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Abstract

We prove nonexistence of circulant weighing matrices with para-
meters from seven previously open entries of the updated Strassler’s
table. The method of proof utilizes some modular constraints on
circulant weighing matrices with multipliers.

1 Introduction

For any two positive integers n and k with k < n, a matrix W of order n
with entries from the set {1, —1,0} satisfying

W -WT =kI,

where I is the identity matrix of order n, is called a weighing matrix of
order n with weight k and is denoted by W(n, k). All weighing matrices of
order not exceeding 12 are completely classified. For larger orders numerous
weighing matrices are known.

Circulant matrix is a square matrix in which each row (except for
the first one) is a right cyclic shift of its predecessor. The ring of all
circulant matrices of order n over the integers, Z, is isomorphic to the
quotient ring R, = Z[z]/(z™ — 1). A natural isomorphism takes the cir-
culant matrix W with first row (wo,w1,...,wn—1) into the polynomial
w(z) = wo + W1 T + ...+ wp_13"~! and we can work with w(z) instead of
W. A polynomial w(z) with coefficients from the set {1, —1,0} determines
a circulant weighing matrix if and only if

w(z)w(z"!) = k in R,.
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We denote CW(n, k) the set of all circulant weighing matrices of length
n and weight k. If w(z) € CW(n, k), so does —w(z). In this work we assume
that the number of ones in a circulant weighing matrix is greater then the
number of negative ones.

Theorem 1 (Mullin [11]) If w(z) is in CW(n, k), then:

(1) k = % for some positive integer s, and

(2) w(z) has (s%+3)/2 coefficients equal to one and (s —s)/2 coefficients
equal to negative one.

The following theorem shows in particular that if a circulant weighing
matrix of a given order n exists, then there exist circulant weighing matrices
of order any multiple of n.

Theorem 2 (Geramita and Seberry [9]) If there exist CW (nq, k) and CW (ng, k)
with ged(ny, ng) = 1, then there exist

(1) CW(mny, k) for all positive integers m;

(2) two inequivalent CW (nyng, k);

(3) CW(nlng, kz).

2 Some Known Existence Results

All orders for which circulant weighing matrices of weight 4, 9, or 16 exist
are given in the next three theorems.

Theorem 3 (Eades, Hain [7]) A CW(n,4) ezists if and only if n > 4 is
even or 7 divides n.

Theorem 4 (Ang et al. [1] and Strassler [13]) A CW(n,9) exists 13 di-
vides n or 24 divides n.

Theorem 5 (Arasu et al. [5]) A CW(n,16) erists if and only if n > 21
and 1} divides n, 21 divides n, or 81 divides n.

Some infinite classes of circulant weighing matrices are provided in the
next three theorems.

Theorem 6 (Wallis and Whiteman [12]) If q is a prime power, then there
ezists a CW(g? +q+1,q?%).
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Theorem 7 (Eades [6]) If q is a prime power, g odd and i even, then

there exists a C’W(g';—_x’lll-,q‘).

Theorem 8 (Arasu et al. [2]) If g = 2¢ and i even, then there exists a

CW (L=, ¢°).

3 Modular Constraints

We will obtain and use some modular restrictions on circulant weighing
matrices having multipliers. Let Z, = {0,1,2,...,n — 1} and

Z;, ={q€Zna| ged(g,n) =1}.

Definition. An integer t € Z}, is called a multiplier of a(z) € R, if
a(zt) = z™a(z) for some integer m € Z,.

Theorem 9 (The Multiplier Theorem [10]) Let a(z) € R, and a(z)a(z~!) =
k for some positive integer k relatively prime to n. Let k = p7' ---pér be
the prime power factorization of k. Suppose there are integers t, f1,..., fr

such that
t=p =... =pl (modn).

Then t is a multiplier of a(z).

Corollary 10 Leta(z) € R, and a(z)a(z~1) = k for some positive integer
k = p®, where p is a prime not dividing n. Then p is a multiplier of a(z).

For a(z) € CW(n,k), u € Zy,, and v € Z},, the polynomial z*a(z") €
CW(n, k). The weighing matrix z*a(z") is called equivalent to a(z).

