Greedy Coverage of Incomplete
Planning Domain Interpretations by
t-strength Diagnoses

Daniel Bryce
SIFT, LLC.
dbryce@sift.net

Abstract

In this work, we present a greedy algorithm for covering the set
of incomplete STRIPS planning domain interpretations by t-strength
diagnoses. We present a greedy algorithm to cover the incomplete
domain model interpretations with a set of plans by iteratively gen-
erating plans so that each additional plan is biased to cover at least
one new interpretation not previously covered. We also present a
second greedy algorithm to construct a set of plans that covers all ¢-
strength diagnoses of plan failure for plans in the incomplete domain
model. We show that covering domain interpretations by ¢-strength
diagnoses leads to increased coverage by a set of plans despite po-
tentially lower coverage per plan because covering by t-strength di-
agnoses leads to a more scalable approach to planning where more
plans can be found.

1 Introduction

Our work is motivated by a problem encountered in decision support sys-
tems that plan activities for Mars exploration rovers [Bresina et al., 2005],
defense [Myers et al., 2003], personal daily plans [Pollack et al., 2003], and
logistics [Carbonell et al., 1991], among others. In these scenarios, the users
model their knowledge about the application domain and use an automated
planner to construct a sequence of actions. A problem arises in that the
users are not always experts in knowledge engineering, and while under-
standing the domain, cannot state their knowledge perfectly. In such cases,
it is possible to construct a plan given the incomplete knowledge of the
domain (using our planner DeFAULT) [Weber and Bryce, 2011a], which can

JCMCC 86 (2013), pp. 33-49

be used to elicit more knowledge from the user [Weber and Bryce, 2011b].
When knowledge about the domain is incomplete; we find plans that cover
as many interpretations as possible. The approach advocated in this work
is to drive the elicitation process by presenting alternative plans that will
succeed under different interpretations of the incomplete domain knowl-
edge. Providing different plans can support user decision making because
it is often easier to compare concrete examples [Viappiani et al., 20086].
Furthermore, user confirmation of the plans leads to refined knowledge of
the domain.

The contribution of this work is to formalize the problem of construct-
ing a set of plans II as a set cover, where each plan 7 does not cover
a set of domain model interpretations d(w) (d(w) represents the domain
mode interpretations where the plan will fail, and —d(w) indicates those
where it succeeds). We develop two variations (described below) of the
well-known greedy set cover algorithm [Cormen et al., 1990] that gener-
ate plans sequentially to cover uncovered domain interpretations, denoted
by ¢. We say that II covers the interpretations represented by [phi if
Arend(m) A ¢ =1, or equivalently V,en—d(7) = ¢ (the union/disjunction
of the domain interpretations where the plans succeed is equal to ¢). That
is, the intersection/conjunction of the cases where the plans fail and the
interpretations that need to be covered is logical false (i.e., an empty inter-
section). Our approach is different from the traditional set cover problem
in that the sets d(w) (elements not covered by each plan) are not known a
priori, and each successive set d() is generated by a planner that attempts
to maximize coverage of the uncovered elements ¢.

The two variations of the greedy set cover algorithm differ in how they
track the uncovered elements ¢. The first, an exact approach, represents
the uncovered elements by binary decision diagrams (BDDs) [Bryant, 1986).
The second, an approximate approach, represents the uncovered elements
by a set of bounded prime implicants of at most size t. We refer to the
bounded prime implicants as t-strength diagnoses because of their corre-
spondence in the diagnosis literature [Reiter, 1987; de Kleer and Williams,
1987]. Intuitively, a diagnosis is a conjunction of Boolean literals that if
satisfied represents failure cases. If ¢ denotes a set of domain model inter-
pretations that are not covered by plans in II, and we approximate ¢ by
t-strength diagnoses, then these are diagnoses of our failure to cover the do-
main model interpretations. That is, any domain interpretation that satis-
fies a diagnosis is not covered by II, but because we only consider ¢-strength
diagnoses there may also be domain interpretations not satisfying a diagno-
sis that are not covered by II. The difference between the two approaches is
that the exact method tracks exactly which domain model interpretations
are covered by the plans, and the t-strength diagnosis method tracks only

34

those t-strength diagnoses covered by the plans (potentially leaving domain
model interpretations uncovered).

