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ABSTRACT. Software interaction test suites serve two complemen-
tary roles. They are employed to systematically verify that, for some
strength t, no t-way interaction of a system's parameters causes a
fault. They are also employed to locate a faulty configuration, when
at least one interaction fault remains. Algorithms to find such test
suites employing a number of tests close to the minimum have been
extensively explored, in order to test all t-way interactions. However,
when faults remain, the expected number of tests needed to reveal
an interaction fault is also important. One might anticipate that the
test suites of minimum size also have the lowest expected time to
detection of an interaction fault; or, at the very least, that some test
suite of minimum size does. However, in this paper it is shown that
minimum test suite size and lowest expected time to fault detection
are incompatible objectives. This underlies a challenging problem of
how to generate test suites that have early coverage of t-way interac-
tions, in order to reduce time to fault detection. A hybrid approach
is developed that combines a simple greedy algorithm with heuristic
search to construct one test at a time while attempting to maximize
the number of t-way interactions covered by the earliest tests.

1. INTRODUCTION

Software testers often test for defects that they anticipate, while un-
foreseen defects, particularly those arising from interactions among com-
ponents, are overlooked. To address this, numerous combination strategies
have been developed [24]. In this paper, we focus on one of these, interac-
tion testing [1,3,7,19,22,28,29,43]. Interaction testing is intended to reveal
faults that are triggered by interactions; in the remainder of this paper, we
use the term “fault” primarily in this context. Interaction testing is not
a methodology to replace existing testing; rather it can augment current
testing techniques with the systematic examination of interactions. It is
applied both to check that a system exhibits no faulty interaction among
few of its components prior to its release, and to determine as a part of in-
tegration or configuration testing that an interaction fault remains. These
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applications appear to be identical; only the anticipated outcomes (absence
versus presence of an interaction fault) differ. Nevertheless, testing to cer-
tify the absence of an interaction fault, and testing to certify the presence
of (at least) one, turn out to be quite different.

Suppose that a software system has &k factors or components that affect
the system operation. Let fy,..., fi be the factors, and suppose that, for
1 < i L k, factor f; has a number v; of admissible levels or settings. When
each factor, set to a specific level, operates correctly in isolation, faults may
nevertheless arise due to the interaction of more than one factor. Often
one can attribute such an interaction fault to a relatively small number of
factors and their levels. In general, a strength t is selected, large enough so
that interactions of ¢ or fewer factors reveal the potential faults. A t-way
interaction is a selection of ¢ factors, and an admissible level for each. The
objective in interaction testing is to determine whether or not any s-way
interaction for s < ¢ is faulty. To do this, form tests by choosing a level for
each of the factors, and determine whether or not the system behaves as
required with these settings; if not, a fault has been detected. A test suite
is a collection of tests that suffices to detect the interaction faults involving
t or fewer factors, if any are present.

We use a matrix representation. A software interaction test suite of
strength t is an N x k array with N rows each representing a test, k columns
so that column ¢ represents factor f;, and v; symbols permitted in column
i representing allowed levels of f;. These are also known as covering ar-
rays. A test suite is of type v* when it has k factors with v levels each.
More generally, its type is vf‘ . -~vf‘ when it has k = Zf.__l k; factors, of
which k; have v; levels for each 1 < i < £. Then a t-way interaction is a
set {(c1,01),...,(ct,01)} where each ¢; indexes a column of the array, and
each o; is a symbol that can appear in that column. The defining prop-
erty of an interaction test suite is that for every possible t-way interaction
{(c1,01),...,(ct,04)}, there is some row (test) in which the level in column
c; is 0y, for 1 <1 < t; we say that the test covers the interaction. Pairwise
testing is the case when t = 2; Higher strength is the case when t > 2. As
an example, Table 1(a) shows four factors that each have three levels and
has type 3%. An exhaustive test suite has 81 (= 3%) tests, but pairwise
interaction testing requires only 9 tests as in Table 1(b).

If the entire test suite is to be executed, testing cost correlates directly
with the number of tests required. Hence minimizing the number of tests
has been the central problem explored in the literature. We call this the
minimum size problem. Naturally, this minimum depends on the number
of factors, the number of levels, and the strength. Determining a strength
t that is sufficient to detect faults is a challenging problem. Kuhn et al.
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TABLE 1. (a) Example system of four components with
three levels each. (b) A pairwise interaction test suite

folhlf]fs

110 |3 |6 |9

210 (4 (7 |10

folilfol fs 3]0 [5 |8 11
03 161|9 411 (3 18 (10
1 |4 |7 |10 5|1 |4 }6 |11
215 |8 (11 6|1 5 |7 |9
(a) Type: 3* 712 |3 |7 |11
812 14 [8 |9

9(2 |5 |6 {10

(b)

compare reported bugs for the Mozilla web browser against results of in-
teraction testing [28]. More than 70% of bugs are identified with 2-way
interactions; approximately 90% of bugs are identified with 3-way interac-
tions; and 95% of errors are detected by 4-way interactions. In [19,29], two
other studies are given concerning the efficacy of higher strength interaction
testing.

