomposed by taking m copies of the decomposition of 5K,,.

If ) is not = O(mod 5) and A # 3,

If X is even, say A = 2m, we take m copies of the decomposition of 2K,,.
If A is odd, AK, can be decomposed using the decomposition of 5K, and
1‘?— copies of 2K,. ]

Corollary 2.16 Necessary conditions are sufficient for the decomposition

of AK,, into 2-petal graphs.

3 Decomposition of AK, into “stem-infinity”
graphs

Next, we will decompose MK, into stem-infinity graphs to obtain a so called
stem-infinity decomposition.
A stem-infinity subgraph with vertices a, b, ¢, and d is given below:

In general, we will denote such a graph by Ca, b, ¢, dD implying the
set of vertices {a, b, ¢, d} and the edge set {ab, be, bc, cd, cd}.

3.1 A=2
Recall, for A = 2, v =0, 1(mod 5} is a necessary condition.

Example 3.1 The decomposition of 2K into stem-infinity graphs is: €O,
1,2,30,C0,1,3,4D,C1,4,0,3D,C1, 4,2, 0D.
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Example 3.2 The decomposition of 2Kjg into stem-infinity graphs is: C0,
1,3,5D,C0,1,4,2>,C1,2,5,0D,Cl1, 23,00, C3,4,0, 2D, C3, 4, 5,
1D.

Similarly to the 2-petal decomposition, when A = 2 and v = 10¢, the
number of difference sets mod (10t — 1) needed is 2t.

Theorem 3.3 The general rule for the decomposition of 2K, where v =
10t into stem-infinity subgraphs is:

{Coo, 0, ¢, 2t +1D, Coo, 0, t+2, 2t + 5D} U
{c1,0,t+4,2t+9D,C1,0,t+6,2t+13D, ...,

ct-1,0,5t—-4,10t - 7D, Ct—1, 0, 5t — 2, 10t — 3D}.

Given A = 2 and v = 10t + 1, there are 2t difference sets mod (10¢)
needed.

Theorem 3.4 The general rule for the decomposition of 2K, where v =
10t 4 1 into stem-infinity subgraphs is:
{c1,0,t+1,2t+3>,C1,0,t+3, 2t+ 7D,
C2,0,t+5,2t4+11D,C2,0,t+7,2t+15D, ...,

Ct, 0, 5t — 3, 10t — 5O, Ct, 0, 5t — 1, 10t — 1D}.

The number of difference sets mod (10t + 4) needed in a stem-infinity
decomposition when A =2 and v = 10t + 5 is 2t +1.

Theorem 3.5 The general rule for the decomposition of 2K, where v =
10t + 5 and v 2> 15 into stem-infinity subgraphs is:

{Ce0, 0, ¢, 2t +1D, Coo, 0, t+ 2, 2t + 52,
C1,0,t+4,2t+9>,C1,0,¢t+6,2t+13D, ...,
ct-1,0,5t—4,106-7>,Cct-1,0,5t—-2,10t —3D>,} U

{c5t+2, 0, 5¢, 10t + 1D},

Proof.  The last difference set uses the difference Y31 = 5t+2 only once
because after the difference set is generated, the pair 0 and 5t+2 will occur
again halfway through the generated set, allowing the difference of 5t + 2
to occur twice, as required. .

There are 2t + 1 difference sets mod (10t + 6) in the stem-infinity de-
composition of 2K, where v = 10t + 6.

Theorem 3.6 The general rule for the decomposition of 2K, where v =
10t + 6 into stem-infinity subgraphs is:
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{c1,0,t+1,2t+3D,C1,0,t+3,2t+7D,
C2,0,t+5,2+11D,C2,0,t+7, 2t +15D, ...,
ct, 0, 5t — 3, 10t - 5D, Ct, 0, 5t — 1, 10t — 1D} U
{c5t+3,0, 5t+1, 10t + 3D}.

Proof. Similarly to the decomposition of 2Kig¢45 into stem-infinity
graphs, the decomposition of 2K;0:+¢ uses a difference set with the greatest
difference occurring singularly. The last difference set uses the difference
% = 5t + 3 only once because after the difference set is generated, the pair
0 and 5t+3 will occur again halfway through the generated set, allowing
the difference of 5t + 3 to occur twice, as required. =

Lemma 3.7 The necessary conditions are sufficient for the existence of a
stem-infinity decomposition of 2K,.

