Applying higher strength
combinatorial criteria to test case
prioritization: a case study

Schuyler Manchester
Utah State University, Logan, UT 84322
schuyler .manchester@gmail.com

Renée Bryce
University of North Texas, Denton, TX 76203
renee.bryce@gmail.com

Sreedevi Sampath, Nishant Samant
University of Maryland Baltimore County
Baltimore, MD 21250
sampath@umbc.edu, samnishi@umbc. edu

D. Richard Kuhn and Raghu Kacker
National Institute of Standards & Technology
Gaithersburg, MD 20877
kuhn@nist.gov,raghu.kacker@nist.gov

Abstract

Faults in software systems often occur due to interactions be-
tween parameters. Several studies show that faults are caused by
2-way through 6-way interactions of parameters. In the context of
test suite prioritization, we have studied prioritization by 2-way inter-
window interaction coverage and found that this criteria is effective
at finding faults quickly in the test execution cycle. However, since
faults may be caused by interactions between more than 2 param-
eters, in this paper, we provide a greedy algorithm for test suite
prioritization by n-way combinatorial coverage of inter-window in-
teractions. While greedy algorithms that generate Combinatorial In-
teraction Test suites enumerate and track the coverage of all possible

JCMCC 86 (2013), pp. 51-72



t-tuples and constraints, we have noticed that our user-session-based
test suites often do not contain every possible t-tuple and we can
take advantage of this in our algorithm by only storing t-tuples that
appear in the test suite. Our empirical study shows both time and
memory usage associated with our algorithm for 3-way inter-window
parameter-value interaction coverage. Further, we conduct an empir-
ical study where we compare 2-way and 3-way combinatorial coverage
of inter-window parameter interactions in terms of the rate of fault
detection for a web application called Schoolmate and a user-session-
based test suite. Our results show that the rate of fault detection
for 2-way and 3-way prioritization are within 1% of each other, but
2-way provides a slightly better result. A closer look at the character-
istics of the web application, test cases, and faults reveal that most
faults are triggered by 2-way interactions. We motivate the need for
future work to examine a larger set of empirical studies to identify
characteristics of web applications that benefit from prioritization
with higher strength inter-window event interaction coverage.

1 Introduction

Billions of dollars in costs can be incurred due to software defects caused
by inadequate software testing [29]. At the same time, software testing is
often performed under limited time and budget constraints. Algorithms,
tools, and techniques are needed for efficient and effective testing, so that
testing may be completed within a limited time budget.

Studies have found that some faults occur due to interactions between
parameters, and in particular due to interactions between 6 or fewer pa-
rameters [20]. Wallace and Kuhn [18] reviewed 15 years of recall data for
medical devices gathered by the U.S. Food and Drug Administration (FDA)
and studied failure data on 109 medical devices. Of these 109 cases, 97%
of the reported failures could have been detected by testing all pairs of
parameter settings. Pairwise testing, or 2-way testing which aims to cover
interactions between two parameters, is an effective approach, but pairwise
testing may also miss some of the software bugs [11, 19, 20, 22, 36]. For
example, in the web browser software studied by Kuhn et al. [20] only 76%
of the faults were triggered by 2-way interactions between parameters. The
remaining faults were triggered by higher strength interactions (e.g., 3-way
through 6-way) between parameters. Thus, it is often important to test
higher strength interactions between parameters during software testing.

Generating higher strength interaction test suites in the smallest number
of test cases is NP-hard [10]. However, several approaches generate higher
strength interaction test suites with trade-offs in effectiveness of time to

52



generate test suites, sizes of test suites for fixed-level or mixed-level inputs,
and ability to accommodate constraints [10]. Tools such as ACTS (formerly,
FireEye) [23] generate test suites that provide higher strength coverage,
accommodate constraints and have been downloaded by hundreds of users.

More recently, we prioritized existing test suites by 2-way inter-window
parameter-value coverage for event-driven systems, i.e., web and GUI sys-
tems [8, 9, 31]. Test suite prioritization is a test suite management tech-
nique where test cases are ordered for execution based on certain criteria
such that faults may be found early in the test execution cycle. Our previ-
ous work applies test prioritization to the domain of web applications and
prioritizes user-session-based test cases, i.e., test cases created from usage
logs of the web system (8, 31]. In our empirical studies, we compare 2-
way inter-window parameter-value interaction coverage with several other
prioritization criteria. 2-way is among the best criterion in several of our
subject applications. However, since existing research notes that in tradi-
tional software some faults are missed by 2-way test suites, we decided to
investigate higher strength prioritization strategies, such as 3-way.

In this work, we examine a greedy algorithm to prioritize by t-way com-
binatorial coverage. Bryce et al.’s previous work generates covering arrays
that represent t-way interaction test suites [4, 5, 6, 7]. The inputs that they
examined to generate test suites were significantly smaller and they focused
on obtaining 100% coverage of all t-way interactions. However, in our ap-
plication of test suite prioritization, particularly for user-session-based test
suites for web applications, we found that the test cases are much larger in
terms of the length of test cases, and they often have an incomplete cover-
age of t-tuples. For example, a web application may allow users to select
a set of dates, but users may not try selecting every possible combination
of months, days, and years available. Consider that the parameters are
continuous, but also can be considered discrete (e.g., although dates are
continuous, the dates entered will generally be the current date +/- two
years). If we use this estimate it gives approximately 1460 different levels
or values for any date entered given the options for month, day, and year).