Many computational methods have been employed for addressing the
minimum size problem. The most prevalent are greedy methods. One
basic strategy adds one test at a time (6,9,39]; when a suitable test is cho-
sen, it provides a strong theoretical guarantee on the size of the test suite
produced [4, 5], and it provides a natural method to prioritize tests [3].
A second greedy strategy adds one factor at a time [23, 30, 38]. Often
these produce test suites of acceptable size, but when more sophisticated
methods can be applied they typically outperform greedy methods. Exact
methods have been employed in [16, 35,42, but the computational cost
limits their application to few factors and small strength. Metaheuris-
tic techniques have proved more successful, for example simulated anneal-
ing [11-13, 36, 37], tabu search [31], constraint satisfaction [27], genetic
algorithms and ant colony techniques [34]. The combinatorial problem of
constructing interaction test suites has also been extensively studied in the
mathematical literature; see [15,25] for older surveys, and [17,18] for two of
the main combinatorial constructions. Computational methods using these
techniques to construct test suites appear in [8,26,41].

Substantial effort has gone into the development of methods to construct
small test suites. In applying them, the primary objective is to detect the
presence or absence of interaction faults; see [14,43] for examples. With
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this in mind, there are two natural objectives. When ¢-way interaction
faults are not present, our objective is to determine that using the fewest
tests. But when faults are to be found, our objective is instead to minimize
the expected time to find the first fault. These two objectives appear at
first glance to be consistent with each other; indeed minimum test suite size
is typically taken to imply fast fault detection. One primary contribution
of this paper is to demonstrate that, while minimum size and minimum
expected time to fault detection are cosmetically similar, neither is sufficient
to ensure the other. In fact, as we show in Section 2, there are situations
in which no test suite of minimum size leads to minimum expected time for
fault detection, and conversely, no test suite with minimum expected time
to fault detection has minimum size.

This should cause a software tester to determine their true objective care-
fully. Placing too much emphasis on test suite size can force an increase in
the expected time to fault detection! Despite this difference, essentially all
techniques have addressed minimum size. Therefore in Section 3, we adapt
one-test-at-a-time greedy methods by using heuristic search techniques to
select the next test, in order to produce test suites that reduce the expected
time to fault detection. Section 4 provides empirical results, which show
that the hybrid technique works better than either the greedy or heuristic
search techniques alone. Section 4.2 examines the hybrid technique based
on a different greedy algorithm. Section 5 provides conclusions.

2. MINIMUM SI1ZE OR MINIMUM EXPECTED TIME TO FAULT
DETECTION?

Given a number of factors k, a number of levels v for each factor, and
a strength ¢, the minimum size problem asks for the smallest N for which
an N X k software interaction test suite on v symbols of strength ¢ exists.
Consider its application in the detection of interaction faults. Naturally we
hope that all tests will be run, and none will reveal a fault. However, if there
is a fault, and the tests of the array are run sequentially (i.e., executing the
test corresponding to the first row, then the second, and so on), the first
test in which a faulty interaction is encountered enables us to certify the
software as faulty, and the remaining tests are not needed. Let us suppose
that we have no a priori information about which t-way interaction might
be faulty, if any. Then the natural objective is to ensure that, after running
the ith test, we have covered the largest number of t-way interactions that
any collection of ¢ tests could cover. The best we might hope for is that
this holds for every number ¢ of tests run, until all t-way interactions are
covered.



In order to measure the goodness of a test suite at detecting a fault
early, let 7 be the set of all t-way interactions. For every t-way interaction
T € T, compute the index p(T) of the first row of the test suite that covers
T. If T is the only faulty interaction, exactly p(T') tests are executed in
order to detect the presence of a fault. Therefore if every t-way interaction
is equally likely to be the faulty one, the expected time to detect the fault is
Y rer A(T) divided by the total number of t-way interactions. Denote by
A(z, (v1,.-.,vk)) the number of t-way interactions to cover for a test suite
of strength ¢, having k factors with v; levels for 1 < ¢ < k. Then a simple
recursion can be used to compute this number: A(g, (vy,...,v)) = 0 if
t>k;1ift =0; and v1A(t — 1, (ve,...,vk)) + A(¢, (v2,. . ., vk)) otherwise.

