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ABSTRACT. Beautifully Ordered Balanced Incomplete Block Designs,
BOBIBD(wv, k, A, k1, A1), were introduced by Chan and Sarvate along
with some existence results for block size 3 and 4. We have shown
that necessary conditions are sufficient for the existence of BOBIBDs
with k = 5 for k1 = 2 and 3 along with partial results for k; = 4. We
also claim the nonexistence of cyclic solutions for certain BOBIBDs.
The existence of the previously unknown BOBIBD(v,4,2,3,1), v =
1(mod 6), is demonstrated for all v > 19.

1. Introduction

Chan and Sarvate studied what is called Beauti fully Ordered Balanced
Incomplete Block Designs [8).

DEFINITION 1. If each of the blocks of a BIBD(v, k, A) is ordered such
that for any 2 < ky < k indices 1,13, - , ik, the sub-blocks {a;,, i, ,a4y,}
of all ordered blocks {a,,az,- - ,ax} of the BIBD(v, k, A) form a BIBD(v, k1, A1)
then we say that the collection of ordered blocks gives a Beautifully Or-
dered Balanced Incomplete Block Design, BOBIBD(v, k, A, k1, A1) where 2
<k;<k-1.

1.1. Necessary Conditions for BOBIBDs. From the definition, if
a BOBIBD(v,k,A,k1,A1) exists, then

(1) BIBD(v,k,)) exists, and
(2) BIBD(v,k;,\;) exists.
Hence:
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THEOREM 1. Every necessary condition for the existence of BIBD(v,k,))
is a necessary condition for the existence of BOBIBD(v,k,\,k1,A\1) and ev-
ery necessary condition for the erxistence of BIBD(v,ky,\)) is a necessary
condition for the ezistence of BOBIBD(v,k,\k1,A1).

The well known (7] necessary conditions for BIBD(v,3,)), BIBD(v,4,))
and BIBD(v, 5, A), for v > k, are necessary for the purpose of this note.
For ease of reference they are given below:

Block size 3:
A spectrum of BIBD(v, 3, A)
A = 0(mod 6) all v # 2
A = 1,5(mod 6) all v = 1,3(mod 6)
A = 2,4(mod 6) all v = 0,1(mod 3)
A = 3(mod 6) all odd v
Block size 4:
A spectrum of BIBD(v, 4, A)
A = 0(mod 6) all v
A = 1,5(mod 6) all v = 1,4(mod 12)
A = 2,4(mod 6) all v = 1(mod 3)
A = 3(mod 6) all v = 0,1(mod 4)
Block size 5:
A spectrum of BIBD(v, 5, A)
A = 0(mod 20) all v

A =1,3,7,9,11,13,17,19(mod 20)
A = 2,6,14,18(mod 20)
X = 4,8,12,16(mod 20)
A = 5,15(mod 20)
A = 10(mod 20)

Simple counting arguments give:

all v = 1,5(mod 20)

all v = 1,5(mod 10)
all v = 0,1(mod 5)
all v = 1(mod 4)
all v = 1(mod 2)

(s )M
tkl‘-—ﬁj ’

Given a BOBIBD(v, k, A,2,);), there are (’;) ways we can pick up two
locations in a block of BIBD(v, k, ). Hence, A must be (’;) A1, a multiple
of (§). This fact is included in the following corollary.

COROLLARY 1. For any BOBIBD,
(1) if k1 = 2, then A = (’;))\1 and the number of blocks must be a
multiple of (3).

& k
(2) ifky =3, then X = %32%17) — (-23))‘1.

THEOREM 2. In a BOBIBD(3,k\,k1,A1), A =
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k k
(3) ifky = 4, then A =* «;'\0 _ gaepl.

This follows immediately from Theorem 2.

THEOREM 3. If a BOBIBD(v,k,,2,),) ezists, then a BOBIBD(v,k,),
k1,(5}) A1) exists for 2 < ki < k.

Note that the converse is not true as shown below.

