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Abstract

A pancyclic graph on v vertices is called pancyclic if it contains
cycles of every length from 3 to v. In this paper we address the
question: what is the minimum number of edges in a pancyclic graph?
We present a simple analysis using chord patterns.

Introduction

For definitions and theorems involving graph theory, the reader is referred
to standard texts on the subject, such as [10]. Graphs are finite, simple
and undirected.

A graph with v vertices is called pancyclic if it contains cycles of every

length from 3 to v. Obviously such graphs exist — the complete graph on
v vertices is an example — so it is of interest to know m(v), the smallest
possible number of edges in such a graph. A pancyclic graph with this
number of edges is called minimal. Two related concepts that have been
discussed are uniquely pancyclic graphs, with exactly one cycle of each order
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([8, 6]) and werter pancyclic graphs, where every vertex lies in a cycle of
each order ([3]).

2 History

Pancyclic graphs were introduced by Bondy [2], although the directed
equivalent had been discussed earlier (see [1, 4, 7]). In 1978, Sridharan
[9] gave constructions that show:

when: v=3 m{v) <3
4<v<5 m(v)<v+1
6<v<8 mv)<v+2
9<v<12 m(v)<v+3

13<v<20 m(v) <v+4
21<v <36 m(v) <v+5.

For larger v, define a(n) = 2™ + n. Suppose n > 3. Then, for each t
satisfying a(n) <t < a(n +1), and for each v such that

2t +an+1)<v <2 fa(n+1),

it is shown in (9] that m(v) < v+t +n — 1. For example,

when: 21<v <36 m(v) Lv+5
37<v <52 m(v) <v+6

53<v<84 m(v) <v+7

In [9], all these inequalities are stated as equalities. However, this is not
proven. Moreover, Shi [8] found uniquely pancyclic graphs with 14 vertices
and 17 edges, so m(14) < 17 and it is easy to see that equality holds. We
shall also show below that m(13) = 16, m(21) = 25, and m(22) = 26. All
of these results contradict [9). The problem of determining m(v) in general
remains open.

3 Establishing lower bounds

Suppose we have a pancyclic graph on v vertices. It must contain at least
v — 2 cycles — more, if some cycles are of equal length. In particular, a
pancyclic graph must contain a Hamilton cycle, and the other cycles will
utilize chords in that cycle. So we shall examine the possible patterns of
cycles. The basic model is a cycle of length v with & chords, yielding v + &
edges in all. We begin with the case k = 3. The analysis is based on that in
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(6], with some modifications (the distinction we shall make below between
types A and B is not drawn there).
In every case, we represent our graph as a circle with the chords as

straight lines. The segments of the outer circle may contain a number of
vertices, but the chords only have vertices at their ends.

Fewer than two chords

If there are no chords, the graph contains only one (Hamilton) cycle, of
length v, and the only pancyclic case is v = 3. If there is one chord, there
are two further (one-chord) cycles. So, if the graph has only one chord,
you obtain exactly three cycles, and if the graph is pancyclic it has v < 5.
These cycles are illustrated in Figure 1 (there are three drawings of the
same graph, with the cycles shown in bold).

So m(v) = v if and only if v =3, and m(v) =v+1if and only if v = ¢
or 5.

Figure 1: Cycles in the case of one chord

Two chords

If there are two chords, we distinguish three cases:
A. They do not cross, and have no common endpoint;
B. They have one common endpoint;
C. They cross.
In addition to the cycles that contain no chord or one chord, there may
be new cycles that contain two chords. Let us count cycles in the three

cases:
A. There is one new cycle, so together with the Hamilton cycle and the four

one-chord cycles (two per chord) you have six cycles in total;
B. You get one new cycle, for six in total;
C. You get two new cycles, for seven in total.

All the new cycles are shown in Figure 2.

This may allow us to find pancyclic graphs for up to v = 9 vertices,
with only v + 2 edges, and in fact examples exist for v < 8 (see Figure
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Figure 2: Cases of two chords

5). However, there is no example for v = 9, as was shown by Shi [8]. So
m(v)=v+2ifand only if 6 < v < 8.

A pancyclic graph on 9 vertices needs at least
7 cycles, so such a graph with two chords must be a b
of type C. To see that no such graph is pancyclic,
suppose the numbers of edges in the segments of
the Hamilton cycle (lengths of the segments) are
as shown. Then a +b+c+d = 9. The lengths of A
the seven cycles are 9 ( containing neither chord ),
a+b+1,c+d+1 (horizontal chord), a+d+1,b+ ¢+ 1 (vertical chord),
a+c+2,b+d+2 (both chords).

The only possible way to get a cycle of length 3 is if two adjacent
segments have length 1, so we assumea=b=1. Thend=9—-a—-b—c=
7 —c. The cycles (in the order listed above) have lengths 9,3,8,9 — ¢,
c+2,c+3,10—c.

In order for there to be cycles of length 4, 5, 6 and 7, it is necessary
that

{9-c,c+2,c+3,10-c} = {4,5,6,7}.

Without loss of generality, ¢ < d. No case works (if c = 1 thenc+2 = 3;
if c = 2 then 10 — ¢ = 8; if ¢ = 3 then there is no 3—cycle). However,
observe that the case ¢ = 2 yields cycles of all length except 6, so it is
easy to add one more chord and construct a 12-edge pancyclic graph on 9
vertices. Therefore m(9) = 12. It is also interesting to note that if we put
a=b=1,c=2and d=v—2- ¢ we obtain a minimal pancyclic graph for
v=26,7,8.