The sum 3 7oy p(T) can also be calculated more directly. For each test
S;, 1 < i < N, compute the number 7; of t-way interactions that are covered
by S; but not covered by S; for any 1 < j < ¢. Then there are exactly 7;
t-way interactions T for which p(T) = i. Let u; = Z?_’__i Te, so that u; is
the number of interactions that are covered in a test numbered ¢ or larger
(that is, the number of uncovered interactions before executing the ith
test). Because the total number of t-way interactions is A(t, (v1,...,v)),
we obtain an explicit formula for the expected time to fault detection, when
there is exactly one fault to be found:

N N
(1) 2i=1 Ty = Zi:l Ui
A(t’ (vla""vk)) A(t,(’Ul,...,’Uk))
The denominator in this ratio is independent of the particular test suite
chosen, as is 2,’:1 Ti = A(t, (v1,...,v)). Therefore to reduce expected

time to fault detection, the only opportunity is to cover more interactions
earlier in the test suite; hence we want ‘early coverage’.

When there are multiple faults, one could ask for the time to find the
first, or the time to find all. In our context, finding the first is the more
natural extension. This can again be easily calculated. If there are s faulty
interactions and we have no a priori information about their location, the
expected number of tests to detect the presence of a fault is

. S

(2) s = (A(t,(ul,...,vk)))
s

The question of minimizing expected time to fault detection is: Given a
number k of factors, a number v of levels for each, and a strength ¢, and
a number s of faulty t-way interactions, construct a software interaction
test suite consisting of a set of tests Sy,...S)s that minimize (2). The
test suite size is precisely ®¢, as one would expect. When s > 1, if one
test suite has uncovered interactions counted by (u;,...,uy) and a second
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has (uy,...,u)y), and u; < uj for all 1 < ¢ < min(N, M), the first has an
expected time to detect a fault at least as low as the second, no matter
how many faults are present. Hence the rate of coverage of interactions is
crucial in obtaining low expected time to fault detection.

Rate of coverage is also important in other problems faced by testers.
When a test suite has been constructed, but the time allocated to testing
is shortened with little notice, a reasonable objective is to minimize the
probability of an undetected fault after a specified number of tests have
been run. If s random faults are present and i — 1 tests have been run,
this probability is just (%)/(A®®1-")). We may not know in advance
how many tests can be completed; in this case a reasonable objective is
to minimize the average value of (%) /("1 ¥ gver all numbers 0 <
i—1 < N of tests; by (2), this is just ®,, and the problem is the same as
that of minimizing the expected time to fault detection.

A further application also arises in the execution of portions of test
suites. Suppose that a target coverage is to be specified, stating that a
certain fraction f, 0 < f < 1, of t-way interactions must be tested. This
might occur, for example, when the goal is to find most but not all in-
teraction faults. Choose £ = min(¢ : u; < fA(t,(v1,...,v))). Then the
number of tests needed to cover fraction f of the interactions is exactly
¢, which should be minimized. Once again, if the fraction f is not known
in advance, one can average over all choices of the fraction f. Then the
expected number of tests required is exactly ®,.

In order not to presuppose a certain number of faults, we can focus on
the numbers of uncovered interactions, given by (u1,...,un), to reduce
as far as possible each u;; or equivalently to increase as far as possible the
numbers (73, ...,7n) of t-way interactions covered for the first time by each
test.

2.1. Small Test Suite Size Does Not Ensure Early Coverage. We
first consider seven factors with five levels each (type 57) of strength four.
One might hope that a simple method that selects tests uniformly at ran-
dom would afford good coverage among initial tests. A randomly gener-
ated test suite (‘Random’) had 6,382 tests. The large number arises in
part because many tests generated are redundant, in that they cover no
interactions not covered by an earlier test. Eliminating these redundant
tests forms a suite, ‘Random Unique’, with 2,481 tests. A simple greedy
one-test-at-a-time algorithm (5] provides a suite, ‘One-Test-At-A-Time’, of
size 1,222. In [2] a combinatorial method is developed to form a test suite,
‘Combinatorial (BC)’, with 1,100 tests that is smaller than any that had
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FIGURE 1. Rate of 4-way interaction coverage for type 5’.

been previously published for these parameters. In {16], this has been dra-
matically improved on by a test suite, ‘Combinatorial (CKRS)’, with only
910 tests. The ultimate sizes of the test suites are strikingly different!

The rates of 4-way interaction coverage for the Random, One-Test-At-
A-Time, Combinatorial (BC), and Combinatorial (CKRS) test suites are
shown in Figure 1. One-Test-At-A-Time appears to be much more effec-
tive at covering 4-way interactions early on. In this regard it appears to
outperform both of the smaller test suites. To make this precise, Table 2
gives the expected time to fault detection for the five suites.

