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Abstract

Delaunay graphs have been used in CAD/CAM, sensor networks,
and geographic information system. We investigate the reliability
properties of nodes in Delaunay graphs. For measuring the reliability
we formulate the concept of roaming-region for nodes. The roaming-
region R(i) of a Delaunay node v; is such that the Delaunay graph
does not change as long as v; remains within R(). A node v; with
large roaming region R(%) such that v; is positioned near the center
of R(i) is identified as a reliable node. Two types of roaming regions
called (%) lateral roaming region LR (i) and (ii) radial roaming region
RR(i) are distinguished to develop the algorithm. The roaming re-
gion itself is expressed as the intersection of RR(i) and LR(3). For
nodes inside the convex hull, called deep internal nodes, we present
an O(n?) timeé algorithm for computing their roaming region, where
n is the number of nodes in the Delaunay triangulation. We finally
discuss generalization and extension of the proposed algorithm.

1 Introduction

A network or graph consists of a set of nodes V and a set of edges E.
An edge e ¢ E connects two nodes in V. Such a network is usually denoted
by G(V, E). The term vertex is also used to indicate node. Similarly, the
term link is also used to indicate edge. A class of simple networks used
extensively in sensor networks and geographical information system is the
planar network. It is noted that a network is called planar if it can be
drawn in the plane without intersecting edges. Delaunay triangulation, rel-
ative neighborhood graph, Gabrial graph are examples of widely used planar
network. One of the main reasons for the popularity of planar graphs in
application areas is the fact that the size of any planar graph (number of
edges) is not large. In fact, in a planar graph the number of vertices and the
number of edges are linearly related. Furthermore, the data structure for
representing planar graphs are much simpler and can be updated quickly.
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Figure 1: Illustrating a set of nodes (left), partial triangulation (center)
and maximal triangulation (right)

In this paper we consider the reliability properties of planar network
when nodes of the network are allowed to change slightly in their neigh-
borhood. Broadly speaking, a node in a network is called reliable if the
connectivity of the network does not change when the node moves slightly
from the initial position. In particular, we investigate the reliability proper-
ties of nodes in a Delaunay triangulation. In Section 2, we review properties
and algorithms for Delaunay triangulation and related structures.

In Section 3, we present the main contribution of the paper. We first
formulate the notion of roaming-region for a node of Delaunay triangula-
tion. We show that as long as a node remains within its roaming-region,
the underlying Delaunay network does not change. We then present an
efficient algorithms for computing the roaming-region for an internal node
in the Delaunay triangulation. In Section 4, we discuss the extensions of
the proposed algorithm and its application for measuring the reliability of
Delaunay nodes.

2 Preliminaries

In this section we present a brief overview of algorithms for triangulation
and node relocation in reference to sensor network applications.

2.1 Triangulated Network

Triangulation of a set of point sites S = {po,p1,p2, ..., Pn—1} is the con-
struction of the maximum number of non-intersecting triangles with vertices
in S. Triangulations could be partial or maximal as illustrated in Figure 1.

The term triangulation is generally understood to mean maximal tri-
angulation. The triangulation problem has been investigated and used in
many branches of science and engineering that include surveying, cartog-
raphy, robotics, and geographic information system [6].
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Figure 2: Delaunay edges shown in left and corresponding Delaunay trian-
gulation of given point sites in right

After the advent of computational geometry in mid 1970’s, there was a
flurry of research activities dealing with the development of efficient algo-
rithms for triangulation [9]. It is noted that a given set of point sites can
be triangulated in exponentially many ways [9).

A triangulation with many interesting properties is the Delaunay trian-
gulation. A Delaunay triangulation is the dual of Voronoi diagram (6, 9]. An
interesting property of Delaunay triangulation is the fact that it maximizes
the smallest angle of the triangulation [6]. There is a direct characteriza-
tion of Delaunay triangulation in term of in-circle property i.e. two points
b and c are the end points of a Delaunay edge if and only if there is a
circle through & and ¢ that passes through no other point sites and con-
tains no sites in its interior. Consequently, all triangles in the Delaunay
triangulation for a given point sites will have empty circumscribed circles.
It is always unique as long as no four points in the given point sites are
co-circular. If more than three point-sites are co-circular then there will
not be unique Delaunay triangles.