Either representation of uncovered domain model interpretations can
then be used within our planning algorithm to bias the next plan to cover
the uncovered domain model interpretations. Using t-strength diagnoses
leads to a more scalable approach to planning, as shown in our previous
work [Weber and Bryce, 2011a). We note that it may not always be possible
to completely cover the incomplete domain interpretations because of either
computational intractability faced by the planning algorithm or there are
interpretations under which no plan exists. The question evaluated in this
work is whether covering t-strength diagnoses as a heuristic for incomplete
domain model coverage is scalable without giving up coverage quality. We
find that indeed, using this heuristic can provide equal and sometimes better
coverage because it scales better and can generate plans where the exact
coverage approach cannot.

Our presentation begins with the background and representations used
in planning, and then we describe our greedy coverage algorithms. We
discuss how we generate plans in each iteration of the greedy algorithms
and present an empirical evaluation of the techniques. We end with related
work and a conclusion.

2 Background & Representation

We formulate planning with incomplete domain knowledge as Incomplete
STRIPS planning. Incomplete STRIPS relaxes the classical STRIPS model
[Fikes and Nilsson, 1971] to allow actions that have possible preconditions
and effects {Garland and Lesh, 2002], and are otherwise identical to STRIPS
domains. Much like planning with incomplete state information [Bonet and
Geffner, 2000], the action incompleteness is not completely unbounded.
The preconditions and effects of each action can be any subset of the state
propositions P; the incompleteness is with regard to a lack of knowledge
about which of the subsets correspond to each precondition and effect. We
review the STRIPS model and then define Incomplete STRIPS.

2.1 STRIPS Planning Domains

STRIPS planning domains [Fikes and Nilsson, 1971] correspond to the clas-
sical planning model. A STRIPS planning domain D defines the tuple (P,
A, I, G), where P is a set of Boolean propositions, A is a set of complete
action descriptions, I C P defines a set of initially true propositions, and

35

G C P defines the goal propositions. Each ¢ € A defines pre(a) C P, a
set of preconditions; add(a) C P, a set of add effects; del(a) C P, a set of
delete effects.

For example, consider the following domain, which we will use a running
example:

4 P={p,q,7‘,g}
e A={a,b,c}

— pre(e) = {p, q}, add(a) = {r},del(a) = {}
— pre(b) = {r}, add(b) = {r},del(b) = {q}
~ pre(c) = {q,7},add(c) = {g},del(c) = {}

o I ={p,q}
e G={g}

A plan 7 for D is a sequence of actions, that when applied to the initial
state, leads to a state where the goal is satisfied. A plan 7 = (ag,...,an-1) in
a STRIPS domain D is sequence of actions, that corresponds to a sequence
of states (8o, ...,Sn), Where so = I; pre(ax) C s for k = 0,...,n; sg41 =
sk\del(ax) U add(a) for k=0,...,n—1; and s, C G.

For example, the plan (a,b,c) corresponds to the state sequence (so =
{p,q},31 = {pra,7},s2 = {q,7},33 = {q,7,9}), where the goal is satisfied
in s3.

2.2 Incomplete STRIPS Domains

An incomplete STRIPS domain D defines the tuple (P, A, I, G, F), where:
P is a set of propositions, A is a set of incomplete action descriptions, I C P
defines a set of initially true propositions, G C P defines the goal proposi-
tions, and F is a set of propositions describing incomplete domain features.
Each action @ € A defines pre(a) C P, a set of known preconditions,
add(a) C P, a set of known add effects, and del(a) C P, a set of known
delete effects. The set of incomplete domain features F is comprised of
propositions of the form pre(a, p), add(a,p), and del(a, p), each indicating
that p is a respective possible precondition, add effect, or delete effect of a.