TABLE 2. Expected Time to Detect 0, 1, 2, or 3 Faults for
Five Test Suites of Type 57 and Strength 4

Suite [N d, &, 0,
Random 6382 629.0 314.0 209.3
Random Unique 2481 603.1 312.1 208.8

One-Test-At-A-Time [5] | 1222 394.3 234.3 167.8
Combinatorial (BC) [2] | 1100 432.6 263.6 190.1
Combinatorial (CKRS) [16] | 910 405.3 254.3 183.8
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2.2. The Effectiveness of Random Testing. Random testing not only
generates a much larger number of tests, it also fails to cover interactions as
early as the other suites. If we are willing to track uncovered interactions,
the size of the test suite improves dramatically, but the reduction in time to
detect interaction faults is modest. In addition, the effort to track coverage
of interactions is substantial, and doing so eliminates the primary reason
for random generation of tests. Nevertheless, these results are at variance
with some prior comparisons of interaction testing and random testing.

Dalal and Mallows [20] report that forming a test suite with complete
coverage of t-way interactions, a random test suite with the same number
of tests often has almost all t-way interactions covered and hence often
provides an effective alternative to interaction test suites. When one limits
their comparison to those involving a test suite with complete coverage,
however, random suites provide coverage ranging from 65.4% to 99.9%
for strength two, and from 65.6% to 93.1% for strength three. Even in
these cases, the comparison is not definitive. For example, they employ
a test suite for type 3!3 of strength two with 27 tests providing complete
coverage, while a random suite with 27 tests provides 95.8% coverage. Since
that time, many constructions for software interaction test suites have been
developed that affect this comparison. A test suite with complete coverage
for these parameters exists having only 15 tests [31]; a random suite with
15 tests provides only 76.6% coverage. Arguably, the conclusion to draw
is that, when no small interaction test suite with complete coverage is
available, random testing provides a reasonable alternative. Hence it is
more a commentary on the weaknesses of constructions that existed at
that time than on the relative merits of interaction testing and random
testing.

Schroeder, Bolaki, and Gopu [33] undertake a more detailed empirical
analysis comparing interaction testing and random testing. In addition to
the issue of coverage obtained by random testing, they argue that ulti-
mately our concern is with fault detection, not with coverage. By injecting
faults in software, and using both an interaction test suite and a random
test suite, they compared their effectiveness at detecting a fault. The faults
injected are not selected to be faults caused by an improper interaction;
indeed in their study nearly half of the faults are not detected by either
approach. When an injected fault is evidenced by a faulty interaction, the
number of interactions made faulty by the single fault injected in the source
is somewhat unpredictable. They choose an interaction test suite using a
one-test-at-a~time greedy method, and then employ a random test suite
with the same number of tests; they report the detection of a fault after
all tests are run, and do not address the expected time to fault detection.
Nevertheless, their study serves as a note of caution. Factors and their
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levels affecting correctness must be selected appropriately for the problem
at hand, and faults to be found should be the result of interactions among
these. (See [20] for a discussion.) Once these requirements have been met,
it remains the case that a deterministic method to produce a test suite with
complete coverage may not provide more effective fault detection than a
random suite, because the random suite itself may provide adequate cov-
erage. This will happen if the interaction test suite chosen fails to cover
many interactions in the earliest tests. Hence their study supports the need
to clarify the differences between rate of fault detection and test suite size.

In our experiments, random suites are only competitive when one com-
pares an interaction test suite produced with no concern for early coverage
to a random test suite with the same number of tests, and when one runs
all tests in each. As in Table 2, the performance of random test suites with
respect to expected time to fault detection is not competitive, and so we
focus on algorithmic techniques to improve the rate of coverage.

2.3. Early Coverage Does Not Ensure Minimum Test Suite Size.
Despite having substantially more tests, the faster rate of coverage by the
greedy test suite in Section 2.1 reduces time to fault detection. Smaller
test suite sizes do not ensure earlier coverage of interactions, even when
the test suites can be reordered arbitrarily. Nevertheless, there may be
another ‘small’ test suite that does provide most coverage early.

To explore this, we add tests one at a time, so that the next test max-
imizes the number of newly covered interactions. For type 28 of strength
4, we enumerate the 28 possible tests and repeatedly select one that covers
the largest number of uncovered 4-way interactions. We break ties uni-
formly at random. The construction of a test suite is repeated 100 times.
Figure 2 (a) shows the minimum, average, and maximum number of 4-way
interactions left uncovered after each test. The smallest test suite for this
type and 4-way coverage has 24 tests [16,42]. However, the ultimate size
of the test suites from the one-test-at-a-time method vary from 31 to 37.

For type 45, the first 88 tests cover the same minimum, average, and
maximum number of 4-way interactions. After this, the results differ. The
ultimate sizes range from 408 to 425 tests. But the smallest known suite has
only 340 tests [16]. Hence any one-test-at-a-time approach that maximizes
the number of ¢-way interactions covered in each test need not produce the
smallest test suite.

