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Abstract

Here presented is a unified expression of Stirling numbers and their
generalizations by using generalized factorial functions and general-
ized divided difference. Previous well-known extensions of Stirling
numbers due to Riordan, Carlitz, Howard, Charalambides-Koutras,
Gould-Hopper, Hsu-Shiue, Tsylova, Todorov, and Ahuja-Enneking
are included as particular cases of our generalization. Four algo-
rithms for calculating the Stirling numbers and their generalizations
based on our unified form are also given, which include two compre-
hensive algorithms using the characterization of Riordan arrays.
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1 Introduction

The classical Stirling numbers of the first kind and the second kind, denoted
by s(n,k) and S(n,k), respectively, can be defined via a pair of inverse
relations

n

(2]n = Zs(n, k)z¥, "= Zn: S(n, k)[2]k, (1.1)

=0 k=0
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with the convention s(n,0) = S(n,0) = é, 0, the Kronecker symbol, where
z € C,n € Ny =NU{0}, and the falling factorial polynomials [z}, =
2(z—1)---(z —n+1). |s(n, k)| presents the number of permutations of n
elements with k disjoint cycles while S(n, k) gives the number of ways to
partition n elements into k nonempty subsets. The simplest way to compute
s(n, k) is finding the coefficients of the expansion of [2],,. [19] gives a simple
way to evaluate S(n, k) using Horner’s method.

Another way of introducing classical Stirling numbers is via their expo-
nential generating functions

k n T _ 1)k n
(log(lk-:- 2D _ S efm, nZ, (e_k'l)_ =Y smhZ, (2
n>k n2k

where || < 1 and k € Ng. In [25], Jordan said that, “Stirling’s numbers
are of the greatest utility. This however has not been fully recognized.” He
also thinks that, “Stirling’s numbers are as important or even more so than
Bernoulli’s numbers.”

Besides the above two expressions, the Stirling numbers of the second
kind has the following third definition (see [11] and [25]), which is equiv-
alent to the above two definitions but makes a more important rule in
computation and generalization.

.__l_kn _.}.k-k_jk'n
S(nk) = 5 AFz |z=0_k! ;( D (j)J
1 k N k AN

Expressions (1.1) - (1.3) will be our starting points to extend the classical
Stirling number pair and the Stirling numbers.

Denote (2)n,q := 2(2+a) - (24+(n-1)a) forn =1,2,..., and (2),o =
1, where (2)n,o is called the generalized factorial of z with increment a.
Thus, (2)n,—1 = [2]n is the classical falling factorial with [z]p = 1, and
(2)n,0 = 2™. More properties of (z),,, Will be presented below.

With a closed observation, Stirling numbers of two kinds defined in (1.1)
can be written as a unified Newton form:

n
(Dn,—a = Y_ S(n, k, @, B)(2)n, -5, (1.4)
k=0
with S(n,k,1,0) = s(n, k), the Stirling numbers of the first kind and
S(n,k,0,1) = S(n, k). the Stirling numbers of the second kind. Inspired by



(1.4) and many extensions of classical Stirling numbers or Stirling number
pairs introduced by [6], [22], [45], (23], etc. Inspired with (1) and (2) in
[23], we may define a unified generalized Stirling numbers S(n, k,a, B,7) as
follows.

Definition 1.1 Let n € N and o, 8,7 € R. A generalized Stirling number
denoted by S(n, k,a, B,7) is defined by

(DIn—a = Y S(n,k,,B8,7)(z — Tk, (1.5)
k=0
In particular, if (o, 8,7) = (1,0,0), S(n,k,1,0,0) is reduced to the unified
form of Classical Stirling numbers defined by (1.4).

Each (2)p,—o does have exactly one such expansion (1.5) for any given
z. Since deg (z — r)x,—g = k for all k, which generates a graded basis for
II ¢ F — T, the linear spaces of polynomials in one real (when F = R) or
complex (when F = C), in the sense that, for each n, {(z — 7)n,—g} is a
basis for I, C II, the subspace of all polynomials of degree < n. In other
wards, the column map

W, : Fsr —2IM:s— Zs(n) k’a7ﬁ9r)(z)k,-ﬁ’
k20

from the space F) of scalar sequences with finitely many nonzero entries to
the space II is one-to-one and onto, hence invertible. In particular, for each
n € N, the coefficient ¢(n) in the Newton form (1.5) for (z)n,-~ depends
linearly on (z)n —a, i€, (2)n,—a = 8(n) = (W;Hz)n,—a)(n), the set of
S(n,k,a, B,r), is a well-defined linear functional on II, and vanishes on
H<n—1-

Similarly to (1.1), from Definition 1.1 a Stirling-type pair {S',52} =
{S(n, k), S3(n, )} = {S(n,k; &, B,7), S(n, k; B, —1)} (see also in [23])
can be defined by the inverse relations

(Dnma = IS nk)(z—T)e-p
k=0

> S (n, k) (z + Mk man (1.6)

k=0

(2)n,~p

where n € N and the parameter triple (a, 8,7) # (0,0,0) is in R3 or C3.
Hence, we may call S and $2 an (e, 8,7) and a (3, o, —')— pair. Obviously,
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S(n, k;0,0,1) = (Z)

because 2™ = ¢ _; (7)(z — 1)*. In addition, the classical Stirling number
pair {s(n, k), S(n, k)} is the (1,0,0)— pair {S?, $?}, namely,

s(n, k) = S'(n, k;1,0, 0) S(n,k)= Sz(n, k;1,0,0).

