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Abstract

Our previous paper (9] applied a lopsided version of the Lovasz
Local Lemma that allows negative dependency graphs [5] to the
space of random matchings in Kz, deriving new proofs to a num-
ber of results on the enumeration of regular graphs with exciuded
cycles through the configuration model [3]. Here we extend this from
excluded cycles to some excluded balanced subgraphs, and derive
asymptotic results on the probability that a random regular multi-
graph from the configuration model contains at least one from a
family of balanced subgraphs in question.

1 The Tool

In [9] we proved the following theorem on extensions of (partial) matchings
that allows (among other things) proving asymptotic enumeration results
about regular graphs through the configuration model.
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Theorem 1 Let Q be the uniform probability space of perfect matchings
in the complete graph Ky (N even) or the complete bipartite graph Ky n:
(with N < N'). Letr = 7(N) be a positive integer and 1/16 > € = ¢(N) > 0
as N approaches infinity. Let M = M(N) be a collection of (partial)
matchings in Ky or Ky N+, respectively, such that none of these matchings
is a subset of another. For any M € M, let Apy be the event consisting of
perfect matchings extending M. Set p = p(N) = Y prc pq Pr(Anm). Suppose
that M satisfies

1. |M| < r, for each M € M.

2. Pr(Apm) < € for each M € M.

3 Yomriayinan=0 PT{(AM’) < € for each M € M.

4 2 mwvemem Pr(Anm) < € for each single edge uv.

5. ZHGMF Pry_2or(An) < € for each F € M.

Then, if re = o(1), we have

Pr(Ane Mm) - e"l‘+0(reu)’ (1)
and furthermore, if rep = o(1), then
Pr(AmMemAn) = (1 + O(reu)) e ", )

In the theorem above Pr(Aps) denotes the probability according to the
counting measure, and Pry_o.(Ag) indicates the probability of Ay in a
setting, when 2r of the N vertices (none of them is an endpoint of an edge
in the partial matching H) are eliminated, and the probability is considered
in this smaller instance of the problem.

2 The Configuration Model and the Enumer-
ation of d-Regular Graphs

For a given sequence of positive integers with an even sum, (d1,da, ...,d,) =
d, the configuration model of random multigraphs with degree sequence d is
defined as follows [3].

n

1. Let us be given a set U that contains N = > i=; di distinct mini-
vertices. Let U be partitioned into n classes such that the ith class
consists of d; mini-vertices. This ith class will be associated with
vertex v; after identifying its elements through a projection.
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2. Choose a random matching M of the mini-vertices in U uniformly.

3. Define a random multigraph G associated with M as follows: For any
two (not necessarily distinct) vertices v; and v;, the number of edges
joining v; and v; in G is equal to the total number of edges in M
between mini-vertices associated with v; and mini-vertices associated
with v;.

The configuration model of random d-regular multigraphs on n vertices
is the instance dy = dy = -+ - = d,, where nd is even.

Bender and Canfield [2], and independently Wormald, showed in 1978
that for any fixed d, with nd even, the number of d-regular graphs is

1—da2 dpd ]
(V2+o(1))e < (?f(dW) : (3)

Bollobés [3] introduced probability to this enumeration problem by defining
the configuration model, and brought the result (3) to the alternative form

(1+ o(l))eliﬁ(d—”(d})nl)ﬂ, (4

where the term (1 + o(l))e'li£ in (4) can be explained as the probabil-
ity of obtaining a simple graph after the projection. (The semifactorial
(dn—1)1 = (Tn/(g)_r:z)‘!dm equals the number of perfect matchings on dn ele-
ments, and (d!)" is just the number of ways matchings can yield the same
simple graph after projection. Non-simple graphs, unlike simple graphs,
can arise with different frequencies.) Bollobds also extended the range of
the asymptotic formula to d < /2logn, which was further extended to
d = o(n'/3) by McKay [10] in 1985. The strongest result is due to McKay
and Wormald [11] in 1991, who refined the probability of obtaining a simple
graph after the projection to (1 + o(l))elﬁf“ﬁgn“"o(‘%?') and extended the
range of the asymptotic formula to d = o(n/2). Wormald’s Theorem 2.12
in [15] (originally published in [14]) asserts that for any fixed numbers d > 3
and g > 3, the number of labelled d-regular graphs with girth at least g, is

