Solution of a Conjecture of Vandell on Decycling
Bipartite Tournaments by Deleting Arcs

Andreas Holtkamp (holtkamp @mathc.rwth-aachen.de)
Lehrstuhl C fiir Mathematik, RWTH Aachen University, 52056 Aachen, Germany

Lutz Volkmann (volkm @math2.rwth-aachen.de)
Lehrstuhl II fiir Mathematik, RWTH Aachen University, 52056 Aachen, Germany

Abstract

The decycling index of a digraph is the minimum number of arcs whose
removal yields an acyclic digraph. The maximum arc decycling number
V' (m, n) is the maximum decycling index among all m-by-n btpamte tour-
naments. Recently, R.C. Vandell determined the numbers v'(2,n), v'(3,n),
and V' (4, n) for all positive mtegers n, as well asV'(5,5). In this work we
use a computer program to obtain V' (5,6), V' (6, 6), and V' (5, 7), as well
as some results on V' (6, 7) and V' (5,8). In particular, V'(6,6) = 10, and
this confirms a conjecture of Vandell.

Keywords: cycle; digraph; bipartite tournament; decycling index; maximum
arc decycling number.
2000 MSC:05C20

1 Terminology and introduction

By a cycle of a digraph we mean a directed cycle. The decycling index of a
digraph D, denoted by V’(D), is the minimum number of arcs whose removal
yields an acyclic digraph. An m-by-n bipartite tournament is an orientation of
a complete bipartite graph K., ». By V'(G) we denote the maximum decycling
index among all orientations of a graph G. Therefore, V'(m, n) := V' (K., is
the maximum decycling index of all m-by-n bipartite tournaments. Furthermore,
the in-degree and out-degree of a vertex v € V(D) are denoted id v and od v.

The decycling index was studied for tournaments by Reid [l] and for blpartxte
tournaments by Vandell [2]. Vandell determined the numbers v (2,n), v (3,n),
and V' (4, n) for all posmve mtegers n, as well as V' (5,5). In this work we de-
termine V' (5,6), v (6,6), and v (5,7). Firstly, we find some lower and upper
bounds for the mentioned cases, which lead to only two possible values for the
maximum arc decycling number in each case. Secondly, we prove further degree
conditions for the tournaments with high decycling index. Then, we use the com-
puter program from the appendix to decide between the two possible values, where

JCMCC 87 (2013), pp. 3-19

the degree conditions help to reduce the runtime of the algorithm. Therefore, the
algorithm enumerates all possible bipartite tournaments, checks if the resulting
digraph matches the degree condition, and if necessary computes their decycling
index. The following results of Vandell [2] are useful for our investigations.

Lemma 1. For all positive integers m, s, and t,
V'im,s+t) >V (m,s)+V (m,t).

Theorem 1. V’(2,n) =12].
Theorem 2. V'(3,n) = [22].
Lemma 2. 7 < V'(4,6) < V'(4,7).
Theorem 3. Forn > 2,

, I%"j-—l if n=1, 3 (mod 6),

V(4,n) =

|1 Z2] if n=0, 2, 4, 5 (mod 6).

Theorem 4. V'(5,5) = 6.

Either deleting all arcs going into or out of an arbitrary vertex v, leaves a di-
graph without any cycle through v. Therefore, the following lemma is immediate.

Lemma 3. Let T be an m-by-n bipartite tournament with partite sets X,
Y with | X|=m2>2,|Y|=n2>1, andve X. Then
V/(T) < min{d*(v),d”(v)} + V (m — 1,n).
This directly leads to the following result.
Corollary 1. For all positive integers i,m and n with m —i > 1 we have

V’(m,n) < V’(m —in)+i- l%J .
Furthermore, by combining Theorem 2 and Corollary 1 we obtain a trivial
upper bound for the general case.
Corollary 2. For all positive integers m and n with m > 3 and n > 2 we
have

V' (m,n) < [%"J +(m —3) [gJ .

To obtain a trivial lower bound for the general case, we can decompose one
partite set of an m-by-n bipartite tournament into disjoint subsets of order 2 and
one subset of order 3. Thus, using Lemma 1, Theorem 1 and Theorem 2 we obtain:

Corollary 3. For all positive integers m and n with 3 < m < n we have

oz 3]+ () o)

2 The 5-by-6 case

According to Lemma 2, we have V'(4, 6) > 7, and so we deduce from Lemma 1
our first proposition.

Proposition 1. V’(5,6) 217
Proposition 2. V (5,6) < 8.