Corollary 11 [{] If a(z) is in CW(n, k), ged(k,n) = 1, and t is a multi-
plier of a(x), then for some u € Z,, the equivalent weighing matriz w(z) =
z¥a(z) is fized by t, i.e. w(z*) = w(z).

Let p be a prime not dividing n and

z” — 1= fi(z)fz(z) - fr()

be the factorization of z" — 1 into irreducible factors over the field Z,. It is
known ([8], Theorem 4.3.8) that the factor ring Z,[z]/(z™ — 1) is a direct
sum of minimal ideals,

Zylz]/(z" -1) =1 @ 22 ®...® Jr (1)
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where J; is generated by
fi@) = fi(@) - fica (@) figa(2) - fr(z)

for i = 1,2,...,7. The unity, e;(z), of J; is called the idempotent of J;. In
order to compute the idempotents we apply the Euclidian algorithm and
find polynomials u(z) and v(x) in Zp[z) such that

u(z)fi(z) + v(z) fi(z) = 1.

Then e;(z) = u(a:)f,-(x).

It is easy to check that the map in the ring Z,[z]/(z™ — 1) that fixes the
elements of Z, and sends z to z”~! is a ring automorphism. It follows that
ei(z"~1) = e, i)(x) where pu(3) is an integer, 1 < pu(3) <rfori=1,2,...,r.
The map p is a permutation of order two from S, the symmetric group of
degree 7.

Theorem 12 Assume w(z) € CW(n,s?) has a prime firing multiplier p
which divides s and does not divide n. Then

w(z) = cre1(z) + ceea(z) + - - - + cren(x)

in Zplz]/(z™ — 1) where ¢; € Z, and cicyy =0 fori=1,2,...,r. Particu-
larly, ¢; = 0 when u(i) = 1.

Proof. The equalities w(z?) = w(z) and w(z)w(z™"!) = s2 hold in
the ring R,. Reducing the coefficients of the polynomials modulo p gives
the natural ring homomorphism Z[z]/(z" — 1) — Z,[z]/(z™ — 1). Identi-
fying w(z) with its image we obtain the following equalities in the ring
Zyla]/(z™ — 1):

w(z®) = w(z) ()

and

w(z)w(z™ ') = 0. (3)
Since Z,[z]/(z™ — 1) is a direct sum of minimal ideals, the idempotents of
the ideals satisfy the equalities e;(z)e;(z) = 0 for i # j and e;(z)? = e;(z).
The polynomial w(z) is an element of Z,[z]/(z" — 1) and can be written as

w(z) = ci(z)er(z) + - + er(T)er(2),

where ¢;(z) € Ji,...,¢(x) € J,. Since the characteristic of the ring
Zy[z]/(z™ — 1) is p, equation (2) implies
w(z) = w(zf)=w(z)

= c(z)Per(z) +--- + cr(z)Per ().
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Hence, ¢;(z)P = ci(z) for i = 1,2,...,7. As the minimal ideal J; is an
extension field of Zp, this implies ci(x) € Z,. Thus, we can replace c;(z) by
¢; € Zp and write w(z) = cie1(x) + - -+ + crer(x). Then

w(z""1) ae(z” )+ -+ cren(z™Y)
= c1eu)(Z) + - + crep(n) ()
= Cumeup()(®) + - + Cu(ry€un(r) (2)

= cy1)€1 (:D) + -+ c,‘(,)er(x)

because u? = id. Equation (3) gives
w(z)w(z"') = cicuyer(z) + - - + ercy(ryer(z) = 0.

Thus, ¢ic,q) =0 for i =1,2,...,7 If u(i) = i we have cic; = 0so¢; =0.
| ]

Let p € Z}, and let (p) be the multiplicative subgroup of Z; generated
by p. The order of (p) is equal to the smallest positive integer d such that
p® = 1 (modn). Lets define the action of p* € (p) on ¢ from the additive
group Z, by p'i (modn). The orbits of this action are called p-cyclotomic
classes modulo n. The length of each p-cyclotomic class modulo n is a
divisor of d. The number r of minimal ideals in (1) is equal to the number
of p-cyclotomic classes modulo n ([8], Theorem 4.1.1).