(1+ o(1))e~ Tt 45 %T_)%)E "

[9] reproved the following theorem of McKay, Wormald and Wysocka (12
using Theorem 1, under a slightly stronger condition than (d—1)29—3 = o(n)
in [12]: (note that a power of g in (6) only restricts a second term in the
asymptotic series of the bound on g):
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Theorem 2 In the configuration model, assume d > 3 and
9°(d = 1)*7% = o(n). (6)

Then the probability that the random d-regular multigraph has girth at least
g2>11is(1+40(1)) exp (- Ef;ll L‘%L‘), and hence the number of d-regular
graphs on n vertices with girth at least g > 3 is

(1 + o(1))e~ Si= U _(d—?#)—!g .

(The case g = 3 means that the random d-regular multigraph is actually a
simple graph.) Furthermore, the number of d-regular graphs not containing
cycles whose length is in a set C C {3,4,...,9 — 1}, is

(1 +o(1))e~ - -Eiee ‘iﬁ’i(d_'(ld‘—)_j)-'_‘_

This is a special case of a more general result. The following definitions
are used in random graph theory (1). The ezcess of a graph G, denoted by
k(G), is |E(G)| — |V(G)|. A graph G is balanced, if K(H) < k(G) for any
proper subgraph H with at least one vertex. We first prove the following
Lemma.

Lemma 3 Suppose that G is a connected balanced simple graph with £(G) >
0. Then the number of subgraphs H with k(H) = &(G) — 1 is at most
2lV(G)|2.

Proof: First we claim that G has no leaf vertex. Otherwise, if v is a leaf
vertex, then k(G — v) = k(G), a contradiction.

Let H be a subgraph of G with x(H) = (G) - 1. If V(H) = V(G),
then H is obtained by deleting one edge from G. The number of such
H’s is |[E(G)|. Now we assume V(H) # V(G). For any vertex set S,
let I'(S) be the neighborhood of S in G. We define a sequence of graphs
Ho,Hy, Hs, ... as follows. Let Hy = H. For i > 1, if V(H;_,) # V(G),
we define the graph H; as follows: V(H;) = V(H;—;) UT(V(H;-1)) and
E(H;) = E(Hi—1) U {w: v € V(H;_,),v € [(V(H;-1)), and wv € E(G)}.
Let H, be the last graph in the sequence. We have V(H,) = V(G). Observe

k(H) = &(Ho) < k(Hy) < k(Hy)--- < &(H;) < &(G).

Since k(H) = &(G) — 1, equalities hold for all but at most one in the chain
above. We have [['(V(H;)) \V(H;)| < 2for all i <r —1, as G has no leaf.
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Figure 1: G — H is either a p-shape or a path when x(H) = x(G) — 1.

It is easy to check that the difference of G and H either forms a p-shape or
is a path as shown in Figure 1. An H with a p-shape may occur at most
2|E(G)| times, an H with a path may occur at most most (IV{?)) times.

Finally, |E(G)| + 2|E(G)| + (V) < 2iv(G)2. O

Let G be a family of connected balanced simple graphs with excess
k. We would like to estimate the probability that a random d-regular
multigraph contains no graph in G. Given a simple graph G, let [Aut(G)|
be the number of automorphisms of G. For any k > 2, let ax(G) be the
number of vertices with degree at least k. We define a polynormal fg (d) =
T2 (d—k+1)©@ =T],cv(q) (E4)(do—1)! = gvker [Loev(oy (&) dv! <
(d = 1)AE@-IV(O)N We have the following theorem.