Proof. Let X = {z1,72,...,75} and Y = {y1,¥2,...,¥6} be the partite
sets of a 5-by-6 bipartite tournament T. Then min{idy;,ody:} < 2. By
Lemma 3 and Theorem 4 we obtain

V'(5,6) <V (55)+2=8.
O
The proof of Proposition 2 shows the next corollary immediately.

Corollary 4. Let X = {z1,2,...,25} and Y = {y1,%2,...,ye} be the
pertite sets of a bipartite tournament T. Ifidy; <1 or ody; < 1 for any
i€{1,2,...,6}, then V/(T) £ 7.

Using Corollary 4, Proposition 1 and the computer program in the appendix,
we obtain the next result.

Theorem 5. V’(S,G) =7.

3 The 6-by-6 case

Proposition 3. V'(G, 6) > 10.
Proof. In view of Lemma 1 and Theorems 1 and 3, we obtain
V'(6,6) = V(6,4+2)
> V'(6,4)+V'(6,2)
= 7+3=10.
a

Theorem 6. V'(6,6) = 10.

Proof. Let X = {z1,22,...,2¢} and Y = {y1,y2,...,y6} be the partite
sets of a bipartite tournament 7. Then there exists a vertex z;, say z,,
such that idz; < 3. By Lemma 3 and Theorem 5 we obtain

¥'(6,6) < V'(5,6) + 3 = 10.
Now Proposition 3 leads to the desired result. O

Theorem 6 confirms a conjecture of Vandell [2].

Y1 | V2 | Y3 | Y4 | Y5 | Y6 | Y7
Ty | - - |D] - - | DD
T2 | - | & | - -1 D[- D
3|+ -|®|+1] - - -
s |+ |+ -1O© - |+ -
s | - | - | -|+[®]-]-

Table 1: Tournament Tj. A +/- entry
in line 7 and row j in the table specifies
an arc z; — y; / z; < y;. Removing
the nine circled arcs decycles 1.

4 The 5-by-7 case

Proposition 4. V'(5,7) > 8.

Proof. In view of Lemma 1 and Theorems 1 and 4, we obtain

v'(5,7)

Proposition 5. V' (5,7) < 9.

Proof. Let X = {z1,z2,...,z5} and Y = {y1,¥2,...,y7} be the partite
sets of a bipartite tournament 7. Then min{idy;,ody} < 2. By Lemma

3 and Theorem 5 we obtain

V'(5,5+2)
V' (5,5)+V (5,2)
6+2=S8.

V'(5,7<V (5,6 +2=09.

Theorem 7. V'(5,7) = 9.

Proof. The computer program in the appendix shows that V'(T}) = 9
for the 5-by-7 bipartite tournament T in Figure 1 and Table 1. Thus,

Proposition 5 leads to

V'(5,7)=9.

There are many further 5-by-7 bipartite tournaments T" with the property V/(T") =
9. In the next proposition we give some sufficient conditions for 5-by-7 bipartite
tournaments T such that V/(T) < 8.

Figure 1: Drawing of tournament T;. Arcs from
left to right (right to left) are depicted as continu-
ous (dashed) lines.

Proposition 6. Let X = {z1,z2,...,25} end Y = {y1,¥2,...,y7} be the
partite sets of a bipartite tournament T.
Ifidy; <1 orody; <1 foranyie {1,2,...,7}, then V'(T) < 8.
Ifidz; <1orodz; <1 foranyie€ {1,2,...,5}, then V/(T) < 8.

If there are two distinct indices 1,5 € {1,2,...,5} such thatidz; <2 or
odz; <2 andidz; <2 orodz; <2, then V/(T) < 8.

Proof. fidy; < lorody; <1 for any i€ {1,2,...,7}, then Lemma 3 and
Theorem 5 lead to V/(T) < V'(5,6) + 1 = 8.

Ifidz; < 1orodz; <1 foranyie{l,2,...,5}, then Lemma 3 and
Theorem 3 imply that V/(T) < V’(4, 7V+1=8.

Assume that there are two distinct indices 7,5 € {1,2,...,5} such that
idz; < 2 or odz; < 2 and idz; < 2 or odz; < 2. By Lemma 3 and

Theorem 2 we obtain V/(T) < V'(3,7) + 4 =8. 0

5 The 6-by-7 case

Proposition 7. V' (6,7) > 11.
Proof. In view of Lemma 1 and Theorems 2 and 3, we obtain
V'(6,4+3)

V'(6,4) + V' (6,3)
7+4=11.

v'(6,7)

v

Proposition 8. V'(6,7) < 12.