ExaMPLE 1. A BOBIBD(4,4,4,3,2) with blocks {1,2,3,4}, {4,1,2,3},
{3,4,1,2}, {2,3,4,1} is not a BOBIBD(4,4,4,2,1). In fact a BOBIBD(4,4,4,2,1)
does not exist.

In view of the above theorem, all results and examples obtained for k& =
4 and ky = 2 extend for k = 4 and k; = 3 as well as a BOBIBD(v, 4, A, 2, A1)
is also a BOBIBD(v, 4, A, 3,3)1).

THEOREM 4. If a BOBIBD(v,k,\,2,)\;) ezists, then a BOBIBD(v,k;,
(';’))\1,2,)\1) exists, where 2 < k; < k.

The following theorem is an important result.

THEOREM 5. If a BOBIBD(v, k, A, k1, A1) ezists then k divides r and
in the (ordered) blocks of the BOBIBD each element occurs exactly ¢ times
at each location of the blocks.

EXAMPLE 2. For the BIBD(4,4,6), r = 6 and § = $, which is not an
integer. Therefore BOBIBD(4,4,6,2,1) does not exist .

Proofs for the above results are given in [6] where the authors showed
that necessary conditions are sufficient for the existence of BOBIBDs with
block size ¥k = 3 and k = 4 for k; = 2. Existence of BOBIBDs with block
size k = 4 and k) = 3 is demonstrated for all but one infinite family and
the non-existence of BOBIBD(7, 4,2, 3,1), the first member of the unknown
series, is shown in [6]. Professor Stinson informed us of his paper [10]
where the existence of the unknown series BOBIBD(v,4,2,3,1) is settled.
We prove the existence of BOBIBD(v, 5, A, k1, A;) for k3 = 2,3, but k; =4
is still open.

1.2. Pairwise Balanced Designs. Let K be a subset of positive inte-
gers and let A be a positive integer. A pairwise balanced design, PBD(v, K; A),
of order v with block sizes from K is a pair (V, B), where V is a finite set
with cardinality v and B is a family of subsets (called blocks) of V which
satisfy the following properties:

(1) If B € B, then the cardinality of B is an element of K.
(2) Every pair of distinct elements of V occurs in A blocks of B.
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When A =1 the notation PBD(v, K) is used.

A set S of positive integers is PBD-closed if the existence of a PBD(v, S)
implies that v belongs to S. Let K be a set of positive integers and let B(K)
= {v | 3 PBD(v, K)}. Then B(K) is the PBD-closure of K. If K = {k},
the notation B(k) is used and a PBD(v, K) is a BIBD(v, k, ). There are
many existence results on the PBD-closure found in [3).

LEmMA 1. If PBD (v,K) ezists and for all ky € K a BIBD(k:, k, \)
ezists for some integer k, then we can construct a BIBD(v, k, 1).

THEOREM 6. IfPBD(v, K) exists and for all k, € K a BOBIBD(k, k, A, k1, A\;
exists for some integer k, then a BOBIBD(v, k, A, k1, A1) exists.

PROOF. Let k: € K. Replacing each block {z1,3,...,zx,} of PBD(v, K)
by BOBIBD(k:, k, A, k1, A1) on the set of elements {z1,zs, ..., } We ob-
tain a BOBIBD(v, k, A, k1, \1). a

There are many existence results on the closure of subsets on pairwise
balanced designs found in [3]. We list below the ones needed for our pur-
pose.

Subset | Closure Genuine Exceptions
59 1 mod 4 131729 33113
5913 |1mod4 17 29 33
56789 N (10-20) (22-24) (27-29) ( 32-34)
Table 1

2. Block sizes k = 4, k; = 2

From Theorem 2, if BOBIBD(v,4, A, 2, A1) exists then A = 6);. The
necessary conditions for the existence of BOBIBD(v, 4, A, 2, ;) are:

A Spectrum of BOBIBD(v, 4, ), 2, A;)’s
A = 6(mod 12) alloddv>5
A = 0(mod 12) no condition on v

For A = 6, Theorem 12 in [B] shows the necessary conditions for
the existence of a BOBIBD(v, 4, 6¢,2,t) are sufficient, except possibly for
15,27, 33, 39,51, 75,87,95,99, 111, and 115. We observe that perpendicular
arrays give BOBIBDs for these exceptions.