For brevity, we will use S(n,k) to denote S(n,k,a, B,r) if there is no need
to indicate a, B, and r explicitly. From (1.5), one may find

$(0,0)=1, S(n,n)=1, S(1,00=r, and S(n,0) = (r)n,—a (1.7)

Evidently, substituting n = k = 0 into (1.5) yields the first formula of (1.7).
Comparing the coeflicients of the highest power terms on the both sides of
(1.5), we obtain the second formula of (1.7). Let » =1 in (1.5) and noting
5(1,1) = 1, we have the third formula. Finally, substituting z = r in (1.5),
one can establish the last formula of (1.7). The numbers o(n, k) discussed
by Doubilet et al. in {15] and by Wagner in [46] is k!S(n, k;0,1,0). More
special cases of the generalized Stirling numbers and Stirling-type pairs
defined by (1.5) or (1.6) are surveyed below in Table 1.

The classical falling factorial polynomials [z], = z(z —1)---(z —n +1)
and classical rising factorial polynomials [2]" = 2(z+1)-.-(z4+n—1),2 € C
and n € N, can be unified to the expression

(Z)n,41:=2(zx1)--- (2 (n —1)),

using the generalized factorial polynomial expression

(Dnki=2(z2+k)---(z2+(n—1)k)= {2+ (n = 1)k}p,—x (2€C,neN).

(1.8)
Thus (z)n,1 = [2]" and (2)n,-1 = [2]n. In addition, we immediately have
the relationship between [z]® and (z), k as

(2)nk = k"[2/K]" (2 €C,neN, k> 0). (1.9)

Similarly, we obtain

(2)n,~k =2(2—k)--- (2= (n—1)k) =k™[2/k], (2€C,neNk>0).
(1.10)
The history as well as some important basic results of the generalized facto-
rials can be found in Chapter II of [25], and an application of the generalized
factorials in the Lagrange interpolation is shown on Page 31 of [16).
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(a,B,7) S(n,k) Name of Stirling numbers
n!(p_;)/k!
-1,1,0 -y Lah number pair(24
( ) (1) =kl (221 Rt ah number pair(24)
N ) —
(-1,0,0) (_ll)i(_"k Szlt, k) signless Stirling numbers(36)
S(n,k,1,6,0) Carlitz’'s degenerate Stirling
(1,6,0)(¢ # 0) S(n,k,0,1,0) number pair(5)
(1,0,-2) S(n,k,1,0,-X) Carlitz's weighted Stirling
' S(n,k,0,1,)) number pair[6)
(1,8, =) S(n,k,1,8,-X) Howard's weighted degenerate
v S(n,k,0,1,)) Stirling number pair[22]
(0,1, —a + b) S(n,k,0,1,—a +b) Gould — Hopper's non — central Lah
v S(n,k,1,0,—b+a) number pair{17]
(1/s,1,~a+b) S(n,k,1/s,1,—a+b) Charalambides — Koutras's non—
' S(n,k,1,1/s,—b+a) central C number pair|7, 8]
(1,0,b— a) S(n,k,1,0,b—a) Riordan’s non — central Stirling
v S(n,k,0,1,a -b) number pair[33)
(2, 8,0) g:: g:: 2; Tsylova's Stirling number pair[45)
(e B,7) S(n,k,a,B,7) Hsu — Shiue’s Stirling
- S(n’; k! ﬁ! o, —1') number pair[23]
(1,z,0) ank(z) Todorov's Stirling numbers([44]
_ Ahuja — Enneking's associated
(=1/r,1,0) B(n,r,k) Lah numbers{30]
(-1,0,7) S{n-rk—-r-1,0,7) Broder's r — Stirling numbers|3)

Table 1. Some generalized Stirling Numbers and Stirling Number pairs

It is known that the falling factorial polynomials and rising factorial
polynomials can be presented in terms of Gamma functions: (2], = I'(z +
1)/T(z — n+1) and [z]* = ['(z + n)/T(z), and the gamma function I'(z)
can be defined in terms of factorial functions by (see, for example, [28])

tn2z—1
I(z) = lim 2 —

nooo  [2]”

(z € C—kZ_). (1.11)

As an analogy, the k-gamma function 'y, a one parameter deformation of
the classical gamma function, is defined by (see, for example [14])
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4. nlk*(nk)*-!

Ti(2) = lim_ i
[2]* and (2)nx (kK > 0) are also called the Pochhammer symbol and k-
Pochhammer symbol, respectively. Even the parameter k is replaced by
other parameters, we still call the corresponding Pochhammer symbol the

k-Pochhammer.
For k > 0, from (1.9), (1.11) and (1.12) (see also [26]) we have

(k>0,2€ C—kZ_). (1.12)

Ti(z) = k&/P-1p (-z-) . (1.13)

Since [2]™ = I'(z + n)/I'(z), [4] extends the classical raising and falling
factorial polynomials to generalized raising and falling functions associated
with real number < by setting

[2] == F% [z)y := I‘(Z—(i:*y-%—)’ (1.14)

respectively. We now extend (z), x defined by (1.8) to a generalized form
associated with v € C using the relationship (1.9), namely,

(2)y e =K7[2/R]", (2)y-k=K"[z/k], (z€C,y€C,k>0), (1.15)

which are called the generalized raising and falling factorial functions asso-
ciated with complex number 7, respectively.

In next section, we will present the unified expression and some proper-
ties of the generalized Stirling numbers of integer orders. Two algorithms
based on the unified expression will be given. The third and fourth algo-
rithms of the computation of the generalized Stirling numbers, including
the classical Stirling numbers as a special case, will be shown using the
characterizations of their Riordan arrays in the last section.