Proof. Let X = {z1,z2,...,2¢} and Y = {y1,¥2,...,y7} be the partite
sets of a bipartite tournament 7. Then min{idz;,odz;} < 3. By Lemma
3 and Proposition 5 we obtain

V'6,7<V (5,7 +3<9+3=12
|

The proof of Proposition 8 and Lemma 3 lead immediately to the next propo-
sitions.

Proposition 9. Let X = {z,,%2,...,26} and Y = {y1,¥y2,...,yr} be the
partite sets of a bipartite tournament T. Ifidz; < 2 or odz; < 2 for any
i€ {1,2,...,6}, then V/(T) < 11.

Proposition 10. Let X = {z1,z2,...,26} and Y = {y1,¥2,...,y7} be the
partite sets of a bipartite tournament T. Ifidy; < 1 orody; < 1 for any
i€{L,2,...,7}, then V'(T) < 11.

Proof. Assume, without loss of generality, idy; < 1. Deleting the arc
going into y; leaves a digraph without any cycle through y;. According to
Theorem 6, we obtain V/(T) < V'(6,6) + 1 = 11.]

6 The 5-by-8 case

Proposition 11. _V—'(S, 8) > 10.

Proof. In view of Lemma 1 and Theorem 3, we obtain

V'(5,4+4)
V'(5,4) + V'(5,4)
5+5 =10.

v'(5,8)

v

Proposition 12. VI(S, 8) <11.

Proof. Let X = {x1,72,...,25} and Y = {y1,¥2,...,¥ys} be the partite
sets of a bipartite tournament T. Then min{idy;,ody;} < 2. By Lemma
3 and Proposition 5, we obtain

V(58 <V(5,7)+2<9+2=11.
0

The proof of Proposition 12 and Lemma 3 lead immediately to the next propo-
sition.
Proposition 13. Let X = {x1,22,...,25} and Y = {y1,¥2,...,ys} be the

partite sets of a bipartite tournament T. Ifidy; < 1 or ody; < 1 for any
i€ {1,2,...,8}, then V/(T) < 10.

7 The computer program

The computer program we used to determine the maximum arc decycling num-
bers V'(m, n) for fixed integers m and n is programmed in C. In general, it uses
three different algorithms to solve the problem. First, all possible m-by-n bipartite
tournaments are generated. Second, for a fixed bipartite tournament 7" and a fixed
integer s all possible subsets S C E(T) of the arcs of T with cardinality s are
generated. Third, for a fixed bipartite tournament T" and an arc set S it is decided
whether or not T — S contains a cycle. Clearly, if every m-by-n bipartite tourna-
ment can be decycled by deleting an arc set of cardinality s, then V'(m, n) < s.
On the other hand, if there exists an m-by-n bipartite tournament that cannot be
decycled by removing an arc set of cardinality s, then V'(m, n) > s.

Furthermore, by using additional information like Corollary 4 and Proposition
6 it is possible to reduce significantly the processing time of the program, since

only a fraction of all possible 5-by-6 and 5-by-7 bipartite tournaments need to be
computed. Corollary 4 for example states that a 5-by-6 bipartite tournament T
with V/(T) > 7 needs to have id v > 2 and od v > 2 for all vertices v of the
partite set with cardinality six. Analogously, Proposition 6 determines that in a
5-by-7 bipartite tournament T with V/(T") > 8 all vertices must have an in- and
out-degree of at least two, and in the smaller partite set all but one vertex must
have in- and out-degrees of at least three. Therefore, whether a generated tour-
nament fits this regularity condition will be decided by a call of the function bool
in_out_ degree_ greater_equal(. ..) of class digraph.

In the appendix the source code of our program for the 5-by-6 case is shown.
The program types out a notification every time a tournament is found, which
cannot be decycled by removing seven arcs. After the entire term some statistics
on the computation will be displayed, showing how many 5-by-6 bipartite tourna-
ments could be decycled by removing seven arcs. The program of the 5-by-7 case
looks very similar and is therefore omitted. It only uses different assignments of
a few constants and some minor changes on the regularity criteria due to Proposi-
tion 6 in comparison to Corollary 4.