To generate a combinatorial interaction test suite for ¢-way coverage,
previously proposed greedy algorithms require that we enumerate every
possible t-way interaction among the parameters, store these in memory,
and track the coverage of these tuples as tests are ordered. However, this
is prohibitive for large test suites. In our application of user-session-based
testing, we have found sparse coverage of t-tuples as users do not sys-
tematically cover every possible t-way combination when using the web
application. Thus, our application of test suite prioritization by t-way in-
teraction coverage poses the challenge that test cases are often much longer

53



than inputs that we have considered in combinatorial interaction test suite
generation in the past. On the other hand this application offers the oppor-
tunity that exhaustive enumeration of every possible t-tuple is not necessary
and the algorithm can simply store the t-tuples available in the test suite.

Our contribution in this paper is two-fold: (1) an algorithm that only
uses memory for valid ¢-tuples in a test suite, and (2) an empirical study
that examines 3-way inter-window parameter-value interaction coverage for
test suite prioritization. The algorithm that we introduce in this paper
takes advantage of the incomplete coverage of t-way interactions in order
to use less memory and accommodate larger inputs. We evaluate the time
and memory requirements of the algorithm and the fault finding effective-
ness of the prioritized test orders with a case study on an open source
web application, Schoolmate. We gather user sessions for Schoolmate and
prioritize them using our 3-way algorithm. We contrast the effectiveness
of 3-way with the other prominent prioritization criteria (including 2-way)
and measure the rate of fault detection, i.e., how quickly the test order
locates faults. The rate of fault detection is the most commonly used mea-
sure of effectiveness of a prioritization criterion [28]. Though we evaluate
the algorithm with a case study of web applications, the algorithm can be
applied when working with test suites of any software systems that have
sparse t-tuple coverage.

In the remainder of this paper, Section 2 presents background on combi-
natorial test suite prioritization, Section 3 describes our algorithm, Section
4 presents our experiments, Section 5 summarizes our findings, and Section
6 provides conclusions and areas of future work.

2 Background and Related Work

In this section, we discuss related work in two areas (1) web applications
and user-session-based testing, and (2) test suite prioritization and combi-
natorial strategies for prioritization.

2.1 'Web application testing

Several approaches exist to generate test cases for web applications. Tools,
such as HTTPUnit [16] and RationalRobot [26] allow testers to record
and play back test sequences and to measure performance. Other tools
check for broken links, validate HTML code, and measure performance.
More semi automated approaches generate test cases for web applications.
For instance, Veriweb offers a simple solution that starts at a given URL



User 1

index.php

showbooks.php?book_name=“java for beginners” &book_type=“programming”
buybooks.php?book_id=“7"

shippingMethod.php?carrier=“ups” &type=“ground”

Table 1: Example User-session-based Test Case

and non-deterministically traverses links in a web application [3]. Other
approaches exist to generate test cases for web applications from models
of the web system, such as finite state machine, UML, etc. [15, 37, 24, 2,
21, 27). Offut et al. use HTTPUnit and HtmlUnit to run tests that bypass
client-side checks [25]. Additional work to test Rich Internet Applications
exists but is outside of the scope of our work here. We focus on a particular
type of web testing that occurs during the maintenance phase of the system,
user-session-based testing.

User-session-based testing. In user-session-based testing, test cases
are automatically constructed from web logs for use in regression testing.
Since web applications are accessible through the Internet, each HTTP
POST and GET request that a user makes is written to a log file. The
logs are then parsed into test cases by using the IP addresses, cookies, and
time stamp for each POST and GET request in order to identify the steps
of each user and to create the user-session-based test cases [12, 34, 35]. A
user session is, thus, a sequence of base requests and parameter name-value
pairs associated with the requests. Table 1 shows an example user session
for a bookstore application.

Existing work on user-session-based testing falls under the categories
of test case generation, test suite prioritization, test case reduction, and
test suite repair. Elbaum et al. conduct empirical studies and show that
user-session-based testing is a good option to augment white box testing
techniques as they found different faults [12]. Sampath et al. [32] and
Sprenkle et al. [35] present a framework for user-session-based testing of
web systems. The test case creation heuristics presented in their work is
leveraged in this paper but extended as we parse Apache web server logs
and provide an XML format for test cases [30]. While there are advantages
to user-session-based testing, two major problems arise over time: (1) user-
sessions may become invalid during regression testing (i.e., the structure of
the web application changes, including page names, links, options on a page,
etc.) and (2) a large number of user-sessions build up, making it unrealistic
to run all tests in practice. Alshahwan et al. work on the first issue of
repairing user-session-based test cases for use in regression testing [1]. Two
approaches have been taken to address the second issue of managing large

55



test suites, that of test suite prioritization (8, 31] and reduction [34, 33]. In
this work, we focus on test case prioritization.

2.2 Test case prioritization

Test case prioritization is formally defined by Rothermel et al. [28] as: Given
T, a test suite, II, the set of all test suites obtained by permuting the tests
of T, and f, a function from II to the set of real numbers, the problem is
to find 7 € II such that Vo’ € II, f(w) > f(#'). In this definition, IT refers
to the possible prioritizations of T and f is a function that is applied to
evaluate the orderings.

Several criteria have been applied for test case prioritization of tradi-
tional systems [13, 28]. Bryce et al. examine 2-way and 3-way inter-window
event coverage for test case prioritization on GUI applications [9). For all
the subject applications with more than two windows, they find that 2-way
and 3-way alternate in providing the best overall rate of fault detection.
This work provides some motivation for us to explore the application of
3-way inter-window parameter-value interaction coverage in the domain of
web applications.

Bryce et al. (8] and Sampath et al. [31] examine several prioritiza-
tion criteria, including the combinatorial criterion, pairwise inter-window
parameter-value interaction coverage (2-way), applied to user-session-based
test suites and empirically evaluate them on three web applications, in-
cluding an online bookstore, a course project manager, and a conference
management system. All three applications were seeded with faults. They
found that prioritization criteria based on the longest tests with respect to
the number of POST/GET requests, longest tests with respect to the number
of parameters that users assigned values and 2-way combinatorial coverage
of inter-window interactions are efficient techniques as compared to the
original order in which test cases were logged or ordered at random.