Theorem 4 Let G be a family of connected balanced simple graphs with
non-negative excess k. Setr = maxgeg |E(G)|. In the configuration model,
assume d > 3 and

—Z(d 1)/E@I-1 = o(1) and £= W(Z(d 1) E@I- 1) = o(1).
Geg Geg (7)

Then the probability that the random d-regular multigraph arising from the
configuration model contains no subgraph in G is
fe(d) )

(1+4+0(%)) eXP(— Gzeg [Aut(G)|(nd)~® /)

Proof: Let ¢ = KT’Z Y ceg(d — DIF@I=1 with a large constant K.
The first condition makes sure re = o(1), the second condition makes sure
rep = O(€) = o(1) in Theorem 1.

For any G € G, let Mg be the family of (partial) matchings of U whose

projection is a copy of G. Suppose that G has s vertices v;,...,v, and
t edges e1,...,e;. For 1 < i < s, let C; be the class of d mini-vertices
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associated to v; and Q; be an (ordered) queue of d,,, mini-vertices in C;. Let
C be the parameter space of all possible (Cy,...,Cs, Q1,...,Q,). We define
a mapping ¥: C = Mg as follows. For 1 < j <t, suppose that the edge e;
has two end-vertices v;, and v;,. We pop a mini-vertex z; from the queue
Qj,, pop a mini-vertex y; from the queue Q;,, and join z;y;. Denote by M
the collection of edges {z;¥;}1<j<:. Clearly M forms a partial matching
whose projection is a copy of G. We define %(C,...,Cs,Q1,...,Q,) = M.
Since every partial matching in Mg can be constructed in this way, 9 is
surjective.

For any M € Mg and any (Ci,...,C,Qy,...,Qs) € ¥~Y(M), it
uniquely determines an ordering of edges in M. The number of such or-
derings that give the same projection G is exactly |Aut*(G)|, the number
of edge automorphisms of G. By Whitney’s Theorem [7], for a connected
G, which is not K3 or Kj, |Aut*(G)| = |Aut(G)|. We have |y~ (M)| =
|Aut(G)|.

There are (IVZ‘G)I)IV(G)(! ways to choose (Cy,...,C,). For1<i<s,
there are ( d‘:")d,,,.! ways to choose the queue @Q;. We have

= (imon J1 (8o

Thus,

ICl
[Aut(G)]|

m<|VFG)|)‘V(G)“v}V_{G, ()

fe(d) n ve)
Aut(G)| (IV(G)I)W(G)M ' ®

|Mg| =

For i > 1, let G; be the set of graphs in G with exactly ¢ edges. Let M;
be the set of matchings of U whose projection gives a graph G € G;; there
are ezactly | Mg| of them, and they are counted in (8). The bad events to be
avoided are the projection of some matching from the union M = U_, M;.
For each M; € M; (i=1,2,...,7), we have

1

Pr(Am,) = (nd—1)(nd—3) -+ (nd —2i + 1)’ ©)
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We have

*©
]

>~ Pr(Am)
Mem
= L2

i=1 GEG;

_fe(d) (
[Awt(G) \[V(G)|
1

) V(G)|1dlV©)

(nd - D(nd—3)--

->y

i=1 Geg;

= (o (3) (g b))

-(nd—-2i+1)
ARG aeen (140 (9)

(10)

Observe from (10) that u = O(} geg Sﬂ&%f“i) =0 ¢ceg M)
Now we verify the conditions of Theorem 1. Item 1 and 2 are trivial by the
definition of  and €. Item 3 can be verified as follows. For two matchings

M and M', Apr N App = 0 if any only if M and M’ conflict. For M € M;,

we have

2

M’":ApiNAM=0

(by symmetry argument)

Pr(Am:) =

> X Pr(am)

i=1 M'eEM;:ApeNAp =0

<y ¥ 2

i=1 M’GM,

2r
< nd 4 Z Pr(Am)
i=1 M'eM;

2 % Pr(An)

_2_7;
ndp'
< €.

(11)

Now we verify item 4. For any uv € M € M, we have

Y. Pr(4Am) <
Miuve MeM

<

<

(lV(G)I (VG =212 [Lhev(c) (d,,)d !