Finally, let us consider the runtime of the algorithm above. The number of
arcs in an m-by-n bipartite tournament is m - n. Let d be the number of arcs to
be deleted from these tournaments. Thus, 2™™ different m-by-n bipartite tour-
naments need to be computed, and for each of those digraphs all possible com-
binations of d arcs out of m - n are consecutively removed. Our algorithm that
decides whether or not the remaining digraphs contain a directed cycle runs in
O(m - (m + n)?). For larger digraphs we could use topological sorting here,
which runs in O(n + m). But for the digraphs considered in this work our algo-
rithm has an average runtime of about four times faster than topological sorting,
because it makes use of the bipartite structure of the graph and it stops as soon as
the first cycle is found. Altogether, the runtime of this algorithm can be estimated
by O(2™™ . (m - n)® - m - (m + n)2). By using the additional information from
Corollary 4 and Proposition 6 we were in both cases able to significantly reduce
the number of tournaments to be computed, in fact to obtain all possible 5-by-6
and 5-by-7 bipartite tournaments (up to isomorphism) we reduced the number of
edges that need to be oriented from 30 to 23 and from 35 to 26, respectively. Of
course, this directly decreases the runtime of our algorithm, and even for the re-
maining digraphs only a fraction of those match the exact regularity criteria tested
after the generation of the 22% and 226 bipartite tournaments.

10

8 Conclusions

Due to the exponential complexity of the problem it is very hard to compute the
maximum arc decycling numbers of m-by-n bipartite tournaments. As our pro-
gram obtained the results on 5-by-6 and 5-by-7 bipartite tournaments in about 20
minutes (5-by-6 case) and about four hours (5-by-7 case), respectively, the com-
putation of the 5-by-8 and 6-by-7 cases would each take more than a year of pro-
cessing time on a common computer. In every case it is recommondable to look
for results like Proposition 7-10 and Proposition 11-12 that immensely reduce the
runtime.

By using parallelisation techniques and more sophisticated machines it would
certainly be possible to obtain the next few maximum arc decycling numbers in
reasonable time. But as m and n grow larger the complexity will become in-
tractable, and it will be more and more difficult to find suitable lower and upper
bounds for the maximum arc decycling numbers, thus, this approach becomes in-
applicable. The more promising approach is now to make use of these results in a
mathematical proof to obtain a general result on V'(5,7) or V'(6, n), and, if nec-
essary for the proofs, compute the numbers V’(S, 8) and V'(G, 7) like described

above.

References

{1] K.B. Reid, On sets of arcs containing no cycles in a tournament, Canad.
Math. Bull. 12 (1969), pp. 261-264.

[2] R.C. Vandell, Decycling bipartite tournaments by deleting arcs, Ars Com-
bin., to appear.

Appendices

Source code: main.cpp

#include <cstdlib>
#include <iostream>
#include <time.h>
#include "digraph.h"
#tinclude <math.h>

11

// The program deals with orientations of a complete bipartite

// graph K(m,n). The question is, how many arcs need at least to
// be deleted from such an arbitrary digraph D[m][n] for the

// remaining digraph to be acyclic (free of any oriented cycles).

using namespace std;

int main(int argc, char *argv(])
{
const int number_deleted_arcs=7;
const int start_tournament=0;
const int end_tournament=8388608; // 2°23=8388608

digraph* tournament= new digraph(6,5,number_deleted_arcs);

bool has_cycle;

int n=0;

int sum_regular_tournaments=0;

int sum_of_not_decycled_tournaments=0;

int abort=0;

for (int i=(tournament—>m_D—1);i>(tournament— >m_D
—number_deleted_arcs—1);——1i) abort+=i;

// Without loss of generality in order to gain all tournaments
// of the 6-by-5 bipartite tournament with in- and out-degree
{1 of at least two in the first partite set (down to isomorphism
// according to Corollary 2.3), the following seven arcs are specified
/! with a fixed value.

tournament—>set_arc(1,1,1);

tournament—>set_arc(1,2,1);

tournament—>set_arc(1,3,0);

tournament— >set_arc(1,4,0);

tournament—>set_arc(1,5,0);

tournament—>set_arc(2,1,0);

tournament— >set_arc(2,5,1);

cout << "Starting with tournament: " << start_tournament << endl;

// There are only 23 arcs undetermined. Therefore the number of

// different tournaments to look at is 2°23=8388608. For each

// tournament we will at first set the arcs of the digraph according to the

// number of the tournament. Afterwards we will check, if these tournaments
// fulfill the in- and out-degree of at least two in the partite set A.