32 A=3

Recall the argument as to why 3K, cannot be decomposed into 2-petal
graphs. The same argument applies to the stem-infinity decomposition of
3K, because there are 5 edges in both subgraphs.

3.3 A=5

Recall, for A =5, v > 4.

Example 3.8 5K, can be decomposed into stem-infinity graphs using the
sets:

co, 1, 3, 2D, CO, 2,1, 3D, CO, 3,2,1D, C1, 2,0, 3D, C2, 3,0, 1D, and
c3,1,0,2D.

Given v = 2t + 1, the number of difference sets mod (2t + 1) needed to
decompose 5K, into stem-infinity subgraphs is ¢.

Theorem 3.9 Given v odd, the general rule for the decomposition of 5K,
where v =2t + 1 and is > 5 into stem-infinity subgraphs is:

{c0,1, 2,40}V

{c0, 2, 4, 1D, €0, 3, 6, 2D, €O, 4, 8, 3D, ...,
c0,t—2,2t—-4,t-3D,C0,¢t-1,2t—-2,t—-2D} U

{co, ¢, 2t, 2t — 1D}.
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If given a difference family solution for the decomposition of 5K, into
stem-infinity graphs, where v is odd, then the decomposition of 5K, also
exists. There are ¢ + 1 difference sets in the decomposition.

Theorem 3.10 The general rule for the decomposition of 5K, where
v+1=2t+2 and is > 6 into stem-infinity subgraphs is:

{c0, o0, 1,20} U {C0, 1, 2, 4D, C0, 2,4, 7D, ...,
c0,t—2,2t—4,3t-5>,c0,t—-1,2t—-2,3t—2D} U

{co, t, 2t, coD}.

Lemma 3.11 The necessary conditions are sufficient for the existence of
a stem-infinity decomposition of 5K,,.

3.4 Any \>2

Recall the argument as to why any AK,, where A > 2 and # 3, can be
decomposed into 2-petal graphs. The same argument applies to the stem-
infinity decomposition of AK,,.

Corollary 3.12 The necessary conditions are sufficient for the decompo-
sition of AK,, into stem-infinity graphs.

4 Decomposition of AK, into “barbell” graphs
Additionally, we will decompose AK, into barbell graphs, which we also

call a barbell decomposition.

A barbell subgraph with vertices a, b, ¢, and d:

In general, we will denote such a graph by [a, b, ¢, d]. The vertices are
{a, b, ¢, d} and the edge set is {ab, ab, bc, cd, cd}.

41 A=2

Recall, for A = 2, v = 0,1(mod 5) is a necessary condition.
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Given A = 2 and v = 10t, the number of difference sets mod (10t — 1)
needed for a barbell decomposition is 2¢.

Theorem 4.1 The general difference set solutions to decompose 2K, into
barbell subgraphs, where v = 10t, are

{lec, 0,1, t+2]} U {[t+2,0,1,¢t+4],
t+4,0,2,t+7,[t+6,0,2,t+9],...,

[5t—8,0,t—1,6t—8], [5t—6,0,t—1, 6t—6],

[5t —4, 0, t, 6t —3], [5t -2, 0, t, 6t —1]}.

When A = 2 and v = 10t + 1, there are 2¢ difference sets mod (10t 4 1)
needed in a barbell decomposition.

Theorem 4.2 The difference family solutions needed to decompose 2K,
into barbell subgraphs, where v =10t + 1, are
{t+1,0,1,¢t+3],[t+3,0,1,t+5],

[t+50,2 t+8), [t+7,0,2 t+10], ...,

[5t—7,0,t—1,6t—7), [5t—5,0,t—1,6t—5),

[5t—3,0,t 6t—2), [5t—1, 0, t, 6t]}.

Given )\ = 2 and v = 10t+5, the number of difference sets mod (10t +4-4)
needed for a barbell decomposition is 2t + 1.

Theorem 4.3 The difference family solutions needed to decompose 2K,
into barbell subgraphs, where v =10t + 5, are

{lec, 0,1, t+2]} U {[t+2,0,1,¢t+4],
t+4,0,2,t+7,[t+6,0,2,t+9], ...,

[5t—4,0,¢t 6t—3], [5t—2,0,¢t 6t—1]} U

{[5¢, 0, 5t + 2, 10t + 3]}.