Consider the following incomplete domain:

e P= {p7Q7T79}

36

o A={a,b,c}

— pre(a) = {p, q},add(a) = {},del(a) = {}
— pre(b) = {r}, add(b) = {r},del(d) = {}
— pre(c) = {r}, add(c) = {g},del(c) = {}

o I= {P, Q}
° G={g}
o F= {pre(a, r),add(a,r),del(a,p),del(b, q),pre(c, Q)}

A domain model interpretation F* C F of the incomplete STRIPS do-
main defines a STRIPS domain, in that every feature f € F* indicates
that a possible precondition or effect is a respective known precondition
or known effect; those features not in F* are not preconditions or effects.
For example, F° = {add(a,r),del(b,q),pre(c,q)} is an interpretation that
corresponds the STRIPS model example from the previous subsection.

Incomplete STRIPS Plans: A plan 7 for D is a sequence of actions,
that when applied, can lead to a state where the goal is satisfied. A plan
7 = (ag, .--; @n—1) in an incomplete domain D is a sequence of actions, that
corresponds to the optimistic sequence of states (so, ..., Sn), where s = I,
pre(ax) C sk for k =0,...,n, G C sy, and sg4y = si\del(ax) U add(ar) U
{pladd(a,p) € F} for k=0,...,n— 1.

For example, the plan (a, b,¢) corresponds to the state sequence (sp =
{pr Q}, §1 = {pa q, 7'},82 = {q’ T}: 83 = {Q) Ty g})’ where the goa‘l is satisfied
in 83.

3 Greedy Coverage Algorithms

We present two algorithms for covering a set of incomplete domain model
interpretations ¢. The first directly reasons with the domain interpreta-
tions (which are compactly represented by BDDs) under which plans fail,
and the second indirectly reasons with ¢-strength diagnoses of plan failure
(represented as prime implicants). While the objective of both algorithms is
to cover domain interpretations, indirectly reasoning with diagnoses of plan
failure promises to reduce the algorithm cost. Plan synthesis is intractable
[Bylander, 1994], in even the STRIPS model. Plan evaluation (of existing
plans) is #P-complete when directly reasoning with incomplete domain in-
terpretations (which is phrased as propositional model counting [Gomes et
al., 2009]), but polynomial when indirectly reasoning with ¢-strength plan
failure diagnoses.

37

Algorithm 1: Greedy Domain Interpretation and Diagnoses Cover

Input: D: Incomplete Planning Domain
Output: II: Set of plans
1De—{}¢T;
2 repeat
3 w + Plan(D, ¢);
4 d(m) «— Evaluate(m, ¢);
5 | ¢ —dAd(m); T —TIIU {r};
suntil¢ =1 orn=();

Our hypothesis is that based upon our findings in previous work [We-
ber and Bryce, 2011a}, that plan synthesis guided by counting ¢-strength
plan failure diagnoses results in plans of comparable quality to that of plan
synthesis guided by counting domain interpretations. The hypothesis is
that these results extend to the case of synthesizing plan sets by coverings.
That is, we evaluate whether covering t-strength diagnoses of a plan set
is comparable to covering domain interpretations of plan set. The poten-
tial reason why this hypothesis might not be supported is that covering
t-strength diagnoses can lead to cases where fewer domain model inter-
pretations are covered because the t-strength diagnoses over estimate the
number of covered domain model interpretations.

Algorithm 1 lists pseudocode for greedily covering the set of incom-
plete domain interpretations ¢ by a set of plans II. We represent ¢ in
propositional logic, and note that each model (i.e., truth assignment to the
propositions in F' that satisfies ¢) refers to an domain interpretation F*. In
the same manner, we represent the interpretations d(w) under which a plan
w fails in propositional logic. The two approaches differ in the restrictions
placed upon this representation, as either a BDD or set of prime implicants.

The greedy cover algorithm attempts to cover ¢ by the successful in-
terpretations of plans in II. The set of plans II is initially empty, and
¢ is initially set to logical true T, where each domain interpretation cor-
responds to a model of T. The algorithm repeatedly generates plans by
invoking Plan, computes the failed domain interpretations d(=) by invok-
ing Evaluate, updating the set of plans, and tracking which interpretations
remain to be covered in ¢. As previously noted, both ¢ and d(w) are repre-
sented in propositional logic, with their models referring to sets of domain
interpretations; the logical conjunction ¢ A d() refers to the corresponding
set intersection of the respective domain interpretations.