2 Expressions of generalized Stirling numbers

First, we give an equivalent form of the generalized Stirling numbers S(n, k)
defined by (1.5) by using the generalized difference operator in terms of 8
(B # 0) defined by

ABf =Bp(AF7YF) (R22) and Apf(t) = f(t+B) - f(t). (21)

It can be seen that A} (z)j,_gl = B!y, ;, where Jj ; is the Kronecker

delta symbol; i.e., 8 ; =1 when k = j and 0 otherwise. Evidently, from
(1.10) there holds
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t

Af2)j -, = DS [‘5] | =AM, = BBk (2.2)
J

z=0

Denote the divided difference of f(t) at t +4,¢=0,1,...,k, by f[t,t +
1,...,t+ k], or [t,t+1,...,t+ k] f(t). Using the well-known forward dif-
ference formula, it is easy to check that

%A"f(t) =flt,t+1,...,t+ k] =[t,t+1,...,t + k] f(£)

and

1
BF Kl

We now give the following definition of the generalized divided differences.

ALf(t) = flt,t +B,t+2B,...,t+ kB = [t,t + B,...,t + kB f (2).

Definition 2.1 We define é’; f(t) by

LAEf(@t) = flt,t+B,...,.t +kB] if B#0
atre={ TEAD A S

where A,';f(t) is shown in (2.1), ft,t+8,...,t+kB) =[t,t+8,...,t+kB|f
is the kth divided difference of f in terms of {t,t+8,...,t+kpB}, and D* f(t)
is the kth derivative of f(t).

From the well-known formula

D*5(€)
k!

Fltt+ Bt +28,...,t+kp) =

1

where £ is between ¢ and ¢ + kS, it is clear that

1
K — Tim
Df(t) = im
which shows the generalized divided difference is well defined.
We now give a unified expression of the generalized Stirling numbers in
terms of the the generalized divided differences.

AEF (), (2.4)

Theorem 2.2 Let n,k € Ng and the parameter triple (o, B,7) # (0,0,0)
is in R® or C3. For the generalized Stirling numbers defined by (1.5), there

holds
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S(n, ko By1) = Ak(2)n,—a|

z=r

{ F*lk_! A,’;(z)n,-aL=r =[rr+8,...,r +kBl{2)n,—a if B#O
7%? Dk(z)"'_a|z='r if 8=0.
(2.5)

In particular, for the generalized Stirling number pair defined by (1.6), we
have the ezpressions

Sl(n, k) = Sl(n: ka a,ﬂ, 'I') = é;<z)n'—alz=r

{ g Af(Dn-a| _ = lrr Byt kB e if B#O
kll'Dk(z)n,—alzm- ’ if =0
§%(n k) = S%(n, k, B0, —1) = Ak (D)ng|
g Aa(odngl._,
= | =ln-rte ., —r+kal(s-p if a0
%Dk(z)n,_dz:_r ) ifa=0
(2.6)

Furthermore, if (o, 8,7) = (1,0,0), then (2.5) is reduced to the classical
Stirling numbers of the first kind defined by (1.1) with the ezpression

z=0"

(1, k) = S(n,%,1,0,0) = 2 D[el|

If (a,8,7) = (0,1,0), then (2.5) is reduced to the classical Stirling num-
bers of the second kind shown in (1.8) with the following divided difference
expression form:

S(n,k) = S(n, k,0,1,0) = [0,1,2,...,k]z"|,_,. 2.7)

Proof. If B # 0, taking forward kth differences in terms of 8 on the both
sides of (1.5) and letting z = r, from formula (2.2) we have

Ag (Z)n,-—alz:r = A’/; Z S(n,j,a,B,7)(z - 7)i=8s=r
=0

= Y S(nj,0,B,7) Af(z—r)j-p|,_, = B*kIS(n, k,0,B,T).

=0
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which implies the expression of S(n, k, @, 8,7) in (1.5) for the case of 8 # 0.
If B8 = 0, we take kth derivative in terms of z on the both sides of (1.5) and
let z = r, which yields

DX(2)n—al,_, = A5 D S(n,j,e,B,7)(z — )| _ = k!S(n, k,0,0,7),
=0

completing the proof of (2.5).

Similarly, if 8 # 0, taking forward kth difference in terms of 8 and a
on the both sides of two equations of (1.6), respectively, and letting z = r
and z = —r, respectively, we immediately obtain

Af(2)nal,_, = BKIS (n,k, 0, B,7)
Ak (2 pl,__, = KIS (n, k, B, 0, —T).
which imply two first formulas of (2.6) for 8 # 0. Two formulas for the

case of 3 = 0 in (2.6) can be obtained by using kth differentiation and a
similar argument in the proof of their unified form (2.5).

]
The following corollary is obvious due to the expansion formula of the
divided differences generated from their definition.

Corollary 2.3 Let n,k € Ny and the parameter triple (e, 8,7) # (0,0,0)
is in R3 or C3. If B # 0, for the generalized Stirling numbers defined by
(1.5), there holds

S(n,k) = S(n,k,a, B,7) = -,3—:,;3 3 (-1 (;‘) (r+ (k= )B)na  (n+0),

3=0
(2.8)
and S(O, IC) = 50);.
Remark 2.1 It can be seen from (2.8) that
S(n,0) = 8(n,0,a,8,7) = (T)p,~a; (2.9)

which is independent of 8 and has been shown in (1.7). The difference is
deriving (2.9) from (2.8) needs (a,r) # (0,0) when 8 = 0. However, we have
seen from (1.7) that the condition is not necessary. Another way to derive
(2.9) using the characterization of the Riordan arrays of the generalized
Stirling numbers will be presented in the Algorithm 3.3 in Section 4.
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Remark 2.2 If af # 0, by taking the nth forward differences in terms of
a and B3 on the both sides of two equations of (1.6), respectively, one may
obtain identities

nla™ = Z Sl(n, k) A:(z - r)k,'—ﬁlz:O
k=0

nlpr = Y S2(n,k) ARz +)k—al,_,
k=0

The above two identities can be unified to be one:

nla™ = Z S(n, k,0, B,7)A%(z = T)k,~8l,—0 -
k=0

When a = 0, the above identity turns to

n
al=Y"8(n,k,0,8,r) D™z —)k,—pl,_o -
k=0
Remarker 2.3 There exists another expression of the divided difference
Ak (z)n_-a,l _. in terms of Peano kernel of B-spline. Assume that the set
7= {t,t+B,...,t +kB} lies in the interval [a,b]. Then on the interval, we
have Taylor’s 1dentity

z— b _ank-1
(Z)n.—cz = Z ( D ( )n,—alz__a A -(zzk—f’)l';!—(y)n,-ady.