Proof. The last set has the pair 0 and 5¢ 4 2 occur once because, as the
set is generated, the pair will come a second time. (]

There are 2t + 1 difference sets mod (10¢ + 6) needed in the barbell
decomposition of 2K, where v = 10t + 6.

Theorem 4.4 The difference family solutions needed to decompose 2K,
into barbell subgraphs, where v =10t + 6, are

t+1,0,1,¢t+3],[t+3,0,1,¢t+5],
t+5,0,2¢t+8],[t+7,0,2,¢t+10, ...,
[5t—3,0,¢t 6t—2], [5t—1,0,¢t, 6t],

[5t +1, 0, 5t + 3, 10t + 5]}.
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Proof.  The last set has the pair 0 and 5t + 3 occur once because, as the
set is generated, the pair will come a second time. m

Lemma 4.5 The necessary conditions are sufficient for the existence of a
barbell decomposition of 2K,,.

4.2 X=3

Recall the argument as to why 3K, cannot be decomposed into 2-petal
graphs. The same argument applies to the barbell decomposition of 3K,
because there are 5 edges in both subgraphs.

43 A=5
Recall, for A = 5, v can be any integer.

Example 4.6 5K4 can be decomposed into barbell graphs using the sets:
[01 13 37 2]: [0’ 21 1) 3]1 [0) 3$ 21 1], [1) 2! 01 3]1 [2; 3) 0’ 1]) and [3a 1) 0, 2]

Given A = 5 and v = 2t + 1, there are ¢ difference sets mod (2t + 1)
needed.

Theorem 4.7 Given v odd, the general rule for the decomposition of 5K,
where v =2t + 1 and is 2> 5 into barbell subgraphs is:

{[0,1,2, 4]} v

{lo,2,4,1],0,3,6,2],[0,4,8,3,...,
0,t—2,2t—4,¢t-3],[0,t—1,2t—-2,t-2]} U

{[o, ¢, 2¢, 2t — 1]}.

If given a difference family solution for the barbell decomposition of
5K,, where v is odd, then the barbell decomposition of 5K,..; also exists.
There are t 4+ 1 difference sets in the decomposition of 5K, ..

Theorem 4.8 The general rule for the decomposition of 5K, where v+
1=2t+2 and is > 6 into barbell subgraphs is:

{0, 0, 1, 2]} U

{0,1,24,0,247, ...,

[0,t—2 2t—4,3t—5],[0,t—1,2—2 3t—2} U

{[0, ¢, 2¢t, o0]}.

Lemma 4.9 The necessary conditions are sufficient for the existence of a
barbell decomposition of 5K, .
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44 Any A>2

Recall the argument as to why any AK,, where A > 2 and # 3, can be
decomposed into 2-petal graphs. The same argument applies to the barbell
decomposition of AK,,.

Corollary 4.10 The necessary conditions are sufficient for the decompo-
sition of AK, into barbell graphs.
5 Decomposition into “box-edge” graphs

Finally, we will decompose AK), into so called "box-edge” graphs, which we
also call a box-edge decomposition.

A box-edge subgraph with vertices a, b, ¢, and d:

d c

In general, we will denote such a graph by |a, b, ¢, d|. The vertices are
{a, b, ¢, d} and the edge set is {ab, ab, be, cd, ad}.

51 x=2

Recall, for A = 2, v =0, 1(mod 5) is a necessary condition.

Example 5.1 A decomposition of 2K into box-edge graphs uses the sub-
graphs: [0, 3, 1, oo|, |1, 0, 2, o0, |2, 1, 3, 0|, and |3, 2, O, co|.

Example 5.2 A decomposition of 2K into box-edge graphs uses the sub-
graphs: [0, 3, 2,1}, |1, 3, 4,0, 0, 5, 3, 2|, |2, 5, 4, 0], |4, 2, 1, 5|, and |1, 4,
3, 5|

There are 2t difference sets mod (10f — 1) in a box-edge decomposition
of 2K, where v = 10t.

Theorem 5.8 The difference family solutions needed to decompose 2K,,,
where v = 10t, into box-edge subgraphs are:
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{9,1,6,2|,10,3,7, 2|,

lo, 6, 16, 7], |0, 8, 17, 7|, ...,

0, 5t — 9, 10t — 14, 5t — 8|, |0, 5¢t — 7, 10t — 13, 5t — 8| } U
{l0, 5t — 4, 10t — 6, 5¢ — 3, |0, 5t — 1, oo, 5t — 2|}

There are 2t difference sets mod (10¢+1) in the box-edge decomposition
of 2K, where v =10t + 1.