The t-strength diagnosis approach to coverage represents ¢ and d(m)
by prime implicants of at most cardinality ¢. We note that both ¢ and

38

M(o) Pl(e)

M(di(m))

M(d(m))

-

Pl(d{m})

1
1
1
]
1
1
I
I
1
oo ok ot ey
Deerct
1
:

 PIm)

M(d(m2)) PI(d(ma)} 1 -

M(di(m2))

[o m e P i

Figure 1: Example of the domains covered by plans using models M(¢)
and prime implicants PI(¢).

d() can be represented exactly with prime implicants, but are represented
approximately with t-strength prime implicants. For example, when { = 2
and we take the conjunction ¢; A @2 where ¢, = (a A b) V c and ¢ =
(a Ad) V (c Ad), the unbounded prime implicant representation defines
d1Ada = (anbAd)V(eAd) (after removing the subsumed conjunctive clauses
to return to the prime implicant form), and the 2-strength representation
defines ¢ A ¢2 = (c A d) (dropping the (a Ab A d) prime implicant because
its cardinality is three). Intersection (taking the logical conjunction) of
¢ and d(¢) has the effect of determining those interpretations in ¢ that
remain to be covered, and are not covered by 7 (recall that d(m) denotes
interpretations where 7 will fail).

Consider the abstract example in Figure 1. The two boxes denote the
set of models M(¢) (i.e., domain interpretations) of ¢ and the set of prime
implicants PI(¢) (i.e., diagnoses). The portions of the respective sets cov-
ered by two plans 7, and 7y are denoted by the regions in each box. There
are two regions in each box corresponding to each plan; that correspond
to the exact representation of the domain interpretations d(w) and that

39

correspond to the ¢-strength representation di(7). We note that the ef-
fect of approximating the prime implicants by bounding their cardinality is
that: i) M(d(r)) € M(d:(r)), the approximation overestimates the set of
covered models, and ii) PI(d:(w)) C PI(d(~)), by definition, the approxi-
mation reduces the number of prime implicants. Recall that the objective
is to ensure that the set of plans does not share interpretations where the
respective plans fail (i.e., the set of domain interpretations where the plans
succeed are completely covered). Because of the t-strength approximation,
it is possible that the sets of t-strength prime implicants have an empty
intersection, while the un-approximated set does not, meaning that there
are models where the plans can all fail (as is the case in Figure 1), and the
domain interpretations are not covered.

4 Plan Generation

The approach to plan generation largely follows that described in our pre-
vious work [Weber and Bryce, 2011a), with the exception of how each suc-
cessive invocation of the planner makes use of a different set of remaining
domain interpretations to cover ¢. Recall that ¢ denotes a propositional
sentence (in ¢-strength prime implicant form, or BDD form) that indicates
which domain interpretations remain to be covered. The planner returns
plans that do not fail in at least one remaining domain interpretation or
diagnosis, or returns the empty plan, making each invocation during the
greedy cover unique. In the following, we describe the plan synthesis ap-
proach and point out how it is modified from out previous work[Weber and
Bryce, 2011a} to return such plans.

Algorithm 2 lists the pseudocode for the DeFAULT planning algorithm,
which is based on greedy best first heuristic search [Russell and Norvig,
2010]. The algorithm involves search in the state space, in which states
are represented by nodes and actions by edges. The algorithm maintains
a list of Open states, whose successors can be added to the search graph,
and a set of Closed states, whose successors have already been added. The
Open list, which is implemented as a heap, will return the state with the
lowest h-value when calling pop(). If the state is a goal state, then a plan
is extracted by following the action edges back from the state to the initial
state. If the state is not in Closed, then its successors are added to the
search graph (one for each action). As part of adding a successor state, the
failed domain interpretations or diagnoses and its heuristic are computed.
We describe heuristic computation as solving a relaxed planning problem in
the following subsection. We note that the addition beyond the prior work
is to restrict the failure explanations in lines 10 and 12 to those cases also

Algorithm 2: Plan(D, ¢)
Input: D: Incomplete Planning Domain
Output: II: Set of plans

1 Open « (sp);

2 Closed — {};
s while Open # 0 do
4 | s« Open.pop(); // Select s; with lowest s.h value
5 if s C G then
e return si.extract Plan();
7 else if s & Closed then
8 Closed — Closed U {si};
9 foraec Ado
10 d(ak, sk) — d(ak, sk) A ¢;
11 Sk+1 — Sk\del(a) U add(a) U {p|add(a,p) € F};
12 d(p, ax, sk) — d(ps ak, Sk) A ¢;
13 Sk+1-h — RelazedPlan(si41, D, ¢);
14 Open «— Open U 8k41;
15 end
16 end
17 end

satisfying ¢ (the domain model interpretations remaining to be covered).