i<k

If 8 > 0, then é; is a weighted sum of values of derivatives of order < k,

hence commutes with the integral in the above Taylor’s expansion, which
annihilates any polynomial of degree < k. Therefore,

® M(y|r)

k! (y)n,—adyv

A5l =

where

M(y|r) == kfr,r + B,...,r + kB)(- — y)k?

is the Curry-Schoenberg B-spline (see [12]) with the knot set T and nor-
malized to have integral 1. In particular,
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b
S(n,n,a,B,7) = é;(z)n__a = / M(y|r,r+8,...,7r+nB)dy = 1.
Z=r a

We now present two algorithms for calculating generalized Stirling num-
bers. If 8 # 0, we denote

ég ft+€B):= flt,t + €8, t + (£ +1)B,...,t + jB (2.10)

Thus, from (2.5) in Theorem 2.2, based on the recursive definition of the
divided difference with respect to 8 (see Definition 2.1)

LA+ 08) = (A e+ (€ 1F) - A e+ 48)), (211)

we obtain an algorithm shown below.

Algorithm 2.4 This algorithm of evaluating the generalized Stirling num-
bers is based on the construction of the following lower triangle array by
using (2.10) and (2.11).

(2)n,-al.=r

2+ Balicy  DplEn-af

(24 kBln,-aliar Dz + (k= DB)na| _

k
éﬂ (2)n,—a -

Table 2. The generalized Stirling numbers

Thus, the diagonal of the above lower triangle array gives S(n,i,a, B, 1) =
éfg(z)n.-al _fori=0,1,...,k

Example 2.1 We now use Algorithm 2.4 shown in Table 2 to evaluate
the classical Stirling numbers of the second kind S(4,%) = S(4,k,0,1,0)
(k = 1,2,3,4), which are re-expressed by (2.7). Thus,

0

1 1

29=16 15 7

3=81 65 25 6

41 =256 175 55 10 1
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From the diagonal of the above lower triangular matrix, we may read
5(4,0) =0, 5(4,1) =1, S(4,2) =7, 5(4,3) = 6, and S(4,4) = 1. Mean-
while, the subdiagonal gives §(5,1) = 1, 5(5,2) = 15, S(5,3) = 25, and
5(5,4) = 10.

Example 2.2 For the Howard’s weighted degenerate Stirling numbers
S(4,k) = S(4,%,1,1, —1), a similar argument of Example 2.1 yields

(z>4y_liz=—1 =24
(Z + 1)4,_1|z=_1 = 0 —24

(z+ 2)4,_1|z=_1 =0 0 12
(z+3)4,-1],._, =0 0 0 -4
(z+4)4,-1l,;, =0 0 0 0 1

Thus, S(4,0) = 24, S(4,1) = —-24, S(4,2) = 12, S(4,3) = —4, and
S(4,4) =1.

Example 2.3 For the Howard’s weighted degenerate Stirling numbers
S(4,k) = S(4,k,1,2,-1), using Algorithm 2.4, we obtain S(4,0) = 24,
5(4,1) = —12, 5(4,2) = 3, 5(4,3) = 2, and S(4,4) = 1 reading from the
following table.

(2)a-1l,e =2

(Z + 2)4'_1|z____1 =0 -12

(Z + 4)4'_1|z=_1 =0 0 3

(2+6)4,-1],._; =120 60 15 2

(z+8)4-1],__, =840 360 75 10 1
Remark 2.4 Obviously, Algorithm 2.4 is not limited to the case of 8 # 0
since when 8 = 0, A" (z),,‘_a| (k = 0,1,...,n) on the diagonal of
the lower triangle matrix in Table 1 are simply the 1/k! multiply of the
derivatives D¥(z)n _o|,__ (see Theorem 2.2).

Another algorithm ‘ased on the Horner's method can be established
using a modified argument in the computation of the classical Stirling num-
bers of the second kind shown in [19]. More precisely, we have the following
algorithm.

Algorithm 2.5 First, we may write the generalized Stirling numbers S(n, k) =
S(n,k,a,B,r) defined by (1.5) (see Definition 1.1) as

(z)n,—a = Z S(n, k)(z — T)k,-p

k=0
= S(n,0)+ (z—r)(S(n, 1)+ (2 =7 - B)(S(n,2) + (2 — 7 — 28)(S(n,3) + - -
(z =7 = (n-1)8)S(n,n)))). (2.12)
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Secondly, Use synthetic division to obtain (2)n,—o/(z —T), a polynomial of
degree < n — 1, with the remainder S(n,0). Then, evaluate ({2)n,—o/(z —
7)—S(n,0))/(z —r - B) to find the quotient polynomial of degree < n—2 as
well as the remainder S(n,1). Continue this process until a polynomial of
degree < 1 left, which is S(n,n—1)+(z2—r—(n—1)B)S(n,n). A equivalent
description of the above process can be presented as follows. Use Horner’s
method to find

f(r) = (2)n—a = S(m0) + (2 = 7)f1(2), deg fi(z) Sn—1,

where the remainder is S(n,0)). Then, use Horner’s method again to eval-
uate

fi(z) =8(n,1) + (2 —7 = B)fa(2), deq fo(z) <d -2,

which generates the remainder S(n,1). Continue the process and finally
obtain

fac1=8S(n,n—-1)+ (2 -7 - (n—-1)B)S(n,n).