In Figure 2, a circle through point sites b and ¢ contains no other point
site inside it. Hence, it is a Delaunay edge for given point sites. Similarly
for point sites @, b, ¢ and d as shown in the left of Figure 2, the segment
connecting point sites ¢ and @ cannot be a Delaunay edge as the circle
passing through point sites ¢, d and a is not an empty circle as it encloses
a point site b.

As Delaunay triangulation maximizes smallest angle, it is geometrically
nice and, in general, pleasing to the eye. Delaunay triangulations have a
number of interesting properties other than the empty circle property [9, 6].

Delaunay triangulation can be computed by using divide and conquer
algorithm or incremental algorithm [6]. The most popular algorithm for
computing Delaunay triangulation -is based on plane sweep and rums in
O(nlogn) time [6].
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Figure 3: Illustrating unit disk graph

2.2 Algorithm for Node Relocation

An interesting problem in network design is the reconstruction of a network
when nodes are allowed to change their position. Not much research work
has been reported on the change of network when node position varies.
Some recent work on node relocation have been considered by investigators
in sensor network community. For example, Coskum [4] has investigated
connected cover problem for sensor network when some sensor nodes are
allowed to change location. Rongratana et. al. (7, 8] have addressed the
problem of identifying free-regions of a sensor node so that the connectiv-
ity of network is preserved as long as a node remains within its free-region.
Since the contribution presented in Section 3 is also dealing with the reloca-
tion of nodes we describe an overview of the concepts and results reported
in [7, 8]; where the relocation is done for nodes of unit disk graph.

Unit disk graph is a very useful concept for application in sensor network.
Unit disk graph is defined when all nodes have identical transmission range
(3] which is taken without loss of generality as 1. Each sensor node becomes
the vertex of the unit disk graph. Two nodes v; and v, are connected by an
edge if the distance between v; and v, is less than or equal to 1. Basically,
a unit disk graph (UDG) is obtained by connecting all vertices that are
within the transmission range (=1).

Figure 3 shows an example of UDG with indicated range 1. It is re-
marked that UDG becomes very dense if the transmission range is large.
Let T'D() denote the transmission disk of node v;.

The free-region of a node is computed in terms of in-free region and
out-free region of that node. Consider a sensor node v; whose neighbor
nodes in the unit disk graph are v;, v3 and v4 as shown in Figure 4. A node
v; is called out-bound node of node v; if (i) v; lies outside the transmission
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Figure 4: Illustrating an out-free-region of a node

disk T'D(%) of v; and (ii) the transmission disks T'D() and T'D(j) intersect.
The disks of out-bound nodes of v; are drawn dashed in the left side of
Figure 4.

The region of T'D(%) that is not intersecting with the transmission disks
of outbound nodes of v; gives the out-free region of v; as shown in right
side of Figure 4 . Similarly, the notion of in-free region is considered.
In-bound nodes of v; are the nodes that lies within its transmission disk.
The intersection of the transmission disk of in-bound nodes give the in-free
region as shown in Figure 5. The detail are reported in (7, 8].

The intersection of in-free region and out-free region precisely gives the
free region of node vy. As long as node v; remains within its free-region
the unit disk graph doesn’t change. Free-region of a sensor node can be
computed in O(k?) time, where k is the number of out-bound and in-bound
nodes of v; [7, 8]. It is interesting to note that the problem of computing
free region of a sensor node has lower bound Q(klogk) which is proved in
[7, 8] by reducing the sorting problem to free-region computation problem.

3 Roaming Region for Delaunay Nodes

3.1 Problem Formulation

Consider a set S of nine nodes as shown in the left side of Figure 6. The
Delaunay triangulation of these nodes is shown in the right side.

If we move a node slightly then it is very likely that the Delaunay tri-
angulation will not change. On the other hand if we continue to move a
node significantly further from its initial position then the resulting Delau-
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Figure 5: Illustrating an in-free-region of node v; (bounded by three circular
arcs)

Figure 7: Illustrating the change of triangulation by node movement
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Figure 8: Illustrating roaming-region (shaded)

nay triangulation changes. This change of Delaunay triangulation is shown
in Figure 7. In Figure 7, initially node v is connected directly to nodes
vy, v2,v3 and vg. When v is moved to new position as indicated in the
figure, it will be connected to one more node which is vs.

This observation shows that it would be interesting to determine the
connected region for a node such that the Delaunay triangulation remains
same no matter where the node is placed in the region. To formulate this
problem formally we extend the free-region concept introduced in [7] for
unit disk graph.