Theorem 5.4 The difference family solutions needed to decompose 2K,
where v = 10t + 1, into boz-edge subgraphs are

{lo: 1: 6; 2': IO; 31 7, 2|;

o, 6, 16, 7|, |0, 8, 17, 7|, ...,

|0, 5¢t —9, 10t — 14, 5t — 8|, |0, 5t — 7, 10t — 13, 5t — §|,

[0, 5t — 4, 10t — 4, 5¢ — 3|, |0, 5¢ — 2, 10t — 3, 5¢ — 3|}.

There are 2t+1 difference sets mod (10¢+4) in a box-edge decomposition
of 2K, where v = 10t 4 5.

Theorem 5.5 The difference family solutions needed to decompose 2K,,
where v = 10t 4- 5, into boz-edge subgraphs are:

{lo, 1, 6, 2}, |0, 3, 7, 2|,

o, 6, 16, 7|, |0, 8, 17, 7|, ...,

|0, 5t — 4, 10t — 4, 5t — 3] [0, 5t — 2, 10t — 3, 5t — 3|,} U

{l0, 5t + 1, oo, 5¢ + 2|}.

There are 2t+1 difference sets mod (10¢ + 6) for the decomposition of
2K, where v = 10t + 6 into box-edge subgraphs.

Theorem 5.6 The difference family solutions needed to decompose 2K,
where v = 10t + 6, into boz-edge subgraphs are:

{lo, 1, 6, 2|, |0, 3, 7, 2|,

lo, 6, 16, 7|, |0, 8, 17, 7], ...,

|0, 5t — 12, 10¢ — 20, 5¢ — 11|, |0, 5¢ — 10, 10t — 19, 5¢ — 11|

|0, 5¢t — 7, 10t — 10, 5t — 6|, |0, 5¢ — 5, 10t — 9, 5¢ — 6|} U

{l0, 5¢ + 1, 10t + 4, 5¢ + 2|}.

Lemma 5.7 The necessary conditions are sufficient for the existence of a
boz-edge decomposition of 2K,,.

52 A=3

Recall the argument as to why 3K, cannot be decomposed into 2-petal
graphs. This argument does not apply to the box-edge decomposition.
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This is because the box-edge subgraph has three single edges whereas the
2-petal subgraphs had only one.

%—Z < ﬂ_(;'_;ll Simplified, this says that (3) < 2 - (3). Hence, it is
possible to decompose 3K, into box-edge subgraphs.

Recall, for A = 3, v = 0,1(mod 5) is the necessary condition, as the
2-v~5u—l!.

number of box-edge graphs in a possible decomposition must be =%

Example 5.8 3K; can be decomposed into subgraphs: |0, 1, 3, 2|, |0, 2,
4,1}, 10,3,1, 4|, 0, 4, 2, 3|, 11,2, 4, 3|, and |3, 4, 1, 2|.

Example 5.9 3Kg can be decomposed into subgraphs: |0, 1, 3, 2|, |1, 2,
4, 3), 12, 3, 5, 4, 13, 4, 0, 5}, |4, 5, 1, 0], |5, 0, 2, 1], |0, 3, 5, 2|, |1, 4, O, 3],
and |2, 5, 1, 4.

To decompose 3K, where v = 10¢, there are 3t difference sets mod (10¢—
1).

Theorem 5.10 The difference family solutions needed to decompose 3K,
where v = 10t into boz-edge subgraphs are:

{lo, 1, 4, 3|, 10,2,7,5],10, 48,3 ...,

|o, 5¢t —9, 10t — 16, 5t — 7|, |0, 5t — 8, 10t — 13, 5t — 5|, |0, 5t — 6, 10t — 12,
5t -7} U

{|o, 5t — 4, 10t — 6, 5t — 2|, |0, 5t — 3, 10t — 4, 5t — 1|, |0, oo, 10t — 1,
5t —2|}.

To decompose 3K, into box-edge subgraphs, where v = 10¢ + 1, there
are 3t difference sets mod (10t).