2.4. Minimum Test Suite Size and Early Coverage are Incompat-
ible. The preliminary comparisons just made guarantee that our primary
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objectives of test suite size and expected time to detect faults do not co-
incide. Now we demonstrate the stronger statement that they are incom-
patible. In the comparisons made, one could argue that few test suites
are compared, and perhaps there is another that has no more tests and
has a rate of coverage that is at least as good. To address the comparison
of test suite size and early coverage definitively, we consider type 2!! of
strength three. The minimum number of tests is 12 [16], but much more
is known here. Up to renaming symbols and reordering rows and columns,
there is only one way to choose 12 tests to cover all 3-way interactions.
Ordering this test suite to minimize expected time to fault detection, we
find that (my,...,72) = (165,155, 145,135,125, 115, 105, 95, 85, 75, 65, 55);
this is the ‘Fewest Tests’ suite. However, it does not provide the best cov-
erage after few tests are performed. We exhaustively tried every way to
select, at each stage, a test that maximizes the number of additional 3-
way interactions covered. This necessitates, no matter what selection is
made, that at least eighteen tests be chosen in total. Indeed with these
requirements we found a test suite with (y,...,7s) = (165, 165, 145, 145,
103, 102, 96, 90, 66, 64, 47, 43, 29, 23, 17, 13, 4, 3); this is the ‘Most
Greedy’ suite. Despite requiring many more tests, it has covered more
3-way interactions after four tests than any 12-test suite can. Neither of
these has the best expected time to detect a single fault. By a greedy
approach that did not insist on the maximum number of newly covered in-
teractions in each test, we found a 14-test solution with (71,...,714) =
(165,155, 145,137,131,121,111, 101, 76,67, 37, 34, 32, 8); this is the ‘Best
®,’ suite.

Table 3 shows the values of ®, for 0 < s < 8 determined by (2). It is
striking that the solution with fewest tests does not lead to the best time
for fault detection unless no faults are present. Moreover, optimizing the
time to fault detection for a single fault does not provide the best expected
time when many faults are present.

Number of Faults Present

Suite ‘ 0 1 2 3 4 5 6 7 8
Fewest Tests | 12.0 542 3.55 2.71 225 195 1.75 1.60 1.49
Most Greedy | 18.0 5.74 3.57 2.70 2.22 1.93 1.73 1.58 1.48
Best &, 14.0 539 351 270 224 195 1.75 1.60 1.49

TABLE 3. Expected Time to Fault Detection for Three

Test Suites for Type 2! and Strength 3 when s Faults are

present, 0 < s < 8

It bears emphasis that in constructing these suites, no heuristics or ran-
dom selections are used; all possibilities with 12 tests and all possibilities



obtained by selecting tests one by one that maximize additional coverage
were examined. Indeed we have shown that minimum test suite size can
require that one does not have the minimum expected time to fault de-
tection. Consequently, improving rate of coverage is essentially different
from generating small test suites. In the remainder of this paper, we focus
on the problem of generating test suites that have early coverage of t-way
interactions. We introduce a hybrid technique for this purpose.

3. A HyYBRID TECHNIQUE

Ultimately a test suite covers all t-way interactions. In order to minimize
expected time to fault detection, our focus is on covering as many t-way
interactions as possible in the earliest tests. The approach that we pursue
is straightforward. We add one test at a time, making a greedy initial
selection for the test and then iteratively improving it by heuristic search
to increase the number of previously uncovered t-way interactions that it
covers.

3.1. Test initialization. Existing one-test-at-a-time greedy algorithms for
constructing test suites fall into a common framework [6]. For each test
generated, M candidate tests are generated to select the test that covers
the most t-way interactions. For the construction of a single test, factor
ordering is the order in which factors are assigned levels. For each factor,
a level selection rule specifies criteria for assigning a level to a factor.

Any one-test-at-a-time greedy algorithm may be used in our approach.
We use a specific instantiation of the framework for experimentation. Only
one candidate test is constructed each time. To begin, select a t-way inter-
action that has not yet been covered, and set the factors in this interaction
to the corresponding levels. The remaining factors are ordered randomly.
A factor that has been assigned a level is fized; one that hasn’t as free. For
each factor in turn, the level that covers the largest number of previously
uncovered ¢-way interactions in relation to fixed factors is selected. This
algorithm is essentially that used by AETG (10].

3.2. Test improvement by heuristic search. We do not expect this
naive greedy approach to produce a next test that maximizes the number
of t-way interactions covered. Heuristic search has been applied to produce
test suites of minimum size and often yields the smallest test suites, at the
cost of higher execution times [40]. However, current heuristic search tech-
niques do not consider the rate of coverage. Therefore, we apply heuristic
search techniques instead to ‘improve’ the current test. As implemented
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here, each has the same goal, to maximize the number of previously uncov-
ered t-way interactions covered in a test. The heuristic search techniques
examined for improving a given test are described next.

Hill climbing: Using hill climbing [32], for a test S, a factor is selected at
random. A move is a change of the level of this factor to another level to
form another test S’. The cost of a test is the number of t-way interactions
still not covered if this test is incorporated in the test suite. If the cost of
S’ is no larger than the cost of S, then the move from S to S’ is accepted
(and we proceed using S’ rather than S). After any number of iterations,
the current test covers at least as many t-way interactions as the initial

test.