We denote by d(r) a plan’s failure explanations/diagnoses and by ¢
the current domain interpretations that we wish to cover, and both are
represented by a propositional sentence defined over propositions in F.

We label predicted state propositions and actions with domain interpre-
tations that will respectively fail to achieve the proposition or fail to achieve
the preconditions of an action. That is, labels indicate the cases where a
proposition will be false (i.e., the plan fails to establish the proposition).
Labels d(-) are represented as propositional sentences over F whose models
correspond to failed domain interpretations.

41

For all £ > 0, we define:

d(ak, s) =d(ak-1,86-1) V \/ d(pak,sx) vV \/ (d(p, ak, sk) A pre(ar, p))

pEpre(ar) or p:dtpre(ax,p)
dk=pre(ax,p)
(d(p, ax-1, Sk—1) Ad(ak, sk) : p € add(ax)

or ¢ |= add(a¢,p)
d(p, ax—1, sk—-1) A (d(ak, sk)V : ¢?add(ax,p)
—add(ax, p))

d(p, o, sk) = | T : p € del(ax)
or ¢ = del(ax,p)
d(p, ag—1, Sx—1) V del(ak,p) : ¢?del(ax,p)
L d(p, ak-1,5k-1) : otherwise

where d(a_1,s5-1) =1, d(p,a_1,s-1) =L if p€ I and T otherwise, ¢ |= f
if ¢ satisfies f, and ¢7f if ¢ [~ f and ¢ |~ —f.

The intuition behind the label propagation is that an action a, applied
in state s; will fail in the domain interpretations d(ax, sx) where a prior ac-
tion failed, a known precondition is not satisfied, or a possible precondition
is not satisfied. As defined for d(p, ak, sx), the plan will fail to achieve a
proposition at time k + 1 after applying ay in state si in all interpretations
where i) the plan fails to achieve the proposition at time k and the action
fails, ii) the plan fails to achieve the proposition at time & and the action
fails or it does not add the proposition in the interpretation, iii) the action
deletes the proposition, iv) the plan fails to achieve the proposition at time
k or in the interpretation the action deletes the proposition, or v) the action
does not affect the proposition and prior failures apply.

We define d(m) = d(an-1,52-1) V Vpeg d(Ps a@n—1,81-1). We note that
this formula propagation is used in both plan synthesis and plan evaluation.

For example, our plan example from the previous section has the fail-
ure explanation label d(7) = pre(a,r) V del(a,p) V (del(b, g) A pre(c, q)).
If we count the number of interpretations that 7 covers, they are the
models of —d(7) = —pre(a,r) A ~del(a,p) A (—~del(b,q) V —pre(c, q)). For
example, the interpretation {} corresponding to the model {—pre(a,r) A
—del(a, p) A —~del(b,q) A —pre(c,q) A —pre(b,7)} of —d(r) is covered by the
plan, along with several others for a total of six and leaving 2% — 6 in-
terpretations to be covered. If the next plan 7' has the failure explana-
tion d(n’) = -add(a,r), then d(7) A d(7') = (—add(a,r) A pre(a,r)) v
(-add(a,r) A del(a,p)) V (—add(a,r) A del(b,q) A pre(c,q)). If instead we
used 1-strength diagnoses, then diy(7) = pre(a,r) V del(a,p), di(n’) =
-add(a,r), and dy(7) Ad; (n') =L (after removing the 2-strength diagnoses
pre(a,r) A —add(a,r) and del(a,p) A —add(a,r)).