However, since existing literature recognizes that certain faults are de-
tected by interactions between parameters that are stronger than pairwise
interactions, we are interested in investigating this hypothesis for web appli-
cations. In the remainder of this paper, we propose an algorithm for n-way
combinatorial interaction coverage and present an empirical evaluation of
the efficiency and effectiveness of the algorithm for t=3.

56



3 - t-way prioritization for test suites with sparse
t-tuple coverage

Our previous work focuses on generating covering arrays for Combinatorial
Interaction Testing (CIT) [4, 5, 6, 7]. In such test suite generation, we gener-
ate a covering array in which all ¢-tuples, with the exception of constraints,
are covered at least once. However, in our work on test suite prioritization,
we noticed that the user-session based test suites did not contain all possi-
ble t-tuples (8, 31]. For instance, we examined three web applications and
found that the associated user-session-based test suites did not contain an
exhaustive collection of all t-tuples of parameter-values between windows.
This makes sense because a web application has many fields in which differ-
ent users could manually enter personal data such as user ids, passwords,
mailing addresses, and other textual data. This observation has led us to
design an algorithm that does not identify all parameter-values in a system
and enumerate the possible t-tuples, but rather only stores the t-tuples that
appear in the test suite.

In this section, we illustrate ¢-way test suite prioritization for t = 2 and
t = 3 and then present the prioritization algorithm.

3.1 Example of t-way prioritization

Consider an e-commerce application where users purchase and ship items.
Table 2 defines four pages of the web application. The user may select one
of three options for the shipment time parameter on the first page, one of
three options for the postal carrier parameter on the second page, one of
three options for tracking parameter on the third page, and one of three
options for insurance parameter on the fourth page. Selecting different
options will execute different lines of code in the system. For instance, if the
user selects any tracking option other than “None”, the system generates
a unique tracking identifier and directs the user to a separate page that
describes the conditions of the desired tracking. Thus, having test coverage
for the different values for tracking could potentially uncover a fault that
might have been overlooked by a different test.

Table 3 contains an example test suite that accesses the pages. This test
suite contains four different test cases and covers twenty unique 2-tuples
and fifteen unique 3-tuples as shown in Table 4. The tuples represent the
inter-window parameter-value interactions in the test case.

When prioritizing by 2-way, we select the first test case such that it
covers the largest number of 2-tuples. The second column of Table 4 shows

57



Page 1, Shipment Time | Page 2, Carrier | Page 3, Tracking Page 4, Insurance
5 - 10 days USPS Status tracking (Stat) up to $100

1- 3 days UPS “Signature confirmation (Sig) | up to $1000
overnight Fedex None None

Table 2: Web application example with 4 parameters.

Test case | Ship Time | Carrier | Track | Insur | Parameter-Values (P-V) Covered

ty 5-10 days USPS None [ $100 | Ship Time:5-10 days, Carrier;USPS,
Track:None, Insur:$100

t; 1-3 days USPS one | $100 | Ship Time:1-3 days, Carrier:USPS,
Track:None, Insur:$100

t3 overnight UPS Sig. $1000 | Ship Time:overnight, Carrier:UPS,
Track:Sig., Insur:$1000

ts 1-3 days Fedex Stat. | 8100 | Ship Time:1-3 days, Carrier:Fedex,
Track:Stat., Insur:$100

Table 3: Test suite example of Table 2 web application.

that all four test cases cover six 2-tuples. We then break the tie at random,
select ¢2, and mark the pairs in this test as covered. We then examine which
of the remaining tests cover the most remaining uncovered pairs. Test case
t1 covers three uncovered pairs, 3 covers six new uncovered pairs, and ¢4
covers five uncovered pairs, so we choose t3. We mark the pairs in ¢3 as
covered and examine the last two remaining tests to select the test that
covers the most uncovered pairs. We select test ¢4 as it covers the most
uncovered pairs. The ordering for 2-way prioritization is then {t2,t3,t4,t1}.

To prioritize by 3-way, we select the first test case that covers the most
3-tuples. All four test cases cover four 3-tuples, so we break the tie at
random and select t3. We then mark the 3-tuples covered in test t3 as
covered. In the next iteration, there is a tie among all of the tests as they
cover the same number of 3-tuples, so we break the tie at random and select
t2. In the next iteration, t4 covers more uncovered 3-tuples than ¢;, so we
select t4. Finally, we add the last test case, ¢; to the test suite. The final
ordering by 3-way is {t3,t2,t4,¢1 }.

3.2 Algorithm for ¢-tuple prioritization

Phase 1: Preprocessing. We iterate through each test cases ¢; in the
test suite T'S. For each URL, we identify each parameter, p, that has been
assigned a value, v, on each page. We refer to the assignment of a value
to a parameter as a “parameter-value”. We then create a list of all ¢-way
inter-window parameter-value interactions (t-tuples) in the test suite and

58



Test case | 2-way P-V Covered 3-way P-V Covered

4 (Ship Time:5-10 days, Carrier:USPS), | (Ship Time:5-10 days, Carrier:USPS,
(Ship Time:5-10 days, Track.:None}, | Track.:None), (Ship Time:5-10 days,
(Ship Time:5-10 days, Insur:$100), Carrier:USPS, Insur:$100),