Three chords

If a graph has three chords, we classify by looking at the three pairs of
chords. We refer to the configuration by the string of three letters corre-
sponding to the three types of chord interaction. For example, type AAB
is a graph in which two of the pairs of chords are type A (they do not
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cross, and have no common endpoint) and one pair is type B (they have
a common endpoint). There are 14 types of graph: AAAi, AAAii, AABi,
AABii, AAC, ABBi, ABBii, ABC, ACC, BBBi, BBBii, BBC, BCC, CCC.
(There are two types AAA, two types AAB, two types ABB (one where the
three chords form a “C” pattern and one where they form a “Z”), and two
types BBB (one where all three chords have a common endpoint and one
where they form a triangle).) They are illustrated in Figure 3.

al=Telvlalnls

AAi AAAIi AABI AABiIi ABBiI ABBiIi
ABC ACC BBBi BBBii

Figure 3: Cases of three chords

The following table counts the number of cycles in a graph, in each of
the 14 cases. C(n) means the number of cycles involving exactly n chords.

AAAi | AAAii | AAD: | AABH | AAC | ABBi | ABBii
coy | 1 1 1 1 1 1 1
ca)| 6 6 6 6 6 6 6
c@2 | 3 3 3 3 4 3 3
c@3) | o 1 1 0 1 1 0
10 11 11 10 12 | 11 10
ABC [ ACC | BBBi | BBBii | BBC | BCC | CCC
c) ] 1 1 1 1 1 1 1
ca)| 6 6 6 6 6 6 6
c@) | 4 5 3 3 4 5 6
c@3)| 1 2 1 0 1 1 2
12 | 14 | 11 10 | 12 | 13 | 15

From the table, it is clear that one can try to construct pancyclic graphs
on v vertices and v + 3 edges for 10 < v < 17. The cases of v = 10, 11,12

were constructed in [9], and 14 was given in [6].

Using the same technique as we did for nine vertices, we can find an
example for v = 13, and essentially the same method works for all cases

with 10 < v < 14. The diagram is

129



and the graph has cycles of lengths 3, 4, 5,6, 7,8, v—5,v—4,v—~3,v -2,
v—1 and v.

For v > 14, only types BCC, ACC and CCC need be discussed; in fact,
type CCC can be eliminated immediately, as no cycle involves fewer than
either two chords and two segments or one chord and three segments, so a
cycle of length 3 is impossible.

BCC has 13 cycles, so v = 14 or 15 could be possible, but the interesting
case (v = 15) would be uniquely pancyclic, and that is ruled out in [6].

ACC has 14 cycles. We would need 13 different lengths for case v =
15, and all 14 different for v = 16. In the following diagram, lower-case
letters represent the number of edges in a segment, while upper-case letters
represent endpoints.

/ U a
A \"/
e b
Y w
T

Without loss of generality we can assume a = f = 1, in order to get a
cycle of length 3. The only possible cycles of length 4 are WXYW (which
would imply ¢ + d = 3, without loss of generality ¢ = 2,d = 1), UVWXU
(b=c=1), VWYZV (b = e = 1), or UXYZU (mirror image of UVWXU).
So we can assume either b =1, and oneof c=1ore =1, or ¢ = 2 and
d=1.

Assume b = 1. If ¢ = 1 then VWXYZV and UXYZVU are both length
3 +d + e, while UVWYZU and UXWYZU are both length 4 + e; in both
cases we have at most 12 different lengths. If e = 1 then UVWYXU and
UXYZVU are both length 4 + d, and UXWVZU and UXWYZU are both
length 4 + ¢; again we have at most 12 different lengths.

Finally, set ¢ = 2,d = 1. Then UVWYZU and UXYZVU are both
length 4+ e, and UXYZU and VWYZV are both length 4 + ¢; there are at
most 12 different lengths.
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Therefore cases v = 15 and v = 16 both require at least four chords.
Suitable constructions are found in [9], but see also the following Section.

4 Four chords

There are a large number of possible configurations for four cycles. We
have examined several of them.

Figure 4 shows one of the configurations. It represents a graph with
z + 12 vertices, all on the outer circle. Some vertices are named, while the
numbers show the number of edges on the segment between two labeled
vertices: for example there are five edges, and consequently four unlabeled

vertices, between A and B.

F el

Figure 4: Graph used to construct examples of orders 15 to 22

The graph contains cycles of the following lengths:

length | cycle length | cycle
3 FGHF v ABCDEFGHA
4 CDEC v—1 | ABCDEFHA
5 BCEFGB v—2 | ABCEFGHA
6 BCEFHGB v—3 | ABCEFHA
7 BCDEFGB v—4 | ABGFHA
8 BCDEFHGB v—5 | ABGHA
9 ABCDA v—-6 | ADCBGHA
10 ADEFGBA v—7 | ADEFGHA
11 ABGHFEDA v—8 | ADEFHA
12 ABGFECDA 13 ABGHFECDA
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It will be observed that all lengths from 3 to v inclusive are represented
at least once, provided 1 < z < 10. So a minimal pancyclic graph has v 44
edges (that is, m(v) = v + 4) when 15 < v < 22.

There are cycles of at most 20 different lengths (there are further cycles,
but they duplicate lengths already listed), so this construction does not
generalize beyond v = 22. Therefore the cases v > 23 remain open.

5 Conclusion

Figure 5 shows examples of minimal pancyclic graphs with v vertices for
3 < v £ 14, while examples for 15 < v < 22, may be constructed from

AREDDOD
PRRORURE)

Figure 5: Examples of minimal pancyclic graphs

The sequence (m(v)) starts
0,0,3,5,6,8,9,10,12, 13, 14, 15,16, 17,19, 20, 21, 22, 23, 24, 25,26 . ..

The obvious question is whether m(23) = 27 or 28.
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