4?2

The search is guided by a heuristic computed in the RelaxedPlan sub-
routine. We refer the reader to [Weber and Bryce, 2011a] for a complete
discussion. The relaxed planning problem can be solved in polynomial time,
and involves solving a planning problem starting in the current state, but
dropping all delete effects from the actions. We bias the solution of the
relaxed plan to fail in as few domain interpretations as possible by using
similar failure propagation to that above. We modify this propagation in
this work to ignore interpretations that do not satisfy ¢ because we want
to bias the plan toward solutions that cover new interpretations.

5 Evaluation

To evaluate the incomplete domain coverage algorithms, we attempted all
instances in the test suite used in prior work [Weber and Bryce, 2011a).
In the following, we describe the test suite, the evaluation metrics used to
compare the algorithms, the experiments, and results.

5.1 Test Suite

There are four domains that we use in the evaluation: a modified Path-
ways, Bridges, a modified PARC Printer, and Barter World. In all do-
mains, we derived multiple instances by randomly (with probabilities 0.25,
0.5, 0.75, and 1.0) injecting incomplete domain features. The manner by
which the features were injected varies by domain, as we describe below;
we injected incomplete features that made sense for each domain, rather
than modifying the domains in a uniform manner. For each probability
of injecting incomplete features (except 1.0) and each instance, we derived
ten instances with different random seeds and present the results for each
seed. The problem instances generators and DeFAULT planner are available
at https://github.com/danbryce/DeFault.

The Pathways domain from the international planning competition in-
volves actions that model chemical reactions in signal transduction path-
ways. Pathways is a naturally incomplete domain where the lack of knowl-
edge of the reactions is quite common because they are an active research
topic in biology. We introduced each type of incompleteness to model in-
complete knowledge of products required, created, or destroyed by reac-
tions.

The Bridges domains consist of a traversable grid and the task is to
find a different treasure at each corner of the grid. There are three versions
where each subsequent version has an additional type of incompleteness. In

43

Bridges1, a bridge might be required to cross between some grid locations,
modeled as an incomplete precondition. In Bridges2, many of the bridges
may have a troll living underneath that will take all the treasure accumu-
lated, and are modeled by a possible delete effect. In Bridges3, some of
the corners may give additional treasures, modeled as a possible add effect.
The instances involve different size grids (2, 4, 8, 16, and 32)

The PARC Printer domain from the international planning competition
involves planning paths for sheets of paper through a modular printer.
A source of domain incompleteness is that a module accepts only certain
paper sizes, but its documentation is incomplete. Thus, for such modules
a possible delete effect models that the module will become jammed.

The Barter World domain involves navigating a grid and bartering items
to travel between locations. Items are available at different locations and
may be required to travel between other locations. The domain is incom-
plete because some of the actions that acquire certain items are not always
known to be successful (possible add effects) and traveling between some
locations may require certain items (possible preconditions) and may result
in the loss of an item (possible delete). The instances involve different size
grids (2, 4, 8, 16, 32, and 64) and types of items (1, 2, and 4).

5.2 Experiments

To compare the algorithms, we evaluate them on each instance in the test
suite and measure the total time to complete a covering and the final num-
ber of covered domain interpretations. We note that each invocation of the
planner is limited to 5 minutes, and if exceeded, the planner returns the
empty plan. If an empty plan is returned, the covering algorithm termi-
nates. Thus, the covered domain interpretations may not include all possi-
ble domain interpretations — it is sometimes not possible to cover all inter-
pretations because the instance is inherently not coverable or the planner
exceeds the time limit. We compare the results in a pair-wise fashion, plot-
ting the ratio of total time or covered domain interpretations between the
exact coverage algorithm based on computing models, and the t-strength
diagnosis based coverage algorithm.

5.3 Results

Figures 2 to 7 list the results as the coverage ratio and total time ratio
between a t-strength diagnosis algorithm and the exact method. The first
pair of plots lists the ratio results for the 1-strength diagnoses, the second

lists strength two, and the third lists strength three.

We see in Figure 2 that in a majority of instances the 1-strength di-
agnoses finds equal or better quality solutions (those instances with ratio
greater than 1). In terms of run time, in Figure 3 the 1-strength approach
tends to take considerably less (those instances with ratio less than 1). The
same trends appear in Figures 4 to 7 when considering 2- or 3-strength
diagnoses in comparison to the exact algorithm.