(Carrier:USPS, Track.:None), (Ship Time:5-10 days, Track.:None,
(Carrier:USPS, Insur:$100), Insur:$100), (Carrier:USPS,
(Track.:None, Insur:$100) Track.:None, Insur:$100)

to (Ship Time:1-3 days, Carrier:USPS), | (Ship Time:1-3 days, Carrier:USPS,
(Ship Time:1-3 days,Track.:None}), Track.:None), (Ship Time:1-3 days,
(Ship Time:1-3 days, Insur:$100) Carrier:USPS, Insur:$100),
(Carrier:USPS, Track.:None) (Ship Time:1-3 days, Track.:None,
(Carrier:USPS, Insur:$100) Insur.:$100), (Carrier:USPS,
(Track.:None, Insur:$100) Track.:None, Insur:$100)

ts (Ship Time:overnight,Carrier:UPS), (Ship Time:overnight, Carrier:UPS,

(Ship Time:overnight, Track.:Sig.), Track.:Sig.), (Ship Time:overnight,
(Ship Time:overnight, Insur:$1000) Carrier:UPS, Insur:$1000),

(Carrier:UPS, Track.:Sig.) (Ship Time:overnight, Track.:Sig.,
(Carrier:UPS, Insur:$1000) Insur:$1000), (Carrier:UPS,
(Track.:Sig., Insur:$1000) Track.:Sig., Insur:31000)

iy (Ship Time:1-3 days, Carrier:Fedex), | (Ship Time:1-3 days, Carrier:Fedex,
(Ship Time:1-3 days,Track.:Stat.), Track.:Stat.), (Ship Time:1-3 days,
(Ship Time:1-3 days, Insur:$100) Carrier:Fedex, Insur:$100),
(Carrier:Fedex, Track.:Stat.) (Ship Time:1-3 days, Track.:Stat.,
(Carrier:Fedex, Insur:$100) Insur:$100), (Carrier:Fedex,
(Track.:Stat., Insur:$100) Track.:Stat., Insur:$100)

Table 4: 2-way and 3-way P-V covered in test suite described in Table 3.

store them in our tuplesList. This preprocessing stage allows us to only
store tuples in memory that are contained in the test suite.

Phase 2: t-way Prioritization The greedy algorithm selects the test
case that has the largest count of uncovered t-tuples from the tuplesList,
marks those t-tuples as covered (i.e., removes them from the tuplesList),
and then repeats this process until the entire test suite has been prioritized.
In each iteration, for each test case, the tCountMaz is computed as the
number of uncovered t-tuples that are in the test case. The test case with
the highest tCountMaz is added to the test suite and then the ¢-tuples that
are covered in this test case are removed from the tuplesList that stores
the “uncovered t-tuples”. Figure 1 provides pseudocode for this algorithm.

In the next section, we present our empirical study that shows the scal-
ability of the algorithm for t = 3 and the effectiveness of the test orders.

59




// Preprocessing of test suite
sizeO fTestSuite = 0
foreach test case ¢; in the test suite T'S
foreach URL url in t;
foreach param p assigned a value v in ¢;
tuple tu =url + p 4+ v
if tuplesList does not contain tu
tuplesList add tu
end foreach
end foreach
sizeO fTestSuite++
end foreach

// Test Suite Prioritization
bestTest = select a test that covers the most unique t-tuples from tuplesList
mark testye,eTea as used
selectedTestCount = 1
while(selectedTestCount < sizeO fTestSuite)
tCountMaz = -1
for j=1 to (sizeO fTestSuite-selectedTestCount)
if test; is not used
compute tCount as the number of newly covered t-tuples from tuplesList in test;
if(tCount > tCountMax)
tCountMax = tCount
bestTest = j
else if(tCount == tCountMax)
break the tie at random
end for
add testyeyiTest to Tpi
mark testye,Test a5 used
remove the tuples that appear in testyesircsr from tuplesList
selectedTestCount++
end while

Figure 1: Algorithm for test suite prioritization by t-way combinatorial
coverage.

4 Empirical Study

The main research questions in our study are

1. How does the t-way prioritization algorithm scale, for t=3, for user-
session-based test suites?

2. How effective are the prioritized test orders generated by 2-way and
3-way at detecting faults?

4.1 Subject application

Our subject application is an open-source web-based application called
Schoolmate. It is written in PHP with a MySQL backend. Schoolmate
is designed as a solution for elementary, middle, and high schools to man-
age classes, registration, assignments, and grades. There are four different



Description Schoolmate
Files 63
Unique parameter-values in test suite 2,611
LOC 6652
PHP methods 15
JavaScript methods 70
Branches 618
Total number of tests 125
Total number of tests with Administrator users 59
Total number of tests with Student users 44
Total number of tests with Teacher users 55
Largest count of gets/posts in a test case 193
Average count of gets/posts in a test case 36.5
Largest count of parameters in a test case 874
Average count of parameters in a test case 163.04
2-way parameter-value interactions covered in test suite | 278,109
3-way parameter-value interactions covered in test suite | 477,450
Number of seeded faults 66

Table 5: Characteristic of subject application and test suite.

types of users that can log into this application: 1) Admin 2) Teacher 3)
Parent and 4) Student. The parent and student have identical web pages
that they can access, except a parent will have a list of their assigned chil-
dren. Therefore we refer to this functionality as Parent/Student in the
remainder of the paper. Table 5 describes the characteristics of the appli-
cation, test suite and seeded faults.

4.2 Test Suites

The test suites for this study were gathered by an undergraduate software
testing class. The class was instructed to login to the web application and
test out as many web pages as possible. The test cases are constructed
using the IP addresses that are associated with each GET/POST request.
If there is more than a 45 minute break in between a GET/POST request
from the same user, we begin a new test case. We initially collected a large
test suite with 125 test cases, but then broke it down into three smaller
test suites where each test suite contains tests for either an Administrator,
Teacher, or Parent/Student user. While there is overlap in the code that
some of the user types access, we split the test suites based on user types
because different user types are required in order to access certain parts of
the code and seeded faults. Table 5 shows that the three test suites have
between 44 to 59 test cases.