Theorem 5.11 The difference family solutions needed to decompose 3K,,
where v = 10t + 1, into box-edge subgraphs are:

{lo, 1, 4, 3|, 10,2, 7,5|,10,4,8,3|, ...,

|0, 5t -4, 10t -6, 5t —2|, |0, 5¢—3, 10t —3, 5t|, |0, 5t —1, 10t —2, 5t —2|}.

To decompose 3K, where v = 10t + 5, there are 3t + 1 difference sets
mod (10t + 4), as well as one short set.

Theorem 5.12 The difference family solutions needed to decompose 3K,
where v = 10t + 5, into box-edge subgraphs are:

{lo, 1, 4, 3[,10,2,7,5|,10,4,8, 3, ...,

|0, 5¢—4, 10t -6, 5t —2|, |0, 5t —3, 10t -3, 5¢|, |0, 5¢—1, 10t —2, 5t —2|}
U {|0, oo, 10t + 2, 5t + 1|} U

a short set of {|0, 5t +2, 10t + 3, 5t + 1|}.

235



To decompose 3K, where v = 10t + 6, there are 3¢ + 1 difference sets
mod (10t + 6), as well as one short set.

Theorem 5.13 The difference family solutions needed to decompose 3K,,,
where v = 10t + 6, into boz-edge subgraphs are:
{lo,1,4,3]0,2,75],10,4,8,3|,...,

0, 5t -4, 10t —6, 5t —2|, |0, 5t -3, 10t —3, 5t|, |0, 5t —1, 10t —2, 5¢ —2|}
U {[0, 5t +1, 10t + 3, 5t + 2|} U

a short set of {|0, 5¢ + 3, 10t + 5, 5t + 2|}.

Lemma 5.14 The necessary conditions are sufficient for the existence of
a boz-edge decomposition of 3K,.

53 A=5

Recall, for A =5, v > 4.

Example 5.15 5K4 can be decomposed into box-edge graphs using the
sets: 0, 1, 3, 2[, 10,2, 1, 3,10, 3, 2,1}, 1, 2,0, 3|, |2, 3,0, 1], and |3, 1, O,
2|.

For the box-edge decomposition of 5K, where v = 2t + 1, there are ¢
difference sets mod (2¢ + 1) needed.

Theorem 5.16 The difference family solutions needed to decompose 5K,
where v =2t + 1, into boz-edge subgraphs are
{l0,1,3,2[,[0,2,5,3],10,3,7,4, ...,

0,t—1,2t—1,¢t} U {0, ¢ t+1, 1]}

For the box-edge decomposition of 5K, where v = 2t + 2, there are
t + 1 difference sets mod (2¢ + 1).

Theorem 5.17 The difference family solutions needed to decompose 5K,,,
where v = 2t + 2, into boz-edge subgraphs are

{l0, 1, 3,2,10,2,5,3|10,3,7,4|,...,

0,t—1,2¢t—-1,¢} U {0, ¢, t+1, 00, [0, 00, t+1, 1|}

Lemma 5.18 The necessary conditions are sufficient for the eristence of
a boz-edge decomposition of 5K,,.
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54 Any A>2

Recall the argument as to why any AK,,, where A > 2 and # 3, can be
decomposed into 2-petal graphs. The same argument applies to the box-
edge decomposition of AK,,.

Corollary 5.19 The necessary conditions are sufficient for the decompo-
sition of AK, into boz-edge graphs.

References
(1] P. Adams, D. Bryant, and M. Buchanan, 4 survey on the existence
of G-Designs, Journal of Combinatorial Designs, 5 (2008), 373-410.

[2] H. Chan and D. G. Sarvate, Stanton graph decompositions, Bulletin
of the ICA, 64 (2012), 21-29.

[3] S. El-Zanati, W. Lapchinda, P. Tangsupphathawat and W. Wannasit,
The spectrum for the Stanton 3-cycle, Bulletin of the ICA, accepted.

[4] D. W. Hein, and D. G. Sarvate, On decompositions of AK, using
Stanton-type graphs, accepted, JCMCC, 2014.

(5] S.P. Hurd and D. G. Sarvate, Graph decomposition of K(v,)) into
modified triangles using Langford and Skolem sequences, accepted,
Ars Combinatoria.

[6] D.G. Sarvate and Li Zhang, Decomposition of a AK,, into equal num-
ber of K3’s and P3’s, Bulletn of the ICA, 67 (2013), 43-48.

237