DEFINITION 2. A perpendicular array PAx(t, k,v) is a k x A(}) array
where each entry is from {1,2,--- ,v} such that

(1) each column has k distinct entries, and
(2) each set of t rows contains each set of t distinct entries as a column
precisely A times.
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When t = 2 the perpendicular array gives a BOBIBD with k; = 2 when
we consider the columns of the array as the blocks of the BIBD(v, k, A).
Furthermore,

THEOREM 7. Perpendicular array PAy, (2, k,v) ezists if and only if a
BOBIBD(v,k, A1 (¥),2, M) exists.
PROOF. Given the perpendicular array PA,, (2, k, v), we treat the columns

of the array as blocks. By definition of a perpendicular array, any two rows
give a BIBD(v,2, A;) exist. Since we are treating the columns as blocks and

and there are k rows in the PA,, (2, k,v), there are (';) BIBD(v,2, A1)’s.
Hence we have the existence of the BOBIBD(v, k, A1(5), 2, M1)-

Given a BOBIBD(v,k, A\, (‘;),2,)\1) . Construct an array where the
columns represent the blocks of the BIBD(v,k, \; (';)) From definition
of BOBIBD(v, k, \; (';),2,)\1), picking any two rows of the array gives a
BIBD(v, 2, A1). Thus, each 2 rows contains each set of 2 distinct entries as

a column (pairs) precisely A; times and b = A1 (}) as required.
O

~ Note that when k; > 3, perpendicular arrays and BOBIBDs are two dif-
ferent mathematical structures, the perpendicular arrays are not concerned
with pairs, whereas BOBIBDs are. There are many existence results on
perpendicular arrays as given in [5]. It is given in [5] that:

e BOBIBD(v, 4, 6,2, 1) exists for all odd v > 5 (9], 8]
Hence, for all exceptions shown in Theorem 12 in [6], the BOBIBD(v, 4, 6,2, 1)
exist.

THEOREM 8. Necessary conditions are sufficient for the existence of
BOBIBD(v,4,6,2,1) for all odd v > 5.

3. Block sizes k =4,k; =3

The existence of the BOBIBD(v, 4,2,3,1) for v = 1(mod 6) was dealt
with in [6). The authors showed the nonexistence of the first member
of the family, BOBIBD(7,4,2,3,1), by brute force. A computer program
confirmed that BOBIBD(7,4,2,3,1) cannot be developed using difference
sets. The proof of the following theorem can be found in [6].

THEOREM 9. The blocks of a BIBD(v,4,2) can not be ordered to con-
truct a BOBIBD(v,4, 2,3, 1) if there ezist two identical blocks or two blocks
with 3 common points.

A computer program showed that BOBIBD(13, 4, 2, 3, 1) cannot be con-
structed using difference sets, and it ensured the existence of BOBIBD(19,4,2,3,1
through difference sets.
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THEOREM 10. BOBIBD(19,4,2,3,1) exzist by construction of the fol-
lowing ordered difference sets:
{0,1,4,5},{9,2,0,12},{2,13,8,0} modulo 19.

D.R. Stinson informed us of one of his papers [10]. In [10] the following
definition is presented along with existence results.

DEFINITION 3. A perpendicular array of triple systems of order v (or
a PATS(v)), is a tv(v — 1) by 4 array T (of points chosed from a set X of
size v) such that:
(1) the rows of T form a BIBD(v, 4,2);
(2) For any subarray T' consisting of 3 columns of T, the rows of T'
form an STS(v) (e steiner triple system of order v).