61



4.3 Faults

A total of 66 faults were seeded into Schoolmate by a graduate student.
Each seeded fault version belongs to two categories, user type and fault
classification. We seeded faults for each type of user of the system, i.e.,
Admin, Teacher, Parent/Student, and Any. We use the fault classifica-
tion proposed by Sampath et al. [34] and Guo et al. [14] to seed faults in
Schoolmate.

4.4 Prioritization criteria

We evaluate five prioritization criteria in this work.

1. 2-way. We select the test cases in non-ascending order of the number
of inter-window parameter-value combinations between two separate
pages. Ties are broken at random.

2. 3-way. We select the test cases in non-ascending order of the
number of inter-window parameter-value combinations between three
separate pages. Ties are broken at random.

3. Length (Gets/Posts). We select the test cases in non-ascending
order of the number of GET/POST requests. Ties are broken at
random.

4. Number of parameter-values. We select the test cases in non-
ascending order of the number of parameter-values. Ties are broken
at random. Criteria 3 and 4 are chosen because they perform well in
our previous work [8]. :

5. Random. The random ordering use the random function that is
available in Java to randomly swap the ordering of the test cases. The
tool will produce a different random ordering each time that the user
chooses to prioritize at random. This ordering is used as a control in
our experiments.

4.5 Experimental Framework

The usage logs for Schoolmate are converted into test cases and then pri-
oritized within our tool, CPUT [30]. The t-way prioritization algorithm is
implemented in CPUT for t = 2 and ¢ = 3, in addition to other criteria,
such as length, random and frequency-based.

We then execute the test cases using a replay tool. We created a new
replay tool that could execute the XML format test cases. We also con-
ducted the fault detection experiments using the framework presented by

62



Sprenkle et al. [35]. Initially, we execute the test cases on a clean version
of the application and save the returned files. This is the expected output,
since we consider the non-fault-seeded version of the application as our gold
standard. Then, one fault is seeded in the application at a time, and all
the test cases are executed. The returned HTML files are saved (this is the
actual output). The test oracle is then executed on the returned files to
determine if the test case detects the fault. We present the results from the
struct oracle here. The struct oracle [35] compares the expected and actual
output in terms of the HTML tags in the files, to identify differences. A
fault matrix is generated that shows how many faults and which faults are
detected by each test case.

5 Results and Discussion

We first review the scalability of our algorithm on several web logs for the
Schoolmate application and then present our findings on the fault-finding
effectiveness of prioritization by 3-way inter-window parameter-value inter-
action coverage for our application and test suites.

5.1 Scalability

To study the scalability potential of our algorithm, we record each compo-
nent’s execution time and space requirements of the output. The experi-
ment was run on a MacBook Pro (2.53 GHz Intel dual core processor, 8 GB
1067 MHz DDR3 RAM) running OSX Lion. In this study, we split the log
into 1 day usage, 5 days usage, 10 days usage, 15 days usage (which is the
entire log file), and doubled the size of the log file. To double the size of
the log file, we modified the log file by changing the year from 2010 to 2011
for the date. We then replaced digits in the IP addresses and cookies to
make them different. For instance, we swapped occurrences of the number
‘4’ with the number ‘3’.

Table 6 summarizes the results. We present the results for each log file
separately. For each log file, we present the time taken by the test case
creation engine and the different prioritization criteria (column 4). We also
present the space occupied by the output of the different components of the
framework (column 5). We note that the test creation engine takes from
a few seconds to slightly over one minute for the double log file because it
parses the web log into test cases and also stores the data from test suite
using the pre-processing part of our algorithm that is run before the test
suite prioritization options are available to the user. Once the web log pars-

63



Component Component Execution Output Space
Log file | name output time requirements
(in seconds)
1 day Test case creation engine XML format tests | 1.503 101 KB (10 test cases)
Test prioritization (Length) Order file 0.001 1 KB
Test prioritization (No. of params) | Order file 0.001 1KB
Test prioritization (2-way) Order file 0.022 1KB
Test prioritization (3-way) Order file 0.494 1 KB
5 days Test case creation engine XML format tests | 4.958 499 KB (50 test cases)
Test prioritization (Length) Order file 0.003 1KB
Test prioritization (No. of params) | Order file 0.002 1 KB
Test prioritization (2-way) Order file 0.265 1KB
Test prioritization (3-way) Order file 7.868 1 KB
10 days | Test case creation engine XML format tests | 14.03 1326 KB (110 test cases)
Test prioritization (Length) Order file 0.007 2KB
Test prioritization (No. of params) | Order file 0.007 2 KB
Test prioritization (2-way) Order file 2.14 2 KB
Test prioritization (3-way) Order file 109.25 2 KB
15 days | Test case creation engine XML format tests | 23.63 1888 KB (173 test cases)
Test prioritization (Length) Order file 0.01 3 KB
Test prioritization (No. of params) | Order file 0.009 3KB
Test prioritization (2-way) Order file 5.449 3KB
Test prioritization (3-way) Order file 287.138 3KB
double | Test case creation engine XML format tests | 72.23 3775 KB (348 test cases)
Test prioritization (Length) Order file 0.022 5KB
Test prioritization (No. of params) | Order file 0.019 5 KB
Test prioritization (2-way) Order file 15.625 5 KB
Test prioritization (3-way) Order file 1981.072 5 KB

Table 6: Execution time and size of test suites for Schoolmate logs.

ing and pre-processing are complete, the user may choose the prioritization
technique to run. Prioritization by the length and number of POST/GET
requests generally takes negligible time, reported as 0.001 seconds, up to
0.022 seconds. Prioritization by the number of parameters-values in a test
is also negligible, taking 0.001 to .019 seconds. The 2-way prioritization
criteria is also in the order of seconds—starting at 0.022 seconds for the 1
day log and going up to 15.625 seconds for the double log file. The 3-way
prioritization criteria takes from 0.494 seconds, up to 1,981 seconds.