In the next theorem we obtain some equations which a circulant weigh-
ing matrix with certain prime multipliers satisfy.

Theorem 13 Assume w(z) € CW(n, s?) has a prime firing multiplier p
which divides s and does not divide n. Let Cy,...,C; be the p-cyclotomic
classes modulo n in some order. Denote hi(z) = Y z9,i=1,2,...,r .

q€C;
Then, in the notations of Theorem 12, the following equalities hold over
Ly :
(i) w(z) = 3 d;h;i(z), where each d; is 0, 1, or -1;
i==1

r
(%) hi(z) = 3 tijei(x), where j =1,2,...,7 and t;; € Zy;
i=1
r r
(i) Y tijd; =0 o0r 3 tuu;d;=0fori=1,...,7;
j=1 Jj=1

(tv) if p(t) =1, then Zr: tijd; = 0.
i=1

Proof. Condition (i) follows from the fact that p is a fixing multiplier of
w(z) and w(z) defines a weighing matrix. The polynomial w(z) belongs



to the linear span V' of hi(z),...,h.(z) over Z,. The idempotents e;(z) €
Zy|z]/(z™ —1) satisfy the equalities e;(zP) = e;(z)? = e;(z) and also belong
to V. Hence, e;(z),...,er(z) and hy(z),...,hr(x) are two bases of V. The
matrix T = (t;;) defined in (ii) is the change of basis matrix. Now (iii),
and (iv) follow from Theorem 12. =

4 Nonexistence of Certain Circulant Weigh-
ing Matrices

The Strassler [13] table contains information for existence of circulant weigh-
ing matrices, CW(n, k), of order n < 200 and weight &k < 100. The last
update of the table is done by Arasu and Gutman [3]. The updated table
still has open entries. In the following theorem we solve some of these open
problems. We use software system Maple to find the matrix T from Theo-
rem 13. The running time for each of the seven cases below is less then 10
seconds.

Theorem 14 Circulant weighing matrices CW(n,k) do not exist for
(i) n = 117,133,152, 171 and k = 25;
(%) n = 148,162,198 and k = 49.

Proof. (a) Assume that CW(117,25) is not empty. According to Corol-
laries 10 and 11 there exists a w(z) € CW(117,25) for which 5 is a fixing
multiplier. The number of 5-cyclotomic classes modulo 117 is 18. We order
the classes by ordering their representatives as follows:

(1,2,4,7,14,23,13,3,6,9,12,18, 21, 36, 42, 69, 39, 0].

Under this ordering the weights of the polynomials h;(z), i = 1,2,...,18,
from Theorem 13 are given in the next table

i 1 [2 [3 456 7[8]9]10
wi(h;) [12 [12 [12 [12 |12 |12 (6 |4 4| 4
:Ut(hi) 11 1112 13 14 15 16 ;7 18 where wt(h;) is the num-

ber of nonzero coefficients of h;(x).
The table shows that wt(hi(z)) = 12 and so on. Theorem 1 implies
that w(z) has 15 coefficients equal to 1 and 10 coefficients equal to -1.

From Theorem 13 (i) w(z) = Z d;h;(z) where each d; is 0, 1, or —1. For
i=12,...,12, let denote p; (nj), the number of coefficients d; equal to 1
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(=1), and wt(hi(z)) = j. Then we have the following equations in Z :

12p12 +6ps +4ps +2p2+p1 = 15
6ng +4ns +2n2+ny = 10.
It follows that pi2 € {0,1}, p is odd and n, is even. As only hjg(z) has

weight 1, p1 +n; < 1. It follows that p; = dig = 1, ny = 0. There are six
equations from Theorem 13 (iv) over Zs. Three of them are as follows:

dy +ds +2dy; +2dy2 +2d;3 = 0 (mod5),
do + dg + 3dg + 3d11 + 3d13 + 2dy4 + 3dyg +4di7 = 0 (mod5),
ds + dy + 2dg + 3d12 + 3d14 + 2d16 + 2d18 0 (mod 5) .