Definition 1 (Roaming Region): Consider the Delaunay triangulation
of a set S = {vg,v1,v2,...,Up_1} of points in the plane. The roaming-region
of any node v; is the maximal region R,,(i) in the proximity of v; such that
the Delaunay triangulation does not change when v; is moved to any point
within R,,(i). An example of roaming region is shown in Figure 8. The
shaded area is the roaming region.

To develop an algortihm for constructing roaming reason for nodes it is
necessary to distinguish nodes into several classes. Nodes that are on the
boundary of the convex hull of nodes are called ezternal nodes and those
that are inside the convex hull are the internal nodes. The internal nodes
can be further distinguished as shallow-internal nodes and deep-internal
nodes.

Defintion 2 (Deep Internal): Consider the Delaunay Triangulation T
of given nodes. An internal node v; is called deep-internal if all neighbors
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Figure 9: Illustrating types of interior node

of v; are internal nodes. In Figure 9, node v is a deep-internal. In fact
node v is the only deep-internal node in the triangulation of Figure 9.

Definition 3 (Shallow Internal): An internal node v; is called shallow-
internal if some neighbor of v; is an external node. In Figure 9, four nodes
vy, V2, V3, and v, are shallow-internal nodes.

Remark 1: It is remarked that the set of nodes in a Delaunay trian-
gulation T can be viewed as the union of three disjoint sets: (i) external
nodes, (ii) deep-internal nodes and (jii) shallow-internal nodes.

3.2 Roaming Region for Deep-Internal Nodes

Before developing methods for computing roaming region, we recall one of
the key properties of Delaunay triangulation which states that the circum
circle of any triangle of a Delaunay triangulation is empty i.e. the circum
circle does not contain any other node of the triangulation. This property is
called “empty-circle property”. Our method of computing roaming region
of a node is based on the use of set intersection and set differences of circum
circles of carefully selected triangles (both Delaunay and non-Delaunay) in
the proximity of the candidate node. For this purpose, we start with the
characterization of radial and lateral triangles for a given node v; as follows.

Definition 4 (Radial Triangle): Consider a candidate Delaunay node
v;. Let t1,12,t3,...tx be the triangles incident on v;. If the degree of v;
is k then there are k incident triangles. The triangles sharing the sides
of incident triangles opposite to v; are the radial triangles of v;. We use
notations ry,72,73,...,7m to denote radial triangles. In Figure 10, radial
triangles for node v; are shown shaded grey.

An inspection of a Delaunay triangulation diagram reveals that only
some nodes have radial triangles corresponding each of its incident triangle.
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Figure 10: Illustrating radial triangles for node v;

This leads to the following remark.

Remark 2: For a deep-internal node v; there will be radial triangles
for each incident triangle of v;.

The notion of (Lateral Triangles) are captured by considering consecu-
tive incident triangles ¢; and ¢;;; for a candidate node v;.

Definition 5 Lateral Triangles: Let t1,t5, ...ty be the triangles incident
on node v; such that they are ordered angularly around v;. A pair of con-
secutive incident triangles t; and ¢;;; form a quadrilateral v;v,v4v- incident
at v;. The non-Delaunay triangle v,v,v; is a lateral triangle for vertex v;.
In Figure 11, only two out of six possible lateral triangles are shown.

Formation of Radial Roaming Region RR(%): Let Ry, Ry, Ra,...R,
be radial disks of vg. Here notation R; is used to denote the radial disk.
enclosed by circum circle of radial triangle »;. Let vy, v2,vs,..um be the
neighbor nodes of v;. We use Dy,q. to denote the convex hull region of the
point sites including v; and neighbor nodes vy,v2,v3,...vm. Then, radial
roaming region RR(i) of v; is obtained by removing regions occupied by
radial disks from Dy,q: which can be expressed as follows.

RR(i) = Doz - R1 — Rgooo. — By ... (i)

In Figure 12, four radial disks R;, Ro, R3 and R, are formed cor-
responding to Delaunay triangles D, Dy, D3 and D, respectively. The
radial roaming region RR(0) for node v is shown on the right side which
is enclosed by four circular arcs.
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Figure 12: Illustrating radial roaming region of vy
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Figure 13: Illustrating lateral circum circles for vg

Figure 14: Illustrating formation of roaming region R(0)

145



Observation 1: Let N; = {v;;,vi;,vig,..., Vi, } be the neighbor nodes
of v;. As long as as v; remains within RR(z), no new neighbors are formed
for v;. However, some existing neighbors may cease to be neighbor.