The output of the test case creation engine is the test suite. We see
that tests created vary from 10 to 348 tests, occupying from a few bytes to
3,775 kilobytes. The output of the different prioritization criteria is stored
in the order file which contains the test case names printed to file. The size
of this output file also ranges from a 1 to 5 kilobytes.

From these results, we note that the time taken by the t-tuple prioriti-
zation algorithm is in the order of a few seconds. Therefore, our algorithm
has the potential to scale to larger usage logs and test cases on which the
test prioritization criteria need to be applied.



5.2 Rate of fault detection

We prioritized our three test suites by the prioritization criteria described
above and measure the rate of fault detection with the metric, Average
Percentage of Fault Detection (APFD) [28]. APFD measures the area under
the curve that plots test suite fraction and the number of faults detected
by the test ordering. Rothermel et al. [28] define APFD as follows: For a
test suite, T with = test cases, if F is a set of m faults detected by T, then
let TF; be the position of the first test case ¢ in T, where T” is an ordering
of T, that detects fault ¢. Then, the APFD metric for 7" is given as

TR +TF+TF;+ ..+ TF, +_1_ (1)
mn 2n

APFD=1-

Intuitively, APFD measures the area under the curve that plots test case
size on the x-axis and percent of unique faults detected on the y-axis. APFD
is a measure of how quickly faults are detected by the test suite, which is
essential in regression testing scenarios.

Qut of the total 66 faults seeded, the Student test suite with 44 test
cases detects 33 faults, the Admin test suite with 59 test cases detects 50
faults, and the Teacher test suite with 44 test cases detects 39 faults. The
full test suite detects 51 of the 66 faults, but in this section, we present
our results with the test suites divided by the user-type. We divide the
test suite into three smaller test suites based on the user type as the three
different user types could access different parts of code and we did not want
one user type to dominate over others.

We ran our algorithm 5 times for each combinatorial prioritization cri-
terion and report the average of these runs in Table 7. For all three test
suites, 2-way and 3-way provide the best APFD and are within 1% of each
other with 2-way performing slightly better. Prioritization by length of
GET/POST requests and the No. of parameter-values in a test case al-
ternate in providing the 3rd and 4th best APFD for the Admin, Teacher,
and Student test suites. The random ordering is the least effective for
the Admin and Student test suites. The results among 2-way, length by
GET/POST requests, No. of parameter-values, and random ordering are
consistent with previous literature [8], but the results for 3-way are the first
within the domain of user-session-based testing for web applications.

We examined the faults detected by the 2-way and 3-way test suites
to understand our results. We noticed that we seeded faults in our sys-
tem based on the existing fault classification [14, 34] without regard to
whether they were faults caused by pairwise of 3-way interactions between
parameters.

65



An example of a web application fault that could be triggered by 3-way
inter-window interaction between parameters is as follows: First add a new
teacher, then navigate to a page where classes are managed, and finally edit
an existing class to assign the newly added teacher to the class. The fault
could be introduced when assigning the teacher to an existing class where
it would actually assign them as a substitute teacher instead of the main
teacher. This fault thus occurs due to interactions on parameters from three
different windows. An example of a web application fault triggered by 2-
way inter-window parameter-value interactions is as follows: A user creates
a new semester, the application sets a hidden parameter “addsemester” to
the value “4” (new semester id). After this new semester is successfully
saved, a fault is introduced in the web page, by replacing all of the other
semester’s hidden ids to “4” (new semester id). The user then attempts
to delete a previously existing semester, which is when the fault actually
appears. The attempted delete should have parameter “deletesemester”
set to the value “1” (the previously existing semester’s id), however the
fault has every semester id value set to “4”. Thus the interaction of these
two parameter-values on different pages causes a fault when attempting a
deletion of a semester immediately after adding a new semester.

We also noticed that some failures were observable only when the user
session contained a certain sequence of URLSs, where sequences of size 2 or
size 3 caused the failure to be observed in the test case. For example the
fault is introduced by a typo in the database insertion statement when a
new username is created, that causes the username to save with an extra
character appended to it. The fault is observed only when the user navigates
to the page where they can view all users of the system. However, the fault
itself is not caused by interactions of parameters across multiple pages.

Since there were no faults seeded in the system that would have been
expressly identified by the 3-way test suites, it could explain why 2-way
and 3-way test orders performed equivalently. In Schoolmate, there are
few opportunities for 3-way interaction faults, but, in the future, we will
examine other applications and seed faults that capture 3-way interactions
between parameters and then evaluate the test orders to see if the 3-way
orderings are better at detecting these faults than the 2-way orderings.

5.3 Threats to validity

In our prioritization algorithm, ties are broken at random. To address
this, we execute the prioritization algorithm 5 times and report the average
APFD of the 5 test orders. Threats to external validity are factors that
may impact our ability to generalize our results to other situations. The