It is clear to see that this definition and the definition of a
BOBIBD(v, 4,2, 3,1) are the same. The main result for Stinson’s paper [10]
was that PATS(v) exists for all v = 1(mod 6), v > 19, with four possible
exceptions v = {43, 55, 85,133}. Therefore,

THEOREM 11. Necessary conditions are sufficient for the existence
of BOBIBD(v,4,2,3,1) for v > 19, with four possible exceptions v =
{43, 55, 85,133}.

4. Block sizes k =5,k = 2

From Theorem 2, if a BOBIBD(v, 5,,2, ;) exist then A = 10\;. The
necessary conditions for the existence of BOBIBD(v, 5, A, 2, A1) are:

A spectrum of BOBIBD(v, 5, A, 2, A1)’s
A = 0(mod 20) no condition on v
A = 10(mod 20) alloddv>5

4.1. v odd. Let v be odd. Letting A = 1, we have from [5] and
Theorem 7 that BOBIBD(v, 5, 10,2,1) exists for all odd v > 5 and v # 39
by the use of perpendicular arrays.

THEOREM 12. Necessary conditions are sufficeint for the ezistence of
a BOBIBD(v, 5,10, 2,1) for all odd v > 5 and v # 39.

4.2. v even. Let v = 2m, m € Z*. From the spectrum of A-fold
quintuple systems A = 0(mod 20). Thus, for some s € Z, A = 20s, we are
concerned with the construction of BOBIBD(2m, 5, 20s, 2, 2s).

We will need the following well known results about Latin squares. For
basic definition and notation, please see [11]. A Latin square L of order v
on symbols Q = {1,2,--- ,v} is an v X v array in which each element of
Q occurs in each row and each column exactly once. One may consider a
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Latin square as a quasigroup (@, o) by labeling the rows and the columns
of L by the elements of Q where i o j is the (3,7)t* element, the element
in the i** row and j*» column of L. When (i,4)** element of L is ¢ for all
i=1,2,---,v, Lis called an idempotent Latin square. Let N(v) denote the
number of Latin squares in the largest possible set of mutually orthogonal
Latin squares of order v.

THEOREM 13. [11] If ¢ = p® is a prime power then N(q) =g —1.

LEMMA 2. [11] There ezists a set of N(v) - 1 mutually orthogonal
idempotent Latin squares of order v.

THEOREM 14. [11] There exist three mutually orthogonal Latin squares
of every order except 2, 3, 6, and possibly 10.

COROLLARY 2. [11] There is a pair of orthogonal idempotent Latin
squares of every side except 2, 3, 6 and possibly 10.

THEOREM 15. Let Ly =(Q,01), L2 =(Q,02), ... Lz-2) = (Q,9k-2))
be k —2 mutually orthogonal idempotent Latin squares of order v. Then the
set of blocks B = {{a,b,a01b,a02b,...,a0(t_2)b} : a # b o,b € Q} gives o
BOBIBD(v, k, 2('2‘) ,2,2).

PRrOOF. Note that the number of blocks of size k in Bis 2(3) = v(v—1),
same as the required number of blocks for a BIBD(v, k, 2('2‘)). For any m
# n, we know that pair {m,n} occurs at the first two locations of the
blocks exactly twice by our construction of blocks: once as {m,n} and
once as {n,m}. Now consider the occurrences of the pair {m,n} at the
first and ** location, where i > 2. For some z,y € Q, mo(;—2)Z = n and
no(_g)y = m. The pair {m,n} appears at location (1,7) in the blocks
at least twice, once as {m,z,...,n,...} and once as {m,z,...,n,...}. A
similar argument shows that pair {m,n} appear at least twice at entry
(2,4), i > 2. Next we consider the occurrences of the pair {m,n} at the
ith and jt* location, where i,j > 2 and i # j. As the Latin squares L;
and L; are orthogonal, pair {m,n} and {n,m} appear in location {3, j} of
the blocks exactly once. Hence, {m,n} appears at location {z,5} exactly
twice. Now, since every pair occurs at any two distinct entries at least
twice and since there are exactly 2(3) blocks, we have that each pair occurs
exactly twice at any two distinct entries. This gaurentees us the existence
of BOBIBD(v, k, A, 2,2). Since each pair is occuring at any two distinct
locations and since there are () distinct locations, we have that A = 2(5).
Consequently, a BOBIBD(v, k, 2(5), 2, 2) exists.