Simulated Annealing: Simulated annealing operates similarly, but em-
ploys a more complicated acceptance criterion. To determine whether to
accept a move, a global ‘temperature’ is maintained and adjusted down-
wards over time using a cooling schedule. A move from S to S’ is always
accepted when S’ has cost no larger than S. When S’ has cost larger than
S, the move is accepted with a probability that is a function of the current
temperature, so that lower temperature implies lower probability of accep-
tance. As more iterations are performed, it need not be the case that the
current test is the best one encountered so far. Therefore, after the specified
number of iterations are completed, the best test encountered in the search
is selected. For our experiments to follow, we use an initial temperature
of 10% of the total number of levels and the cooling schedule reduces by 1
degree for every 10% of the number of iterations specified. Fewer iterations
mean faster cooling. See [12] for a more detailed discussion of simulated
annealing for test suite generation.

Tabu search: This employs the same basic strategy. However, moves are
accepted whether or not they increase cost, unless they are tabu. Generally,
tabu moves are recorded on a tabu list; for our implementation, a tabu move
is one that has occurred during the last T iterations, where T is the length
of history maintained. A tabu list of length T = 10 is recommended in 31},
however, in our implementation, tabu lists have size equal to 25% of the
total number of levels. Again we report the best test encountered.

Great Flood: The Great Flood (or “Great Deluge”) algorithm was in-
troduced in [21]. This employs the same basic strategy; however, cost is
now the number of covered t-way interactions. Moves are accepted exactly
when the cost does not fall below a rising threshold. In our experiments,
the rising threshold is 90% of the best solution encountered after the first
iteration, and raises at a period of once every 10% of the number of itera-
tions. The increases are to 95%, 98%, 99%, and 100%. We also incorporate



a tabu list of size 25% of the total number of levels. Again we report the
best test encountered.

4. EXPERIMENTS

Applying a heuristic search technique to improve upon a next test to
add to a test suite can surely not result in the selection of a poorer test.
However, the appropriate type of search to employ, and the number of
iterations for which to run it, are by no means clear. Our experiments
compare the four search techniques, and examine the effects of allowing
each more iterations in which to make improvements.

The greedy algorithm described earlier initially generates each test. We
allow each heuristic search technique 10, 100, or 1,000 iterations to improve
the test. Each experiment is repeated 100 times and the average is reported.
(This extends the preliminary work in [2], for which experiments were only
run 5 times each. Nonetheless, we find similar results.)
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FiGURE 3. Rate of 4-way interaction coverage for four
types using 0, 10, 100, and 1,000 iterations of Hill climbing.

We report experiments for types 101918171615141312111, 82726252, 4534
and 6°5°34, each with strength 4. Figure 3 shows results for hill climbing;
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FIGURE 4. Rate of 4-way interaction coverage for four
types using 0, 10, 100, and 1,000 iterations of Simulated
Annealing.

Figure 4 for simulated annealing; Figure 5 for the great flood; and Figure
6 for tabu search.

For all four types and all four heuristic search methods, the rate of 4-
way interaction coverage improves when the number of search iterations
are increased from 0, to 10, to 100, to 1,000. Previous work [2] reports
similar findings for types 3!3 and 57.

As expected, the application of heuristic search improves the rate of 4-
way interaction coverage over that of a greedy algorithm alone, and the rate
of 4-way interaction coverage improves when the number of search iterations
is increased. An iteration does not guarantee acceptance of a move, or
improvement if the move is accepted. Figure 7 graphs the number of times
that moves are accepted for each test using the four search techniques
applied to type 513822, With 10 iterations, there are typically between 1
to 6 accepted moves per test. With 100 iterations and 1,000 iterations,
for the first few tests there are many accepted moves, but this collapses
after approximately 10 tests are selected, and then picks up during the
remainder.

101



160000 140000
1 Noiters —— . No ttorg —
. 10 ftors 20000 10 ttora
. 100 gty - 100000 100 ttors -
100 fters — 80000 1000 ltors ~
0000 Y
E g 40000
3 40000 B
2 20000 £ 20000
0 e 0
0 1000 2000 3000 4000 5000 0 500 1000 15002000 250030003500 4000 4500
Test No. TestNo.
(a) 10*9'817'6'514131211! (b) 82726252
20000
18000 No ltors —
.§ 16000 10 lters
g 14000 100 ttors -
3 12000 1,000 ors —
10000
g 8000
6000
; 4000
2000
0 =, ° -
0 50 100 150 200 250 300 350 400 450 0 500 1000 1500 2000 2500 3000 3500
Test No. Test No.
(c) 4%34 (d) 6°5°34

FIGURE 5. Rate of 4-way interaction coverage for four
types using 0, 10, 100, and 1,000 iterations of Flood.