;G;g (nd—1)(nd —3) - (nd — 2 + 1)
_ fold) 2
Z;GGZ may-viome (1 +0 ('n'))
€. (12)
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(We omitted a —*~ additive term from the estimate, which was there in
(9], as it was there to handle a loop.)

Finally, we have to verify item 5. For any F' € M, we have to estimate
Y Meme PIN-2-(Ar). By the inequality below, this boils down to esti-

mating EMGM,.- Pr(Am) = X prem, Prv(Am), as with | M| =,

Pry_ar(An) _ H nd—2j—1

Pry(Am) =1 nd—r—25-1
< ﬂ 1+ 2r < erd5H=T
- e n—-2r—25—-1/)" )

Assume that M’ € M intersects F, M = M’ \ F # 0, and the projection
of M' is a graph G’ € G. Let H be the projection of F N M’. The graph
H is a subgraph of G satisfying 0 < |E(H)| < |E(G)|. (Otherwise, G' ¢ G
contradicts to the assumption that G is balanced.)

We have
> Pr(4n)
MeMp
< Zr: > 2 (n — VIO 1y gyl = D) IECENEED
- E(G)|-IE(H .
i=2 G'eGi HCG' HI»=(1 N=1EC )I(nd—2_1 +1)
E(H)#0
- i2 (d — 1)1E(@)I-IEH)]
- Z 2 (1 +0 (E)) > (G —r(H)
i=2 G'€G; Hec
E(H)#0
16| (d — 1)1E@)I=EE)
- (1 +0 ( n )) Z Z n(G')—x(H) '
G'€G HcG
E(H#0

(For the d(d — 1) base term in the second line, consider that we can build
up G’ sequentially by always adding an edge incident to a pre-existing
component with at least one edge, starting with the components of H with
at least one edge.)

Since G’ is balanced, we have x(G') — k(H) > 1 for any subgraph
H with 0 < |E(H)| < |E(G)|. The last summation can be partitioned
into summations over two classes. The first class C; consists of H with
&(H) = x(G')—1. By Lemma 3, the number of such H is at most |V (G")]2.
The second class C; consists of H with k(H) < &(G’) — 2; there are most
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21BN of them. We bound (d — 1)IEG)I-IEE) by (d — 1)IBEI-1, We
have
-1) |E(G")|—-|E(H)|

d
Z Pr(Am) < 22 Z ( nn(G’)-n(H)

MeMpr G'€eG HCG'
E(H)#0
, 1y|2 1B(G')
< 2 Z(d_l)lE(G)l—l 2\V(G')] +2 2
éreg n n
< €

Finally, the error in (10) does not hurt, as

2| fatd)
—(1+0(—l—1)) (Eceo W)

e H =
r2lg fgd
= e- Y ceg mc(—éﬁ%mye'o(—vl“'l) Xceg W
E——G—-—m< ( |g|> fo(d) )
= e 1Aut(G)|(nd) 1- Z
(G)
G |Aut(G)|(nd)*
1G(d)
= —0(8))e” Loes 1Au(G) |(nd)=(C)
Ig(d)

and e~ 299 K@ a7 = (1 4 O(£))eH. |

Corollary 4.1 We obtain Theorem 2 from Theorem 4, with the following
condition, which is slightly weaker than (6) in [9]:

g*(d-1)*" = o(n) (13)

Proof: Note that cycles are exactly the connected balanced graphs with
k = 0. Let C; denote the graph of a one-vertex loop and C, the graph of
a pair of multiedges between two vertices. These are balanced multigraphs
with k = 0. Formally, we did not allow in Theorem 4 balanced multigraphs,
however, minor changes in the arguments will allow the inclusion of these
two graphs (see in [9] how to handle loops and parallel edges). The formulas
extend for Co and C), if we use as definition |Aut(Cz)| = 4 and f¢,(d) =
(d — 1)%; |Aut(Cy)| = 2 and f¢,(d) = d — 1. Applying Theorem 4 to the
family G = C U {C},C,}, where C C {C3,...,Cq4_,} for g > 3 one obtains
Theorem 2. (]