The way to interpret these results is that ¢-strength diagnoses appear
to be overall more effective than the exact method. While the t-strength
diagnoses technique tends to over estimate the number of domain inter-
pretations covered by a plan, especially as ¢ becomes small, it still finds
better quality plan sets. One explanation of this behavior is that reasoning
with t-strength diagnoses is more computationally feasible and allows more
scalable plan synthesis. That is, the exact approach may not be able to
find any plan, where the ¢-strength diagnoses approach need only find one
to have a better quality plan set. In the general case, finding one extra
plan can make the difference in terms of quality. The total time results
are also based on this observation because each call to the planner can be
much faster under the ¢-strength approach. In summary, the ability of the
t-strength approach to scale better on each step of the greedy algorithm
helps it to attain better coverage in lower overall time.

6 Related Work

Planning to cover the interpretations of an incomplete domain will result in
a set of plans that are diverse in the sense that they are subject to different
failures, depending on the true domain. Synthesizing a diverse set of plans
has been previously studied under similar motivations to ours, namely that
the planner is situated within a decision support system and multiple plans
provide the decision maker options.

Bryce et al. [2007] view diverse planning as a tool for eliciting prefer-
ences over plan optimization criteria by finding plans that optimize two
objectives (cost and risk) differently by finding a Pareto set of plans. Cov-
erage, in this case, is in finding plans that represent tradeoffs in the objec-
tives. Bryce [2012] further studies how finding such diverse plans as multi-
objective search can exploit positive interaction (i.e., shared plan prefixes)
over multiple invocations of a single objective search.

Srivastava et al. [2007] also study diverse plan synthesis, but in terms of
the structural properties of the plans (e.g., action sequences, causal links,
and action partial orderings), and not their objectives. Diverse solutions

45

Coverage Ratio
e 2 — o v
5Ll
g 1 {,{...E...:...:. ,:.Au...a.. —_
i .
§ 05} :
4

0 .
0 200 400 600 800 1000 1200 1400
Instance

Figure 2: Coverage Ratio, 1-Strength
Prime Implicants vs Exact
Coverage Ratio

o e
0 200 400 600 800 1000 1200 1400
Instance

Figure 4: Coverage Ratio, 2-Strength
Prime Implicants vs Exact

Coverage Ratio
o 2 — r—r
g 15} - 1
IR .
§ 1 Rt e —
2 os|

0 n
0 200 400 600 800 1000 1200 1400
{nstance

Figure 6: Coverage Ratio, 3-Strength
Prime Implicants vs Exact

Total Time Ratio

1-Strength/Exact Time

« o "
i

0 Lo : .
0 200 400 600 800 1000 1200 1400 1600
Instance

Figure 3: Time Ratio, 1-Strength
Prime Implicants vs Exact
Total Time Ratio

bl
]
e

o
n

2-Strength/Exact Time

. -~
MO

0 " N
0 200 400 600 800 1000 1200 1400 1600

Instance

Figure 5: Time Ratio, 2-Strength
Prime Implicants vs Exact

Total Time Ratio
o °f . g
g . .
't-s 1.5 , . 1
é 1
£ os
‘6 -~

0 i : N
0 200 400 600 800 1000 1200 1400 1600
{nstance

Figure 7: Time Ratio, 3-Strength
Prime Implicants vs Exact

have also been studied in the context of constraint satisfaction problems
[Hebrard et al., 2005}, which also rely on structural differences between
solutions (i.e., variable assignments). This difference between objective
and structural diversity is explained in the multi-objective optimization
literature [Deb and Kalyanmoy, 2001] as diversity in the decision space
versus diversity in the objective space. The work presented in this paper
can be thought of as providing diversity in a third space — the information
space (i.e., knowledge of the incomplete domain). Combining approaches
to diverse planning to achieve simultaneous diversity across these spaces is

currently an open topic.

7 Conclusion

We have shown that our finding that constructing a single plan by tracking
t-strength diagnoses of plan failure also scales well when covering incomplete
domain interpretations by a set of plans. The potential decrease in plan
set coverage when using t-strength diagnoses is offset by the ability to scale
and find more plans to cover the domain interpretations, so that while any
one plan my cover fewer domain interpretations we can find more plans to

attain better coverage.