Each search technique improves on the greedy result, but each improve-
ment costs execution time. Table 4 shows the average time in seconds to
generate single tests for the experiments run on a SunBlade 5000 machine.
To compute the average time per test, we generate full test suites and di-
vide the time by the number of tests. Having amortized the initialization
time across all tests, the time to generate each individual test is impacted
in a small way. However, the initialization time is relatively small.

4.1. Rate of Coverage for Hill Climbing, Flood, Tabu, and Sim-
ulated Annealing. In Section 2, we saw that a minimum size test suite
need not correspond to a fastest rate of t-way interaction coverage. Con-
sequently we developed a hybrid greedy/heuristic search strategy to focus
on a fast rate of coverage for interactions, and demonstrated that different
heuristic search methods enable us to improve individual tests selected,
especially if the method is permitted an adequate number of iterations
to improve the test selected. Which heuristic search technique yields the
fastest rate of t-way interaction coverage?

102



140000
Noitorg —
: g 120000 10kes
H 100000 100 terg e
3 = 60000 1000 Hors — -
5 g o
40000
5 3 |
g £ 20000 \\_‘
y ° L s s
0 1000 2000 3000 4000 5000 © 500 100015002000250030003500 4000 4500
Test No. Test No.
(a) 10'0'81 7161514131211} (b) 82726252
800000
Noltets —
§ oo
] 500000
3 B 400000
: o
s m T 200000
2 000 \\ 2 100000
%5 50 100 150 200 250 300 350 400 450 % womorsooz;ozsoosooossoo
Test No. TestNo.
(c) 4534 (d) 6%5°34

FIGURE 6. Rate of 4-way interaction coverage for four
types using 0, 10, 100, and 1,000 iterations of Tabu.

To assess the rate of fault detection, we consider the values of @, the
expected time to find an interaction fault when s random faults are present,
for 1 < 8 < 3. Table 5 shows the results for four types, with 10, 100, and
1000 search iterations. In each case, the same statistics are reported for
each of the four search methods, and for using no search method but rather
simply accepting the test that the greedy algorithm generates.

Hill-climbing consistently yields the best overall results when 10 or 100
search iterations are performed; however, with 1000 iterations, simulated
annealing makes a more substantial improvement in each case, and great
flood improves on hill-climbing for three of the four types. For these num-
bers of iterations, tabu search does not appear to be competitive. It is
perhaps surprising that the least sophisticated search technique performs
well, but this can be attributed to the relatively small number of iterations
performed. At 1000 iterations, hill-climbing appears to have arrived at a
plateau, while the other three continue to improve. Nevertheless, we think
it is unlikely that substantial additional investment would be worthwhile in
improving individual tests; with more time, a better investment of resources
would be to focus on the selection of the test upon which to improve.
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FIGURE 7. Number of accepted moves per test using 10,
100, and 1,000 iterations of Hill Climbing, Flood, Tabu,
and Simulated Annealing for type 513822

4.2. Using the Density Algorithm. It could be argued that the im-
provements obtained in Table 5 indicate that the greedy method used is
making poor initial selections for tests in some cases, leaving much room for
improvement. Therefore we also employed a different greedy method. The
density algorithm is a one-test-at-a-time greedy algorithm that appears to
produce smaller size test suites than the greedy algorithm here [4,5]. Fig-
ure 8 shows that the heuristic search techniques also improve the rate of
t-way interaction coverage when tests are initialized with the density al-
gorithm. The density algorithm always selects a next test that covers at
least the average number of previously uncovered t-way interactions, and
consequently appears to produce a faster rate of t-way interaction coverage
than the greedy method used for Table 5. Nevertheless the same pattern
repeats here, as shown in Figure 8.

5. CONCLUSIONS

Software interaction testing provides a means to systematically test com-
binations of parameters to a system. The higher the strength of interaction
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TABLE 4. Execution time per test (in seconds) using hill
climbing, simulated annealing, tabu search, and great flood
with 10, 100, and 1,000 search iterations.

No. of iters. | HC | SA | Tabu | Flood
1019'8*7'6' [ 10 0.03 {0.02 | 0.02 |0.02
5141312111
10191817161 [ 100 0.14 |1 0.05 | 0.03 [ 0.03
5141312171
1019181716 | 1000 1.201025[0.16 |0.16
5141312111
82726252 10 0.01/0.01|0.01 [0.01
827%6%5° 100 0.06 [ 0.02 | 0.01 |0.01
82726252 1000 0.50 | 0.09 | 0.06 [ 0.06
6°5°34 10 0.220.22(0.14 |0.15
6°5°34 100 0.95]0.36 | 0.22 | 0.27
6°5°3% 1000 8.26]1.85(1.13 |1.33
4°3% 10 0.01 (0.010.01 |0.00
4°3%4 100 0.04 1 0.02 { 0.01 |0.01
4°3% 1000 0.41]0.12 | 0.08 | 0.09