O

In [2] three mutually orthogonal idempotent Latin squares of orders
22 and 26 are shown. There exist three mutually orthogonal idempotent

157



Latin squares of order v = 8,12,16,18,20, 24, 28,32,34 as shown in [1].
Consequently,

CoROLLARY 3. BOBIBD(v, 5, 20, 2, 2) exist forv = 8,12,16, 18, 20, 22,
24,26,28,32 and 34.

We will now see that the converse of Theorem 15 does not hold. The-
orem 14 shows that there does not exist 3 idempotent MOLS for v = 6.
Thus, one would suspect a BOBIBD(S, 5, 20, 2,2) does not exist. However,
this is not so.

LemMA 3. BOBIBD(6,5,20,2,2) exist by construction of difference
family {3,1,4,2,0}, {c0,3,4,2,1}, {1,0,3,4, 2}, {2,1,0, 3,4}, {4, 2, 1, 00, 3}
{3,4, 2,1,oo}, modulo 5.

It is known for all v a PBD(v, {5,6,7,8,9}) exist, and as shown pre-
viously, BOBIBD(v, 5, A, 2, A1) exist for v = §,6,7,8 and 9. Thus, from
Theorem 6 and Table 1, BOBIBD(v, 5, A, 2, A\;) exist for all v except possi-
bly v = (10-20), (22—24), (27—29), (32—34). However, we are left to check
the outcome for v = 10,14 for a complete result. It is shown in [4] that
PA2(2,5,10) and PA3(2,5, 14) exist due to the existence of APA5(2,5, 10)
and APA,(2, 5, 14), respectively. Consequently,

THEOREM 16. Necessary conditions are sufficient for the existence of
a BOBIBD(v,5,,2,\;) for allv > 5 and v # 39.
5. Block sizes k =5, k; = 3

Simple counting arguments give that A = %l for a BOBIBD(v, 5, A, 3, A1)
to exist. Note that A; is a multiple of 3. The necessary conditions for the
existence of BOBIBD(v, 5, A, 3, \;) are:

A spectrum of BOBIBD(v, 5, A, 3, A1)’s
A = 0(mod 20) no condition on v
A = 10(mod 20) alodd v >5

5.1. v odd. Let v be odd. We would like to know the outcome
of the family BOBIBD(v, 5,10¢,3,3t), where ¢t € Z. From Theorem 3
since BOBIBD(v, 5,10¢,2,t) exist for all odd v > 5 with v # 39, then
BOBIBD(wv, 5, 10t, 3, 3t) exist for all odd v > 5 with v # 39, as well.

COROLLARY 4. BOBIBD(v,5,,3, ;) ezist for all odd v > 5 except
possibly v = 39.

For v = 39, the underlying BIBDs exist and the necessary conditions
are satisfied; therefore one might expect a BOBIBD(39, 5, 10, 3, 3) to exist.
However, the existence of BOBIBD(39, 5, 10, 3, 3) is still unknown.
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5.2. veven. Let v be even. From the spectrum of A-fold quintuple sys-
tems, we have that A = O(mod 20). Thus, for some s € Z, A = 20s and also,
A1 = 6s. From Theorem 3, since we have that for all even v > 5 the fam-
ily BOBIBD(v, 5, 20s, 2, 2s) exist, then the family BOBIBD(v, 5, 20s, 3, 6s)
exist for all even v > 5, as well. With this, we have exhausted all possible
values for v except possibly v = 39.

THEOREM 17. Necessary conditions are sufficient for the existence of
a BOBIBD(v, 5, A, 3, A1) for all v > 5, except possibly v = 39.