In short, we obtain S(n,0) = (2)n,~al,_,, S(1n,1) = ({2)n,~a—S5(n,0))/
(z- 'r)|z=r+ﬁ, ete.

Algorithm 2.5 can be demonstrated by the following examples.

Example 2.4 For the classical Stirling numbers of the second kind in the
case of n = 5 and (e, 8,7) = (0, 1,0), from expansion (2.12) we have

2% = 8(5,0) + 2(S(5,1) 4+ (z — 1)(S(5,2) + (z — 2)(5(5,3)
+(z = 3)(5(5,4) + (z — 4)5(5,5))))),

which implies 5(5,0) =0 and

2% = 5(5,1)+(2-1)(S(4, 2)+(2—2)(S(4, 3)+(2—3)(S(4,4)+(z—4) S(5,5)))).

Thus, we may use the following division to evaluate S(5, k) (k = 1,2, 3,4,5).
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3 18

Hence, S(5,1) = 1, §(5,2) = 15, S(5,3) = 25, S(5,4) = 10, and $(5,5) = 1.

From (2.12) we also immediately know that S(n,n) = 1 because it is the
coefficient of z™ on the right-hand side while the coefficient on the left-hand
side is 1.

Example 2.5 Consider the Howard’s weighted degenerate Stirling num-
bers with n = 4 and (o, 8,7) = (1,2,—1), we now calculate S(n,k) =
S(n,k,1,2,—1) using Horner’s method based on expansion (2.12), which
can be reduced to

(2)4-1 =2 — 623 + 1122 — 62
= 5(4,0) + (2 +1)(S(4,1) + (2 — 1)(S(4,2) + (z — 3)(5(4,3)
+(z = 5)(5(4,4)))).

Therefore, we have synthetic division scheme as
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-1 7 -18 24

1 1 -7 18 -24 24

Thus, S(4,0) = 24, S(4,1) = —12, S(4,2) = 3, S(4,3) = 2, and 5(4,4) =1,
which yield the same results obtained in Example 2.3 by a different method.

Similarly, for the case of n = 5 and (o, 8,7) = (1,2, —1), we may estab-
lish the following expansion

(2)5,—1 = 2% — 102% + 352% — 5022 + 242
= 8(5,0) + (2 +1)(S(5,1) + (z — 1)(S(5,2) + (z — 3)(5(5,3)
+(z — 5)(5(5,4) + (2 — 7)5(5,5)))))-

Thus, we may also read S(5,0) = —120, S(5,1) = 60, S(5,2) = —15,
S5(5,3) =5, S(5,4) = 5, and S(5,5) = 1 from the table:
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-1 11 —46 96 -120

1 1 -11 46 -96 120 -120

5 -10

Let {t;}7_, be a strictly increasing n-sequence, and let o = {o(j )};-‘=1 be
any strictly increasing integer sequence in [1,7n]. There holds the foliowing
well-known refinement formula of divided difference (see, for example, [2])

o(k)—k)

fltt =ty st —tom) = D cl)flt.tirrse .ot — i,
j=o(1)-1

where c(j) = ¢t,0 > 0. Using this refinement formula one may obtain the
refinement formula of the generalized Stirling numbers defined by (1.5).

Proposition 2.6 Letn,k € Ny and the parameter triple (a, 8,7) # (0,0,0)
is in R® or C3. Then there holds refinement formula,

a(k)—k)
BBoaik)) (Dnmalmr = D (DABjr1:54k) (2np=al,;

J=eo(l)-1

where

ABey)f = flt,t + 48, ¢+ (L +1)B, ..., t + jB]
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3 Two comprehensive methods of computa-
tion of generalized Stirling numbers

Let us consider the set of formal power series (f.p.s.) F = R[[t; {ck}]]
or C[[t; {c}]] (where ¢ = (co,c1,C2,...) satisfies co = 1, cx > 0 for all
k=1,2,...); the order of f(t) € F, f(t) = 352 o fxt*/ck, is the minimal
number r € N such that f. # 0; F, is the set of formal power series of
order 7. It is known that Fy is the set of invertible f.p.s. and F; is the
set of compositionally invertible f.p.s., that is, the f.p.s.’s f(t) for which
the compositional inverse () exists such that f(F(t)) = F(f(t)) =t. We
call the element g € F with the form g(z) = Zk>0 ck a generalized power
series (GPS) associated with {c,} or, simply, a (c)- GPS and ¥ the GPS set
associated with {c,}. In particular, when ¢ = (1,1,...), the corresponding
F and 7, denote the classical formal power series and the classical formal
power series of order r, respectively.

In the recent literature, special emphasis has been given to the concept
of Riordan arrays, which are a generalization of the well-known Pascal
triangle. Riordan arrays are infinite, lower triangular matrices defined by
the generating function of their columns. They form a group, called the
Riordan group (see Shapiro et al. [41]). Some of the main results on the
Riordan group and its application to combinatorial sums and identities
can be found in Sprugnoli [42, 43], on subgroups of the Riordan group
in Peart and Woan [32] and Shapiro [38], on some characterizations of
Riordan matrices in Rogers [35), Merlini et al. [27] and He et al. [20],
and on many interesting related results in Cheon et al. [9, 10], He et al.
(18], Nkwanta [31], Shapiro [39, 40], and so forth. We now generalize the
Riordan arrays associated with classical power series to those associated
with (c)-GPS, where ¢ = {cx = k!}x>0. The Riordan arrays associated
with other (c)-GPS can be found in author’s later paper. More precisely,
let ¢ = {cx = k'}k>0. The (c)-Riordan array generated by d(t) € Fo and
h(t) € F; with respect to {ck }x>0 is an infinite complex matrix [dn xJo<k<n,
whose bivariate generating function has the form

F(t,) = 3 dnpoya® = d(t)e™®, (3.1)
n,k )

which is called a Sheffer type Riordan array.
Thus, the (n, k) entry of (c)-Riordan array [d, x| is

k
s = | 5] a1 ~ e (32)

for all 0 < k < n and d,x = O otherwise. It is easy to see that a
lower triangular array [dn k] is a (c)-Riordan array if and only if the array

255



(k!dn,k/n!) is a (1)-Riordan array, i.e., a classical Riordan array. Evidently,
[dn,k] = (d(t), h(t)) can be written as

[dn.] = D[[t"]d(£) (h(t))*]nzk20D 7%, (3.3)
where D = diag(1,1,2),...).