coverage, the closer the testing is to exhaustive. Previous work focuses on
minimizing test suite size. In this paper, we differentiate between two dif-
ferent goals for test generation: constructing a test suite of smallest size
versus covering as many t-way interactions as possible in the earliest tests.
We established that these are not just different goals — they are incompat-
ible goals. We identified two settings in which early coverage is important,
when faults are present and are to be detected as quickly as possible, and
when time constraints on executing a test suite may prevent the entire
suite from being completed. We demonstrated that simply selecting tests
at random, while fast, does not meet either goal well. Therefore we de-
veloped a hybrid approach to generate tests in order so that the expected
time to fault detection is reduced. The hybrid approach uses a fast but
effective greedy method to produce an initial candidate for a test, which
it then modifies repeatedly to improve the coverage provided by that test.
We experimented with four heuristic search techniques for modifying tests,
and found that a simple hill-climbing technique is effective. Each of the
heuristic search methods appears to be worthwhile when early coverage is

desirable.

While there is a substantial mathematical and experimental literature on
minimizing test suite size, little is known about minimizing expected time
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TABLE 5. Expected Times to Fault Detection

Type 1019°817165'4312%11
10 iterations 100 iterations 1000 iterations
Search @1 @2 @3 ‘I’l Qz q)s @1 @2 @3
none |1901.8| 886.7(568.1/1901.8| 886.7/568.111901.8] 886.7]568.1
HC [1129.3| 514.0{319.2|1062.2] 480.0(305.911062.2| 489.8]305.7
Flood |1272.3| 563.4|345.8/1089.6| 499.6(311.0{1059.6] 490.2]306.3
Tabu |1329.1| 585.6(358.7[1155.7| 521.4{322.0]1091.1| 501.4{312.1
SA |1158.7| 531.5(329.2 1081.4| 496.9|309.5]1052.8| 487.3/304.6
Type 82726252
10 iterations 100 iterations 1000 iterations
Search @1 (I>2 @3 @1 @2 (I>3 @1 q)z @3
none |2068.9/1065.3|713.8/2068.9{1065.3]|713.8/2068.9|1065.3(713.8
HC [1259.0] 705.0{492.0{1203.2| 684.8/481.2(1202.8] 684.5[481.0
Flood |1396.4| 756.1/519.6{1228.0 694.9{486.9/1202.7| 685.4]481.7
Tabu [1459.9| 778.5(531.3[/1300.0] 718.5/498.5(1231.1| 694.4[486.1
SA [1308.9f 728.0[504.4(1220.7| 691.9]485.1(1193.4] 681.8{479.8
Type 6°5°34
10 iterations 100 iterations 1000 iterations
Search P, ®y| B3 ®, $,| P, ®; dy1 B3
none | 870.4| 411.7|267.2| 870.4| 411.7|267.2] 870.4] 411.7[267.2
HC | 548.8] 270.8{179.2] 503.8| 254.8[170.4| 503.1| 254.5[170.3
Flood | 608.3] 292.3]191.3| 521.1| 261.0{173.8| 505.5| 256.0/171.2
Tabu | 636.5| 303.1(197.2| 557.4| 272.3|{179.5| 534.0| 264.2(174.8
SA | 597.6] 291.8/190.9 ELQ.I 260.0{173.0{ 502.1| 254.3[170.2
Type 4°34
10 iterations 100 iterations 1000 iterations
Search @1 @2 @3 @1 @2 @3 @1 @2 @3
none | 162.7f 85.3| 58.3| 162.7| 85.3| 58.3| 162.7|] 85.3] 58.3
HC | 114.3| 63.8| 44.7] 109.6] 62.1| 43.8] 109.7] 62.2] 43.8
Flood | 123.4 67.1| 46.4] 110.8] 62.6] 44.1] 109.1] 62.0] 43.8
Tabu | 116.3] 64.5 45.0 111.2] 62.7| 44.1| 111.5( 62.8] 44.1
SA | 118.1] 65.5| 45.6] 110.3] 62.4] 44.0] 109.1] 62.0] 43.8

to fault detection. In part, this is a result of the apparently reasonable, but
incorrect, belief that minimum test suite size is the correct objective. A
test suite intended for validation prior to release anticipates that no faults
remain, and then test suite size is a sensible metric; but a test suite intended
for screening, when some faults are anticipated, requires a different metric
for their evaluation. Our results explain, in part, the apparent usefulness
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FIGURE 8. Rate of 4-way interaction coverage for type 57
using the Density Algorithm and four search techniques,
each employing 1000 search iterations. Results are re-
ported from 500 to 1000 tests.

of one-test-at-a-time greedy techniques, because they are fundamentally
concerned with the rate of coverage rather than test suite size.
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