Formation of Lateral Roaming Region LR(¢): The lateral roaming
region of a node is formed by the overlay of disks corresponding to the
circum circles of lateral triangles. Let L, Lo, La, ..., Lz be the lateral disks
for node v;. Then the lateral roaming region LR (i) for node v; is given by
the intersection of lateral disks as expressed below.

LR(’L) = n(Ll,Lz,L;;, ..... L) ... (ii)

Observation 2: As long as a node v; remain within LR(3), existing ini-
tial neighbors will continue to be neighbors. However, additional neighbors
may be formed.

The formation of lateral roaming region is illustrated in Figure 13, where
lateral disks are drawn by dashed circles. The intersection of these disks
is the lateral roaming region LR(0) for node vo, shown on the right side of
Figure 13, which is enclosed by two circular arcs.

Observation 1 and Observation 2 imply that the roaming region R(%)
for node v; is given by the intersection of lateral roaming region LR(3) and
radial roaming region RR(%) as expressed below.

R(i) = N(LR(), RR(3)) ... (iii)

The overlay of lateral roaming region LR(0) and radial roaming region
RR(0) for node vp is shown in Figure 14. The intersection of LR(0) and
RR(0) which is the roaming region R(0) of v is shown on the right side of
the figure.

The algorithm for computing roaming region for internal nodes is given
below.

Algorithm 1: Roaming Region for Internal Nodes

Input: (i) Delaunay Triangulation DT
(ii) Interior node v;
Output: Roaming region R(i) for v;

Step 1: a. Determine all neighbor nodes v;,v3, vs, ..., Uy, in DT
b. Let Dy, be the convex hull region of neighbors of v;
Step 2: i. Determine radial triangles t;,t3, 3, ..., tx for node v;.
ii. Computer radial disks Ry, Ry, ..., Ri corresponding to
t1,t2,13, R 7
Step 3: Determine RR(i) = Doy — R1 — Ro — R3... — Ry
Step 4: Identify lateral disks Ly, L, L3, ...L, for vertex v;
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Step 5:  Compute LR(i) = N(Ly, Lo, L3, ..., Lp)
Step 6:  Determine the output R(i) = U(LR(i), RR(%))

Theorem 1: The roaming region of a deep internal node v; in a
Delaunay triangulation DT can be computed in O(n?) time.

Proof: We assume that the Delaunay triangulation is available in dou-
bly connected edge list data structure. Step 1 can be done in O(d(v;))
time by following the edge list incident on v;, where d(v;) is the degree of
node v;. Since the number of edges in DT are linearly related to number
of vertices n, d(v;) = n. Hence Step 1 and Step 2 take O(n) time. Once
radial triangles around v; are available, radial disks can be determined in
O(n) time. By navigating doubly connected edge list data structure, lateral
triangles of v; can be determined in O(n) time. Finally, the intersection
of lateral disks (Step 5) and intersection of LR(i) and RR(:) can be done

in O(n?) time in straightforward manner. Thus the entire algorithm takes

O(n?) time. m]

4 Discussion

We formulated the notion of roaming region for nodes in a Delaunay tri-
angulation. As long as a node remains within its roaming region the un-
derlying Delaunay triangulation does not change. To capture the roaming
region of a node in Delaunay triangulation we characterize two kinds of
triangles in its proximity: radial triangles and lateral triangles. Radial tri-
angles are used to compute radial roaming region and lateral triangles are
used to compute lateral roaming region. The roaming region R(¢) of node
v; is expressed as the intersection lateral roaming region LR(¢) and radial
roaming region RR(i).

The concept of roaming region can be applied for measuring reliability
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of nodes in sensor networks. A sensor node with large roaming region such
that the node is near the center of its roaming region is reliable in the sense
that the connectivity does not change for small movement of the node.
The algorithm for computing roaming region presented in this paper
runs in O(n?) time. By seeking more insight into the structure of roaming
region it may be possible to develop faster algorithm. The algorithm works
only for deep-internal node. It should be straightforward to generalize
it to shallow-internal nodes. We made some preliminary examination of
the roaming region for external nodes i.e., nodes on the boundary of the
convex hull. It turns out that the roaming region of external nodes are not
necessarily bounded. Based on this observation it is interesting to consider
roaming regions for boundary nodes such that the regions lie inside the

convex hull of input nodes.
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