66



Admin
% of test suite | 2-way | 3-way | Length-GET/POST | P-Vs | Random
10% 70.44 70.42 70.13 67.33 | 60.72
20% 87.02 86.76 7148 72.65 | 78.08
30% 87.02 86.76 76.99 77.07 | 79.44
40% 88.94 | 8859 | 83.73 85.13 | 80.61
50% 89.83 89.42 85.3 86.85 | 81.93
60% 89.83 89.42 86.03 86.85 | 82.33
70% 89.83 89.42 86.03 86.85 | 83.31
80% 89.83 | 89.42 | 86.03 86.85 | 84.25
90% 89.83 | 8942 | 86.03 86.85 | 84.25
100% 90.01 | 89.6 86.06 86.88 | 84.37
Student
%% of test suite | 2-way | 3-way | Length-GE1/POST | P-Vs | Random
10% 64.6 64.6 63.57 56.35 | 50.49
20% 4.6 64.6 63.57 63.15 | 56.05
30% 64.6 64.6 63.57 63.15 | 60.06
40% 64.6 64.6 65.39 65.12 | 61.22
50% 67.03 ) 67.03 | 65.39 65.12 | 62.96
60% 67.03 | 67.03 | 65.39 65.86 | 63.39
70% 67.03 67.03 65.86 65.86 | 63.62
80% 67.03 67.03 65.86 65.86 | 64.11
90% 67.34 | 67.03 | 65.86 66.17 | 64.23
100% 67.34 67.27 66.1 66.17 | 64.3
Teacher
% of test suite | 2-way | 3-way | Length-GET/POST | P-Vs | Random
10% 68.91 | 6891 {64.24 64.24 | 53.6
20% 68.91 68.91 66.91 68.14 | 58.78
30% 68.91 68.91 68.06 68.14 | 63.74
40% 68.91 68.91 68.06 68.14 | 63.92
50% 68.91 68.91 68.06 68.14 | 67.18
60% 68.91 68.91 68.06 68.14 | 68.67
70% 68.91 | 69.82 | 69.08 69.21 | 69
80% 70.61 {69.82 | 69.08 69.21 | 69.08
90% 71.23 | 71.31 | 70.56 70.37 | 69.22
100% 71.23 | 7131 | 70.56 70.37 | 69.36

Table 7: Average APFD of the different test orders.

first threat to validity is that we use only one web application that may
not be representative of all web applications. Moreover, the characteristics
of original test suites impact our results in how they were constructed and
their fault detecting ability. The seeded faults also impact the generaliza-
tion of our results. We use random ordering and two criteria from previous
studies as a control to compare to our prioritization techniques in order to
minimize this threat. Future work may examine both a larger set of web
applications and real systems that have real faults that were not seeded.
Threats to construct validity are factors in the experiment design that may
cause us to inadequately measure concepts of interest. We use the most
commonly used evaluation metric for measuring the effectiveness of priori-
tized test suites, APFD. However, we consider each test case to be of equal
cost and each fault of equal severity. Further, we measure the scalability of

67



the algorithm with respect to time and space requirements. Future work
may include more extensive costs and severities.

6 Conclusions and Future Work

Algorithms for Combinatorial Interaction Testing provide systematic cov-
erage of t-way interactions in a system. Our application of ¢-way combi-
natorial coverage for test suite prioritization of user-session-based testing
differs in that the test suite already exists and may not contain all possi-
ble t-way interactions in a system since test cases are generated by users
that visit a website. It is unlikely for users of many systems to exhaustively
cover all t-way interactions during their visits, particularly when users have
unique user ids, passwords, and personal information that they enter into
a system. This raises the need for an algorithm that does not enumerate
all possible f-tuples to track and instead only stores the valid ¢-tuples in
the test suite in order to save memory. Our experiments show that our
approach scales well for a medium-sized web application, Schoolmate, and
user base in which we capture test cases for 15 days and then double the
log file. In the fault detection experiments with Schoolmate we find that
prioritization by 2-way and 3-way criteria were most effective, both per-
forming within 1% of each other. However, 2-way prioritization provided
a slightly better rate of fault detection. A closer look at the data revealed
that the system contained more faults triggered by 2-way than by 3-way
inter-window parameter-value interactions. These results are similar to pre-
vious work by Kuhn et al. that report that systems typically have more
faults triggered by lower strength interaction coverage [17].

Future work may examine a larger set of empirical studies with appli-
cations in which faults may potentially be triggered by higher strength in-
teractions, and considering intra-window parameter interactions. Another
area would be to have a slight variation on the way the t-way scores are
calculated. For instance weights may be applied for preference to specific
pages, parameters, or values.

7 Acknowledgements

This work is supported by the National Institute of Standards and Tech-
nology, Information and Technology Lab Award number 7TONANB10H048.
Any opinions, findings, and conclusions expressed herein are the authors’
and do not reflect those of the sponsors. We thank student researchers,



Chelynn Day, Nilesh Chaturvedi, Sachin Jain and Devin Minson for their
contributions to CPUT.

References

(1]

2]

3]

(4]

(5]

(6]

[7]

(8]

[l

(10]

N. Alshahwan and M. Harman. Automated session data repair for web
application regression testing. In International Conference on Software
Testing, Verification and Validation, pages 298-307, Apr. 2008.

A. Andrews, Jeff Offutt, and Roger Alexander. Testing web appli-
cations by modeling with FSMs. Software and Systems Modeling,
4(3):326-345, Jul. 2005.

Michael Benedikt, Juliana Freire, and Patrice Godefroid. VeriWeb:
Automatically testing dynamic web sites. In the Eleventh International
Conference on World Wide Web, May 2002.

Renée Bryce and Charles Colbourn. The density algorithm for pair-
wise interaction testing. Software Testing, Verification, and Reliability,
17(3):159-182, Aug. 2007.

Renee Bryce and Charles Colbourn. Prioritized interaction testing for
pairwise coverage with seeding and avoids. Information and Software
Technology Journal, 48(10):960-970, Oct. 2007.

Renée Bryce and Charles Colbourn. A density-based greedy algorithm
for higher strength covering arrays. Software Testing, Verification, and
Reliability, 19(1):37-53, Mar. 2009.

Renée Bryce, Charles Colbourn, and Myra Cohen. A framework of
greedy methods for constructing interaction tests. In International
Conference on Software Engineering, pages 146-155, May 2005.

Renée Bryce, Sreedevi Sampath, and Atif Memon. Developing a sin-
gle model and test prioritization strategies for event-driven software.
Transactions on Software Engineering, 37(1):48-64, Jan. 2011.

Renée C. Bryce and Atif M. Memon. Test suite prioritization by in-
teraction coverage. In the Workshop on Domain-Specific Approaches
to Software Test Automation, pages 1-7, Sep. 2007.