Adding the congruences, we obtain
dy+dy+ds+dg+ds+dg+4dy7 +2d1g =0 (mod5)

Hence, p12 + 4d17 +2 = 0 (mod5). As py; € {0,1} and dy7 € {0,1, -1},
the last congruence is impossible. This shows that a CW (117, 25) does not
exist.

(b) Assume that CW (133, 25) is not empty. Corollaries 10 and 11 imply
the existence of w(z) € CW(133,25) for which 5 is a fixing multiplier. We
select the following representatives for the 5-cyclotomic classes modulo 133:

1,2,3,6,9,18,7,14,19,0].

Under this ordering, the weights of the polynomials h;(z), i =1,2,...,18,

from Theorem 13 are as follows: _
i 1 [2 (3 |4 ]5 |6 |7[8[9]10

wi(h) | 18 | 18 | 18 | 18 18 18[0]9]6]1

From Theorem 13 (i) w(z) = Z d;hi(x) where each d; is 0, 1, or —1. Since
w(z) has 15 ones and 10 nega,tlve ones, d; = 0 for i = 1,2,...,6. The
congruences from Theorem 13 (iv) are
2dy = 0 (mod5),
dr+dg+4dyy = 0 (mod 5) :

Hence, dg = 0 and w(z) cannot have 15 ones. This contradiction shows
that CW(133,25) is empty.

(c) Assume that CW (152, 25) is not empty. According to Corollaries 10
and 11 there exists a w(z) € CW (152, 25) for which 5 is a fixing multiplier.
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The number of 5-cyclotomic classes modulo 152 is 18. We order the classes
by ordering their representatives as follows:

1,3,7,13,2,4,6,8,12, 14, 16, 26, 19, 57,0, 38, 76, 114].

Under this ordermg the weights of the polynomials h;(z) are
i 1 |2 [3 [4 [5]6[7]8]9]10
wt(h;) {1818 (18 [18]919[/919]91]9
i 11 (1213114 15[ 16| 17 [ 18
wt(h;) | 9 9 2 |2 |1 (1|1 {1 [

Now w(z) = E dihi(z) where each d; is 0, 1, or —1. For j = 1,2,...,18,

let denote pJ (n_‘]), the number of coefficients d; equal to 1 (— 1), and
wt(hi(z)) = 7. Then we have the following equations in Z :

99 +2p2+p1 = 15
9ng +2n2+ny = 10.

From the table we obtain p; + n3 < 2 and p; + n; < 4. Hence, py = 1,
P2 =2,p1 =1,n9 =1, no =0, and n; = 1. One of the congruences from
Theorem 13 (iv) looks like

dy +dz +d3 + dy +4dy13 + 4d14 =0 (mod5).

As wt(hi(z)) =18 for i = 1,2, 3, 4, we have d; = dy = d3 = d4 = 0. Hence,
di3 +d1g =0 (mod5), ps —np = dy3 + d14 =0, and pa = ny. But we have
p2 = 2 and nz = 0. This contradiction shows that CW(152, 25) is empty.

(d) Assume that CW(171,25) is not empty. This case is similar to case

(c). The number of 5-cyclotomic classes modulo 152 is 13. We order the
representatives as follows:

1,2,3,4,6,8,13,16,9,18,19,57,0).

The weights of the polynomials h;(z) are

1 1 12 |3 (4 |5 [6 {7 |8 [|9]10]11][12]13
with;) |18 ] 18 [ 18 [18 |18 |18 (18 [18|9]9 |6 [2 |1
and two of the of the congruences from Theorem 13 (iv) look like

di+do+dy+dg+dr+dg+2dy; = 0(mod5),
d3+ds +4d;s = 0(mod5)

As wt(hi(z)) = 18fori=1,2,...,8, we have d; = 0. The above congruences
imply dy; = dy2 = 0. Hence, pg = 0, p2 = 0, and 9pg+p; = 15. Since p; < 1,
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the last equation does not have a solution in nonnegative integers. Hence,
CW(171, 25) is empty.