Rogers [35] introduced the concept of the A-sequence for the classi-
cal Riordan arrays; Merlini et al. [27] introduced the related concept of
the Z-sequence and showed that these two concepts, together with the el-
ement do,0, completely characterize a proper classical Riordan array. In
[20], Sprugnoli and the author consider the characterization of Riordan
arrays, their multiplications, and their inverses by means of the A- and
Z-sequences.

In [35], Rogers states that for every proper Riordan array D = (d(t), h(t))
there exists a sequence A = (ar)xeN such that for every n,k € N we have:

[t 1]d(e) (R (2)) <+
ao[t"1d(t)(h(t))* + a1[t"]d(t) (h(t))*+! + ag[t™])d(t)(h(£))**+2 + - ..

> a;ltnld(e)(h(2))F+ (3.4)
j=0

where the sum is actually finite since d, » = 0, Vk > n. We can reformulate
it to the generalized (c)-Riordan array as follows.

Theorem 3.1 An infinite lower triangular array D = (@nk)n ren = (d(2),
h(t)) is a (c)-Riordan array if and only if a sequence A = (ag # 0,a,,0as,...)
ezists such that for every n,k € N relation

o0

Ck Chj

+1 _% d G C2 _
1,k+1 = ——Qo ,k+_a1d N 1+—’a2dn,k ot = —a;d R 251
Cnit n+1,k+ Cn n en n,k+4 Cn + J,___Zo Cn 34n, k45
(3.5)

holds. In addition, the generating function A(t) of A— sequence is uniquely
determined by tA(h(t)) = h(t).

Proof. Using expression (3.2) and expression (3.4), we obtain formula (3.5)
immediately. From a similar argument of the proof of Theorem 2.1 in
[20], we have tA(h(t)) = h(t), where A(t) is the generating function of A—
sequence.
The sequence A = (@n)nen, is the A-sequence of the Riordan array
D = (d(t), h(t)) and it only depends on h(t). In fact, as we have shown
during the proof of the theorem, we have:
h(t
hO =) o e =M | y=nw] = [4 | v=ho)]
(3.6)
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and this uniquely determines A when k(1) is given and vice versa, h(t) is
uniquely determined when A is given.

]

We now use Theorem 3.1 to establish a new recursive relationship of

generalized Stirling numbers. From expression (12) in Theorem 2 of [23]

with a8 # 0, we have the generating function of the generalized Stirling
numbers shown below:

1 e (L +a2)f=—1\* 2"
=1 +az) (_'g—) _§S(n,k)m. (3.7)

Theorem 3.2 Let aff # 0. The A— sequence (an)neN, Of the Riordan
array of the generalized Stirling number array [dn i = k!S(n, k)/nlo<k<n
satisfies

a0 = E Gnet ‘?,Z";‘l'" (38)

foralln > 1.

Proof. Denote the compositional inverse of h(z)‘= ((1+ az)P/* —=1)/B by
h(z). Thus,

_ a/f _
by = EB 21

Thus, the generating function, A(z) = Y., axz”, of the A-sequence char-
acterized the Riordan array of (3.7), [dn kJo<k<n, satisfies zA(h(2)) = h(2),
or equivalently,

z _ az
h(z) (1 +B2)2/F-1

N o7 = = (3.9)
Zkzl (al/cﬂ)(ﬂz)k Ekzo(a)k+1,—ﬁzk/(k + 1)V

A(2)

which implies

(Z akzk) (Z (‘Z‘kk-:ll.)—'ﬂ k) — Z (Z 0y QLB c(!k):k-l-':l]j;'ﬂ) o

k>0 n>0

using the Cauchy multiplication formula. Comparing the coefficients of
powers z™, we obtain a system that can be solved to obtain the solution of
(ar)nen shown in (3.8).
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n
To find the fist column of the array [dn,kJo<k<n, We consider (3.7) for
k = 0 and have

(1 +az)r/a - Z S(Z‘ 0)

n>0
On the other hand,

1+az)/*=3" (r{?’a) (az)™.

n>0
Comparing the right-hand sides of the last two equations, we obtain

S(n,0) = 8(n,0,a, B,r) = n! ("1/1 “) o® = (M . (3.10)

Formula (3.10) was given in (1.7) and also in (2.8), which are derived by
different approaches.
From (3.7) we have

k!
[dnklogken = [—;S(n, k)] ) (3.11)
n 0<k<n

where S(n, k) = S(n, k, 0, B8,7) (aB # 0). Therefore, surveying the above
process, we obtain an algorithm to evaluate generalized Stirling numbers
S(n, k) = S(n, k,a, B,r) with a8 # 0.