6. Block sizes k =5,k =4

We will determine the family BOBIBD(v, 5, A, 4, A1). From the neces-
sary conditions A is a multiple of 5. We can obtain some BOBIBDs for
k; = 4 from BOBIBDs for k; = 2. The necessary conditions for the exis-
tence of BOBIBD(v, 5, A\, 4, A;) are:

A spectrum of BOBIBD(v, 5, A, 4, A\1)’s
A = 0(mod 20) no condition on v
A = 5(mod 20) all v = 1(mod 4)
A = 10(mod 20) alloddv > 5
A = 15(mod 20) all v = 1(mod 4)

Given BOBIBD(v, 5, 10¢, 2,t) a BOBIBD(v, 5, 10t, 4, (g)t) exists. Thus, the
family BOBIBD(v, 5, 10¢, 4, 6t) for A = 0,10 (mod 20) is known from The-
orem 16.

LEMMA 4. A BOBIBD(v, 5,10¢, 4, 6t) exist for all v > 5, ezcept possibly
v =239.

We are left to find the family of BOBIBD(v, 5, A,4, A1) for A = 5,15
(mod 20).

6.1. A = 5,15 (1nod 20). For when XA = 5¢, we have that A\; = 3t.
We began with an example.

EXAMPLE 3. Observe BOBIBD(S, 5, 5,4, 3)

11213415
213]415]1
314]5[1]2
4]5|1(2]3
51112134

Consequently, we have the first member for the family BOBIBD(v, 5, 5¢, 4, 3t).

A BIBD(w,5,1) exists if v = 1,5 (mod 20), which is the same for v =
1(mod 4). For BIBD(v,5,1) cycle each block as we did in the previous
example and the outcome will give us a BOBIBD(v,5,5,4,3), which in
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turn will give us a BOBIBD(v, 5,15,4,9) when we replicate each block

three times.

From Table 1, if BOBIBD(v,5,5,4,3) for v = 5 and 9 exists then a
BOBIBD(w, 5,5, 4, 3) exist for all v except possibly v = 13,17,29, 33,113.
A computer program shows that a BOBIBD(9,5,5,4,3) cannot be con-
structed via difference sets in Zg or in Z3 x Z3. Also, the following must
hold true for a BOBIBD(9, 5, 5, 4, 3):

THEOREM 18. For BOBIBD(9, 5, 5, 4, 3) there cannot exist four or more
blocks with three common points.

PROOF. Assume, to the contrary, there exist four blocks with three
common points. Without loss of generality, suppose these blocks, listed
columnwise, are as follows:

-
—
—
-t

o
[V
[\
(-]

The replication number r = 10 for BIBD(9, 5, 5). Assume,

1/1)1)1]1]1

—
—t
—
-

N
[\
(3]
(]

Since A = 5, each pair needs to occur 5 times. Thus, pair {1,2},{1,3} and
{2,3} all need to occur 5 times. Thus, the following is assumed:

1111 f1]J1|1|1f1]1]2
3

[+
[
[
(]
[
w

Again, since r = 10 elements 2 and 3 need to occur 10 times. Thus,

1f1j1j1j1j1j1|1j1)1|2(2[2f2([2{3[3]3](3
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This shows us that b = 19. Which is a contradiction because for a BIBD(9, 5, 5),
b=18. 0O

A computer program ensures us the existence of BOBIBD(13, 5, 5, 4, 3)
through difference sets.

LemMmAa 5. BOBIBD(13,5,5,4,3) exist by construction of difference
family {0,1,3,5,6}, {5,3,9,2,0}, {2,6,1,9,0} modulo 13.

From Table 1, if BOBIBD(9, 5, 5, 4, 3) exists then a BOBIBD(v, 5, 5, 4, 3)
exists for all v except possibly v = 17,29,33. Therefore, the existence of
BOBIBD(9, 5, 5, 4, 3) is important.
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