(e) Assume that CW(148, 49) is not empty. According to Corollaries 10
and 11, there exists a w(z) € CW (148, 49) for which 7 is a fixing multiplier.
The number of 7-cyclotomic classes modulo 148 is 15. We order the classes
by ordering their representatives as follows:

[1,3,5,15,2,4,6,8,10,12,20, 30, 37,0, 74].

Under this ordering, the weights of the polynomials h;(z), i = 1,2,...,15,

from Theorem 13 are
i 1 12 |3 |4 |5(6|7]|8|[9]10}11]12

wt(h;) {18118 [ 18 [1819[9[9[9]9]|9 [9 |9

i 13|14 15

wt(h;) 2 1 1 |

Theorem 1 implies that w(z) has 28 coefficients equal to 1 and 21 coefficients
18

equal to -1. From Theorem 13 (i), w(z) = Y d;hi(x) where each d; is 0, 1,
1=1

or —1. For j =1,2,...,18, let denote p; (n;), the number of coefficients d;

equal to 1 (—1), and wt(h;(x)) = j. Then we have the following equations

inZ:

18p1s +9p9 +2p2+p1 = 28,
18n1g + 9ng +.2n2 +n; = 21

It follows that p; € {0,1}, p; € {0,1,2}, n, € {0,1}, and n; € {0,1,2}.
Reducing the above two equations modulo 9 we obtain 2p2 +p; = 1 (mod 9)
and 2ns +n; =3 (mod9). Hence, p2 =0,p; =1, n2 =1,and n; = 1.
There are three equations from Theorem 13 (iv) over Z;. One of them is:

dy+dy+ds+ds+4di3=0 (mod7)

Since ps = 0 and ny = 1, we have d13 = —1. As d; +ds +dz+dg = p1g—ms,
the congruence becomes pi1g —n1s — 4 = 0 (mod 7). Thus py1g — n1g =
3 (mod7). This is impossible because p;g € {0,1}, and nig € {0,1}.
Hence, CW (148, 49) is empty.

(f) Assume that CW (162, 49) is not empty. According to Corollaries 10
and 11, there exists a w(z) € CW (162, 49) for which 7 is a fixing multiplier.
The number of 7-cyclotomic classes modulo 162 is 18. We order the classes
by ordering their representatives as follows:

(1,2,4,5,3,6,12,15,9, 18, 36,45, 0, 27, 54, 81, 108, 135).
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The weights of the polynomials h;(z) are

i 1 12 |3 (4 |5]6]7]8[9]10]111]12

wilh;) [27 1 27(27[27]9]9}9]9{3]3 [3 |3

1 1314|1516 | 17| 18 \ . . .

Sy T 1T [T [T (111 ] With notations as in the previous
case, we have the following equations in Z :

27p2r+9p9 +3p3+p1 = 28,
Ing+3Ing+n; = 21.

It follows that p; = 1 (mod3) and n; = 0 (mod 3). Since p; + n; < 6, we

have
pn=lLn=00rp=1n=30rp =4,n, =0. (4)

Theorem 13 (iii) gives, among the others, the following equations over Z; :
(dia + 2d14 + 4d15 + dyg + 2dy7 +4dy1g =0 or

d13 + 4d14 + 2d;5 + dy6 + 4d17 + 2dy5 = 0) and

(di3 + 3d14 + 2dy5 + 6d16 + 4d17 + 5dig = 0 or

dyz + 5dy4 + 4dy5 + 6d1g + 2dy7 + 3dy5 = 0).