Algorithm 3.3 Denote d(t) = (1+az)"/® and h(z) = (1 +az)?/*-1)/8
(af # 0). Let n,k € Ng and aff # 0. Then we may find A-sequence
(2n)neN, shown in (3.8) and establish the array (3.11) except its first col-
umn by using the recursive relation (8.5) shown in Theorem 8.1, i.e.,

—S(n,k) 3 a ,%ﬂsm Lk+j—1) (3.12)
i20

for all1 < k < n. The first column of array (8.11) can be constructed by
using (3.10). Thus, the nth entry of the first column is

28(n,0) = Tlmce. (313)

Finally, all S(n,k) = S(n,k,0,8,7) (0 < k < n) can be read from a
modification of array (8.11); namely from

n!
[Fdn,k] = [8(n, B)lockn »
! 0<k<n
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where S(n, k) =n) .Soai[k+7i—1;-1S(n—1,k+j—1) when1 <k < n,
and S(n,0) can be ogt_ained from (8.18) or (3.10).

Remark 3.1 The condition a8 # 0 in Theorem 3.2 and Algorithm 3.3
is not necessary. Algorithm 3.3 can be modified to adapt some of cases
when af8 = 0. We will show the application of Algorithm 3.3 to the cal-
culations of the classical Stirling numbers of the second and the first kind,
ie., S(n,k,o,B,7)) = S(n,k,0,1,0) and S(n, k,, B,r) = S(n,k,1,0,0), in
Examples 4.2 and 4.3, respectively.

Example 3.1 For the Howard’s weighted degenerated Stirling numbers
S(n,k) = S(n,k,1,1,-1). From Algorithm 3.3 or Theorem 3.2, we imme-
diately have generating function of the corresponding A-sequence A(z) = 1.
Then, using (3.12) and (3.13) we obtain the Riordan array [dn klock<n =

%S("’ k)] o<kgn 38

1
[-|S(n, k)] = 1 -1 1
n: 0<k<n -1 1 -1 1
1 -1 1 -1 1
Therefore,
1
-1 1
[S(rB)lockcn=| 2 -2 1 ,

—6 6 -3 1
24 -24 12 4 1

which gives $(0,0) = 1; S(1,0) = -1, S(1,1) = 1; S(2,0) = 2, S(2,1) =
-2, §(2,2) = 1; S(3,0) = -6, S(3,1) =6, S(3,2) = -3, 5(3,3) =1; and
S5(4,0) = 24, S(4,1) = —24, S(4,2) = 12, S(4,3) = —4, and S(4,4) =1
row by row.

Example 3.2 As we have presented in Remark 4.1, the condition af # 0
in Theorem 3.2 and Algorithm 3.3 is not necessary. Here, we demon-
strate how to modify Algorithm 3.3 for the case of (¢, 8,r) = (0,1,0).
The generating function of the corresponding classical Stirling numbers
{S(n,k) = S(n,k,0,1,0)}o<k<n of the second kind is

L -1k =3 8, k)=
] 2, SR

Thus the corresponding Riordan array has generating functions d(z) = 1
and h(z) = e* — 1. Since the compositional inverse of h(z) is h(z) = In(1+
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z), the A-sequence characterization of the Riordan array has generating
function

z z 1
= ) k—1 = —1)k 0
In(1 + 2) 2k>1 g_l?c—'zk k20 -:1 z*

which coefficients {an }n>0, i.e., the elements of A-sequence, can be solved
from the above equation as

A(z) =

n+l _1 k
ap =1, an=_Zan—k '—Zan k+l (nZI)-
Thus, we obtain the first few a,,:
—la—la——ia——l—a 19 ete.
o = 1, 1-2s 2 = 12: 3—24’ 4 = 720’
Similar to Algorithm 3.3, we may find the Riordan array
[ k! k!
[dnlosksn = | =5(n, k)] = [ 75(n, k)]
n 0<k<n 0<k<n
[ 1
0 1
= |0 L 1
o I 11
|0 % 15 5 1

The Riordan Stirling array of the Stirling numbers of the second kind is

1S Flosien = | 554

0<kgn

(==
e
~N W =

1

6 1

which gives all S(n,k) = S(n,%,0,1,0) for 0 < k < 4. For instance,
S5(4,0) =0, S(4,1) =1, 5(4,2) =7, S(4,3) =6, and S(4,4) = 1.

Example 4.3 For (¢, 8,7) = (1,0, 0), we can also applied a modification
of Algorithm 3.3 to evaluate the classical Stirling numbers of the first kind
s(n, k) = S(n,k,1,0,0) as follows. In this case, we have the corresponding
Riordan array (d(z), h(z)) = (1,In(1 + 2)). Thus the compositional inverse
of h(z) = e — 1. Thus the A-sequence {an}n>0 has its generating function
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z z _ 1

AZ) = === = .
h(z) k>1 o 2k>0 (:?:."‘TF

Solve the above equation to obtain

a—la—Oa— L ete
2, 2"127 3 =Y, &4 — 720 oy

which brings us the Riordan array

ag =1, ay = -

[ k! k!
d = —Sn,k] =[—.S n’k]
[dn kJock<n 7 (n, k) ock<n LM (m, k) o<k<n
[' 1
0 1
0 % -1 1
| 0 —3 % "% 1

The Riordan Stirling array of the signed Stirling numbers of the first kind
is

1
[s(n, k)]OSkSn = [ms(n, k)] =10 -1 1 )
’ 0<k<n 0 2 -3 1
0 -6 11 -6 1

which gives all s(n, k) = S(n, k,1,0,0) for 0 < k < 4. For instance, s(4,0) =
0, s(4,1) = —6, s(4,2) = 11, s(4,3) = —6, and s(4,4) = 1. Of course, the
Stirling numbers of the first kind can be evaluated more easily by using
formula (2.5) in Theorem 2.2, namely,

s(n k) = S(n,k,1,0,0) =~ 25151

1) - At Bt B | k! dz2 n 220 ?

which are simply the coefficients of the powers of z in the expansion of [z],.