C. J. Colbourn. Combinatorial aspects of covering arrays. Le Matem-
atiche (Catania), 58:121-167, 2004.

69



[11) D.R.Kuhn and V.Okun. Psuedo-exhaustive testing for software. In
30th NASA/IEEE Software Engineering Workshop, pages 153-158,
2006.

(12] S. Elbaum, S. Karre, and Gregg Rothermel. Improving web application
testing with user session data. In International Conference on Software
Engineering, pages 49-59, Sep. 2003.

[13] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey Mal-
ishevsky. Selecting a cost-effective test case prioritization technique.
Software Quality Journal, 12(3):185-210, Sep. 2004.

[14] Yuepu Guo and Sreedevi Sampath. Web application fault classification
- an exploratory study. Empirical Software Engineering and Measure-
ment, pages 303-305, 2008.

(15] W. Halfond and A. Orso. Improving test case generation for web ap-
plications using automated interface discovery. In ESEC / SIGSOFT
Foundations of Software Engineering, pages 145-154, Sep. 2007.

[16] HttpUnit. http://httpunit.sourceforge.net/, accessed on Dec. 19, 2011.

[17] D. Kuhn, R. Kacker, and Y. Lei. Practical combinatorial testing. In
NIST Tech Report 800-142, pages 1-70, Oct. 2010.

(18] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault interac-
tions and implications for software testing. Transactions on Software
Engineering, 30(6):418-421, Oct. 2004.

(19] D.R. Kuhn and M.J. Reilly. An investigation of the applicability of de-
sign of experiments to software testing. In 27th NASA /IEEE Software
Engineering Workshop, Dec. 2006.

[20] D.R. Kuhn, D.R. Wallace, and A. Gallo. Software fault interactions
and implications for software testing. IEEE Transactions on Software
Engineering, 30(6):418-421, 2004.

(21] David C. Kung, Chien-Hung Liu, and Pei Hsia. An object-oriented web
test model for testing web applications. In the Asia-Pacific Conference
on Quality Software, pages 111-120. IEEE Computer Society, Oct.
2000.

(22] K.Z.Bell. Optimizing Effectiveness and Efficiency of Software Testing:
a Hybrid Approach. PhD thesis, North Carolina State University, 2006.

(23] Y. Lei, R. Kacker, D. Kuhn, V. Okun, and J. Lawrence. Ipog/ipod:
Efficient test generation for multi-way software testing. Journal of
Software Testing, Verification, and Reliability, 18(3):125-148, 2008.

70



[24] C.H. Liu, D. Kung, P. Hsia, and C.T. Hsu. Structural testing of web
applications. In International Symposium on Software Reliability En-
gineering, pages 84-96, Oct. 2000.

[25) Jeff Offutt, Ye Wu, Xiaochen Du, and Hong Huang. Bypass testing of
web applications. In International Symposium on Software Reliability
and Engineering, pages 187-197. IEEE Computer Society, Nov. 2004.

[26] Rational Robot. http://www.ibm.com/software/awdtools/tester/robot/,
accessed on Dec. 19, 2011.

[27] Flippo Ricca and Paolo Tonella. Analysis and testing of web applica-
tions. In the International Conference on Software Engineering, pages
25-34. IEEE Computer Society, May 2001.

[28] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean
Harrold. Prioritizing test cases for regression testing. Transactions on
Software Engineering, 27(10):929-948, Oct. 2001.

[29] RTI. The economic impacts of inadequate infrastructure for software
testing. Technical report, National Institute of Standarads and Tech-

nology, May 2002.

[30] Sreedevi Sampath, Renee Bryce, Sachin Jain, and Schuyler Manch-
ester. A tool for combinatorial-based prioritization and reduction of
user-session-based test suites. In International Conference on Software
Maintenance: Tool Demo Track, pages 574-577, Sep. 2011.

[31] Sreedevi Sampath, Renee Bryce, Gokulanand Viswanath, Vani Kandi-
malla, and A. Gunes Koru. Prioritizing user-session-based test cases
for web application testing. In International Conference on Software
Testing, Verification and Validation, pages 141-150, Apr. 2008.

[32) Sreedevi Sampath, Valentin Mihaylov, Amie Souter, and Lori Pollock.
Composing a framework to automate testing of operational web-based
software. In International Conference on Software Maintenance, pages
104-113. IEEE Computer Society, Sep. 2004.

[33] Sreedevi Sampath, Sara Sprenkle, Emily Gibson, and Lori Pollock.
Web application testing with customized test requirements—an exper-
imental comparison study. In International Symposium on Software
Reliability Engineering, pages 266-278, Nov. 2006.

[34] Sreedevi Sampath, Sara Sprenkle, Emily Gibson, Lori Pollock, and
Amie Souter Greenwald. Applying concept analysis to user-session-
based testing of web applications. Transactions on Software Engineer-
ing, 33(10):643-658, Oct. 2007.

71



(35] Sara Sprenkle, Emily Gibson, Sreedevi Sampath, and Lori Pollock. Au-
tomated replay and failure detection for web applications. In Interna-
tional Conference of Automated Software Engineering, pages 253-262,
Nov. 2005.

{36] D.R. Wallace and D.R. Kuhn. Failure modes in medical device soft-
ware: an analysis of 15 years of recall data. International Journal of
Reliability, Quality, and Safety Engineering, 8(4), 2001.

[37) Wenhua Wang, Sreedevi Sampath, Yu Lei, and Raghu Kacker. An
interaction-bhased test sequence generation approach for testing web ap-
plications. In IEEE International Conference on High Assurance Sys-
tems Engineering, pages 209-218, Nanjing, China, 2008, IEEE Com-
puter Society.

72