Corollary 4.2 Under the conditions of Theorem 4, the probability of ob-
taining a balanced graph from G after projection in the configuration model,
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. . d . .
() f X geg I Aut(éﬁ(n ety S separated from zero, is
- 1G(d) _ Ig(d)
1—e Loeg 1Au(@=) D 4 O(f)e Laeg 1Aut(G)[(nd)~(G) |

(1) f Ygeg T Aut(Gf;’lg‘; o=@y = o(1), and the first part of (7) is strength-
ened to -3 nog(d — 1)IEG)I-1 =°(d_~ﬁ%(%ﬂ) uniformly, is

fe(d) fe(d) 2
Z !Aut(Gil(nd =@y + O(“ (2 lAut(Gc);](nd)ﬂ(G)) )

Geg

where £ is little-oh of the main term.

Proof: (i) is straightforward. To obtain (ii), use 1 — (1 + O(f))e* = = +
O(£ + z?) for £ = o(1),z = o(1). The fact that £ is little-oh of the main
term follows from the extra assumption in (ii). a

In the bipartite configuration model we have two sets, U and V, each
containing N mini-vertices, a fixed partition of U into dy,...,d, element
classes, and a fixed partition of V into 4y, ..., 6, element classes. Any perfect
matching between U and V' defines a bipartite multigraph with partite sets
of size n after a projection contracts every class to single vertex. In the
regular case, d) = --- =d, = §; = ... = §, = d. We have the following
theorem

Theorem 5 Let G be a family of connected balanced simple bipartite graphs
with non-negative excess k and r = maxgeg |E(G)|. In the regular case of
the bipartite configuration model, assume d > 3 and condition (7). Then
the probability that the random d-regular multigraph contains no graph in

G is
@
(1+o(1))e Loes IAut(G)I(nd)"ws_

Proof: We outline the proof. For i = 2,...,r, let M; be the set of match-
ings of U and V, whose projection gives a graph G € G with i edges. For
a fixed G € G, since G is bipartite, let ny(G) and ny(G) be the size of
vertex partition classes. The number of matchings, whose projection is G,
is exactly

m (nlzG)) n(G)! (n; G)) n2(G)! ,,e]{:‘([c;) ((Z,) dyl.

This formula is similar to Equation (8). If G has no automorphism switch-
ing its two colorclasses (in particular when n, # n;), then we can select
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n1(G) classes from the n classes of U and select n2(G) classes from the n
classes of V, or vice versa. This explains the constant factor 2. If G has an
automorphism switching its two colorclasses, then selecting n; = ngy classes
from U and V, we obtain each copy of G |Aut*(G)|/2 times from matchings.
The bad events correspond to a matching from the union M = U_; M,.
For each M; € M; (i =1,2,...,r), we have

_ (dn —23)!
Pr(dm) = —Gor— (14)
We have
> Pr(Anm)
Mem
; 2 d\ (dn—23)!
Z Z Ty () (G)(")n (G) H ( )d,,!————-
&5 g, TRt @1 @@ 2 \au) @
- r2lg| 2fc(d)
- (1 o ( )) Gzeg |Aut(G)|(nd)~(&)" (15)
All the estimates go through as in the proof of Theorem 2. O

Applying Theorem 5 to a family
G ={Ca}ucC with CC {C4,Cs,...,Cog-2}

(a slight extension to include Cj, like in [9]), we get another theorem of
McKay, Wormald and Wysocka (12], who actually had it without g3 in
(16). [9) reproved this theorem with g° in the condition using Theorem 1.

Theorem 6 In the regular case of the bipartite configuration model, as-
sume that g is even, d > 3, and

g*(d—1)*7% = o(n). (16)
Then the probability that the random bipartite d-regular multigraph does not
contain a cycle of length C C {2,4,6,...,g — 2}, is

(1 + o(1))e™ Liec ﬂ

Corollary 6.1 Corollary 4.2 applies to the bipartite regqular configuration
model, changing fc(d) to 2fc(d).

We are left with an open problem of finding asymptotics for the occur-
rence of an element of G and obtaining a simple multigraph simultaneously.
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