If ¢ = {ck = Kk'}x>0, the corresponding (c)-Riordan array [dn k}n>k>0

shown in (3.3) is called an exponential Riordan array in (13]), where d, x

is presented in (3.2). [13] gives an interesting algorithm in computation .

of dn k, the entries of exponential Riordan array, by using two different

sequences, c-sequence and r-sequence. More precisely, we cite Proposition
4.1 of [13] as follows.
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Proposition 3.4 ([13], Proposition 4.1) Let [dn k|n>k>k>0 = (d(2), h(2))
be an exponential Riordan array and let

c(z) =cotarz+eopg+oo, r(r)=ro+matradL. (314)

be two formal power seeies such that

c(h(z)) = d'(2)/d(z),  r(h(2)) = h'(2). (3.15)
Then
dnt1,0 = Zi!cidn,i, (3.16)
>0
= 1 ! k d 3

dnt1,k = Todn k-1 + o ;7-(01'—&: + krick41)dni,  (3.17)

or, defining c_q =0,

1 .

dniLk = 4 '>;1 ici—k + kTi—k41)dn,i (3.18)

forallk > 0.
Conversely, starting from the sequence defined by (3.14), the infinite
array {dn kln>k>0 defined by (3.18) is an exponential Riordan array.

Remark 3.2 From [13], do o must be 1. It is clearly that (3.17) is valid for
n>k>1. When k=n+1, (3.17) is reduced to
dny1nt1 = T0odnn =17. (3.19)

The exponential Riordan array [S(n, k)] = [S(n, k, a, B,7)] of the gener-
alized Stirling numbers have the generating functions shown in (3.7). Thus
[S(n, k)] = (d(2), h(z)), where

(14 az)fl>—1

d(z) = 1+ a2)’/*, h(z)= 3 (3.20)
It is obvious that the compositional inverse of h(t) is
- aff _
R(z) = LHB"F 1 (3.21)

o
From (3.15) we obtain the generating functions of c-sequence and r-sequence
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r

c(z) = c(z,0,B,7) = d(z)

4(@) loohe)  1+0% |oaie)
=r(l +pz)~*/? (3.22)
r(z) = 7(z,0,8,7) = (2| pap(e) = (1 + az) /21
z=h(z)
= (1-Ba)t~/2,

(3.23)

An algorithm based on Proposition 3.4 can be designed as follows.

Algorithm 3.5 Let ¢(z) and r(z) shown in (3.22) and (3.23) be the generat-
ing functions of c-sequence, {ci}x>0, and r-sequence {ri}x>o, respectively.
Then the generalized Stirling numbers defined by (3.7) can be evaluated
using the recursive formulas

S(n+1,0)=r) il (“:/ﬁ) BiS(n,i) =1 il ((a/ﬁ 1) (—B)S(n, i),
i>0 i20 .

S(n+1,k) = S(n, k— 1)

N % sza (r(:f/f) +(_1)i—k+lﬁk(];:: ﬂﬂl))) BikS(n,i), (3.24)

where S5(0,0) =1 and S(n, k) = S(n,k, o, B, 7).
In particular, if « = 8 # 0, then

c(x) =r(l+Bz) ' =r — 1Bz + 1%z — 32> + -
r(z) =1. (3.25)

Thus, we obtain a recursive formula for the computation of S(n,k) =

S(n, k,8,8,7):

S(n+1,0) = rzn:i!(—ﬂ)‘S(n, i), S(nn)=1(n>0)  (3.26)
i=0

St 1K) = S k= 1)+ 13 H(=BY S (m ) (0 2 k> B21)
i=k

Example 3.4 As an example, for a = f = 1, one may obtain [S(n, k)]Jo<k<n
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row by row and from left to right as

5(0,0) =1,5(1,0) = (-1)5(0,0) = -1,5(1,1) = §(0,0) = 1,

1
$(2,0) = (-1) Y _il(-1)'8(1,i) =2,

i=0

5(2,1) = 8(1,0) + (-1)S(1,1) = -2,

2
5(2,2) = 8(1,1) = 1,5(3,0) = (-1) ) _il(-1)*S(2,4) = 6, etc.,
i=0
which is exactly the entries of the matrix [S(n, k,1,1, —1)]o<k<n obtained
in Example 3.1. _

It can be seen that if a simple A-sequence can be found readily, Al-
gorithm 3.3 looks simpler than Algorithm 3.5, which can be found from a
comparison of Examples 3.1 and 3.4. However, if c-sequence and r-sequence
can be evaluated readily, we prefer Algorithm 3.5. Please compare Exam-
ples 3.2 and 3.3 with the following examples.

Example 3.5 Since the Stirling numbers of the second kind S(n, &, 0, 1,0) is
defined by the exponential Riordan array (1, e* —1), one may have c(z) = 0
and 7(z) = 1 + z. Thus Algorithm 3.5 gives

$(0,0)=1,8(n,0)=0(n>1),S(n,n)=8(n—-1,n—-1)=1(n>1),
S(n+1,k)=8S(nk—1)+kS(n,k) (n>k >1),
which yields the same matrix, [S(n,k,0,1,0)], of the Stirling numbers of
the second kind shown in Example 3.2.

Similarly, for the Stirling numbers of the first kind [S(n,k,1,0,0)] =
(1,1n(1 + 2)), we have the corresponding

c(z) =0, r(z)=e "

Thus,

5(0,0)=1,8(n,0)=0(n>1),S(n,n)=S(n-1,n-1)=1(n>1),
S(n+1,k) = S(n,k—1) + ; (—1)i-k+1 ‘ S(n,i) (n >k >1),
n > (k—l) n,3) (n

which generates [S(n,k,1,0,0)] as that presented in Example 3.3 with a
different and harder approach. Furthermore, Algorithm 3.5 rebuilt some
well-known identities and may built new identities of the Stirling numbers
shown above.
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