Hence at least one of the following systems must have a solution with d; €
{-1,0,1} satisfying (4):

d13 +2d1y +4d15 +dig +2dy7+4dis = 0 )
dy13 + 3d14 + 2d15 + 6dys + 4dy7 + 5dig = 0

or
di3 +2d14 +4d1s +dig +2di7 +4d;g = 0 (6)
dy3 + 5dy4 +4dy5 +6d1g+2dy7 +3dis = 0

or
diz +4dy4 + 2dy5 + dig + 4dy7 + 2dg = 0 (7)
di3 +3d1q + 2dy5 + 6dig +4dy7 +5dig = 0

or
diz+4d1s +2dys +dig +4di7 +2di3 = 0 ®)
diz + 5dy4 + 4d15 + 6dig + 2dy7 + 3dis = 0°

The solution space of the system (5) is the row space over Z; of the matrix

-1 2 1000
2 2 0100
2 -2 0010
-2 -1 00 01

A check shows that the row space does not have a vector with a unique
nonzero entry equal to 1; does not have a vector with two entries equal to
0, three entries equal to -1, and one entry equal to 1; does not have a vector
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with two entries equal to 0 and four entries equal to 1. Thus, the systems
(5) does not have solutions with d; € {-1,0,1} satisfying (4).

We obtain similarly that the systems (6), (7), and (8) do not have
solutions with d; € {—1,0, 1} satisfying (4).

This contradiction shows that CW(162,49) is empty.

(g) Assume that CW (198, 49) is not empty. Corollaries 10 and 11 imply
the existence of w(z) € CW (198, 49) for which 7 is a fixing multiplier. The
number of 7-cyclotomic classes modulo 162 is 20. We order the classes by
ordering their representatives as follows:

1,2,4,5,3,6,9,12,15,18,11, 22,44, 55, 0, 33, 66,99, 132, 165].

The weights of the polynomials ;(z) are

7 1 [2 |3 ]4 ][5 [6 7 [8 ]9 J10
wt(hs) | 30 | 30 | 30 | 30 | 10| 10 | 10 [ 10 | 10 | 10
i 11]12]13]14]15|16 17|18 19 20
wi(h) |3 |3 |3 |38 |1 |1 |1 |1 (1 |1 ]

Theorem 1 implies that w(z) has 28 coefﬁcients equa.l to 1 and 21 coefficients

equal to -1. From Theorem 13 (i), w(z) = 2 d;hi(z) where each d; is 0,

1, or —=1. For j =1,2,...,30, let denote p; (n,), the number of coefficients
d; equal to 1 (1), and wt(h,(:z:)) j. Hence, d; = dp = d3 = dg = 0. We
have the following equations in Z :

10p1p+3ps+p1 = 28,

10nyp +3n3+n; = 21,
and 10(p10 + n10) + 3(p3 + n3) + p1 + n1 = 49. It follows from the table

above that p3 + n3 < 4 and p; + n1 < 6. The previous equality implies
P10 + nio > 4. The congruences from Theorem 13 (iv) are

ds+dy+dy = 0 (mod7),

dg+dg+dip = 0 (mod7), (9
dyy +dyg +5dig +5d1g +5dg = 0 (mod?7),
dis + di3 +5dys + 5d17 +5djg = 0 (mod?7).

The first two of them imply p10 = n10 < 2. Hence, pjo = n10 = 2. Thus
ng=0and ny =1.

Clearly, ps € {1,2}. If p3 = 1, then p; = 5 and one of the last two
congruences of (9), say, the last one, would be djs +di3+15=0 (mod7).
This is impossible because n3 = 0 and each of d;» and dy3 is either O or 1.
Hence, p3 = 2, and p; = 2.
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One of the equations of Theorem 13 (iii) is

5(d11 + di3) + 6(da2 + d14)
= —(ds+dg+- - +dyo)— (dis +dig+ - +dy) (mod7).

Its corresponding equation under the permutation u is

6(d11 + di3) + 5(d12 + d14)
= —(ds+dg+:--+di)— (dis +dig+--- +dg) (mod7).

But ds+ds+- - -+dio = pro—n10 = 0, and dis+dye+- - -+do = pr1—ny = 1.
Thus,

5(di1 + di13) + 6(d12 +d1g) = 6 (mod7), or
6(d11 + d13) + 5(d12 + d14) 6 (mod7).

il

Because n3 = 0 and p3 = 2, two of the d’s are equal to 0 and the other
two are are equal to 1. No combination of two zeros and two ones makes
any one of the congruences true. This contradicts Theorem 13 (iii). Hence,
CW (198, 49) is empty.
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