References

Fahiem Bacchus, Carmel Domshlak, Stefan Edelkamp, and Malte Helmert,
editors. Proceedings of the 21st International Conference on Automated
Planning and Scheduling, ICAPS 2011, Freiburg, Germany June 11-16,
2011. AAAI, 2011.

B. Bonet and H. Geffner. Planning with incomplete information as heuristic
search in belief space. In Proceedings of AIPS’00, pages 52—61, 2000.

J. Bresina, A. Jonsson, P. Morris, and K. Rajan. Activity planning for the
mars exploration rovers. In Proceedings of ICAPS’05, 2005.

R. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEFE Transactions on Computers, C-35(8):677—-691, August 1986.

Daniel Bryce, William Cushing, and Subbarao Kambhampati. Model-lite
planning: Diverse mult-option plans and dynamic objective functions.
In Proceedings of the 3rd Workshop on Planning and Plan Execution for
Real-World Systems, 2007.

47

Daniel Bryce. Planning for multiple preferences versus planning with no
preference. ISRN Artificial Intelligence, 2012:1-9, 2012.

Tom Bylander. The computational complexity of propositional strips plan-
ning. Artif. Intell., 69(1-2):165-204, 1994.

Jaime G. Carbonell, Oren Etzioni, Yolanda Gil, Robert Joseph, Craig A.
Knoblock, Steven Minton, and Manuela M. Veloso. Prodigy: An inte-
grated architecture for planning and learning. SIGART Bulletin, 2(4):51-
55, 1991.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. McGraw-Hill, 1990.

Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial
Intelligence, 32(1):97-130, 1987.

Kalyanmoy Deb and Deb Kalyanmoy. Multi-Objective Optimization Using
Evolutionary Algorithms. John Wiley & Sons, Inc., New York, NY, USA,
2001.

R. Fikes and N.J. Nilsson. STRIPS: A new approach to the application
of theorem proving to problem solving. In Proceedings of Second Inter-
national Conference on Artificial Intelligence, pages 608-620, London,
United Kingom, 1971.

Andrew Garland and Neal Lesh. Plan evaluation with incomplete action
descriptions. In Proceedings of AAAI'02, 2002.

Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model counting. In
Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelli-
gence and Applications, pages 633—-654. IOS Press, 2009.

Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby Walsh.
Finding diverse and similar solutions in constraint programming. In
Manuela M. Veloso and Subbarao Kambhampati, editors, AAAI pages
372-377. AAAI Press / The MIT Press, 2005.

Karen L. Myers, Peter Jarvis, Mabry Tyson, and Michael Wolverton.
A mixed-initiative framework for robust plan sketching. In Enrico
Giunchiglia, Nicola Muscettola, and Dana S. Nau, editors, ICAPS, pages
256-266. AAAI, 2003.

Martha E. Pollack, Laura E. Brown, Dirk Colbry, Colleen E. Mec-
Carthy, Cheryl Orosz, Bart Peintner, Sailesh Ramakrishnan, and Ioannis
Tsamardinos. Autominder: an intelligent cognitive orthotic system for

people with memory impairment. Robotics and Autonomous Systems,
44(3-4):273-282, 2003.

Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57-95, 1987.

Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern
Approach (8. internat. ed.). Pearson Education, 2010.

B. Srivastava, T.A. Nguyen, A. Gerevini, S. Kambhampati, M. B. Do,
and I. Serina. Domain independent approaches for finding diverse plans.
In Proceedings of IJCAI’07, pages 2016-2022, Hyderabad, India, 2007.

IJCAIL

Paolo Viappiani, Boi Faltings, and Pearl Pu. Preference-based search us-
ing example-critiquing with suggestions. J. Artif. Intell. Res. (JAIR),
27:465-503, 2006.

Christopher Weber and Daniel Bryce. Planning and acting in incomplete
domains. In Bacchus et al. Bacchus et al. (2011].

Christopher Weber and Daniel Bryce. Reactive, proactive, and passive
learning about incomplete actions’. In Bacchus et al. Bacchus et al.

[2011].

49