// If it does, we will then try to decycle it by deleting seven arcs. Therefore we

12

// need to check 30 over 7 combinations of arcs, i.d. ~two million combinations.
// If we find a combination of arcs whose deletion decycles the current
// tournament, we can abort and continue looking at the next tournament.
for (int t_counter=start_tournament;t_counter<end_tournament;-+-t_counter)
{
// Set the arcs of the tournament according to the number of the
// tournament.
for (int i=3;i<7;4+i) for (int j=1;j<6;++j)
{
n=(({i—3)*5)+j—1;
tournament—>set_arc(i,j,((t_counter%(((int)pow(((float)2),
((float)(n+1))))))/(((int)pow(((float)2),((float)n))))));
}
tournament—>set_arc(2,2,((t_counter%2097152)/1048576));
tournament—>set_arc(2,3,((t_counter%4194304)/2097152));
tournament—>set_arc(2,4,(t_counter/4194304));
tournament— >update_arcs(); // Update the arc sets.

/! If the generated tournament has in- and out-degrees greater than two
// for vertices in the first partite set, then check whether or not

// it can be decycled by removing seven arcs.

if (tournament—>in_out_degree_greater_equal(2,6))

{

+-+sum_regular_tournaments;

// Remove the first seven arcs from the digraph

int a[number_deleted_arcs];

for (int i=0;i<number_deleted_arcs;+-i) afi]=i;
tournament—>delete_arcs(a);

int sum_a=0;

for (int i=0;i<number_deleted_arcs;++i) sum_a+=a[i];

/I Check if the remaining digraph is now decycled.
has_cycle=tournament— >has_cycle();

/ If it is not decycled, continue looking at all other possible
// combinations of 7 arcs out of 30 to be deleted. Le. ~2 million.
while ((has_cycle) && (sum_a<abort))

{

/! Restore the formerly deleted arcs.
tournament— >reset_arcs();

13

// Compute the next combination of arcs to be deleted.
bool added=false;
int i=(number_deleted_arcs—1);
while ((!added) && (i>=0))
{
if (a[i]<((tournament—>m_D — number_deleted_arcs)+i))
{
added=true;
+alil;
intk=1;
for (int j=(i+1);j <number_deleted_arcs;++j)
{ aljl=(ali]+k); ++k; }
}

}

// Delete the above computed combination of arcs.
tournament—>delete_arcs(a);

// Check if the remaining digraph is decycled.

sum_a=0;

for (int i=0;i<number_deleted_arcs;++1) sum_a+=a[i];
has_cycle=tournament— >has_cycle();

}

// Restore the formerly deleted arcs.
sum_of_not_decycled_tournaments+=((int)has_cycle);
tournament— >reset_arcs();
if (has_cycle)
{
cout << "!Tournament not decycled by " < < number_deleted_arcs
<< "arcs: " << t_counter << endl;
cout << "Arc set:" << endl;
for (int i=0;i<tournament—>n_D;++i)
for (int j=0;j<tournament—>n_D;+j)
if (tournament—>D[i][j])
cout << i< "—->"<<j<<" "
cout << endl;

// After the whole compution give out some statistics about the

14

// results on how many of the tournaments could be decycled by

// removing seven arcs.

cout << sum_regular_tournaments;

cout << " tournaments found with od x>>=2 and id x>=2 for x in A.";

cout << endl << (sum_of_not_decycled_tournaments);

cout << " out of those not decycled by " << number_deleted_arcs
<< " removed arcs.” << endl;

cout << "Tournaments visited: " << start_tournament << "to "
<< end_tournament << endl;

delete tournament;

system("PAUSE");
return EXIT_SUCCESS;

Source code: digraph.h

#ifndef DIGRAPH_H
#define DIGRAPH_H

#include <vector>

class digraph

{

public:

rectly

// class constructor

digraph(int _n_A, int _n_B, int _deleted_arcs);
// class destructor

~digraph();

std::vector< std::vector<bool> > D; // adjacency matrix of the digraph

std::vector<int> arcs; /I to adress the (numbered) arcs of D di-
std::vector<int> deleted_arcs; //to adress the deleted arcs of D directly
intn_A; /I n(A) — order of partition set A

int n_B; / n(B) — order of partition set B

intn_D; /I n(D) — order of the digraph D (no. of vertices)

int n_sqr; // n(D)"2 — for reducing no. of multiplications

int m_D; /I m(D) — size of the digraph D (no. of arcs)

int number_deleted_arcs; // the number of arcs to be deleted from D

15

/1 for description of function see "digraph.cpp”

void set_arc(int x, int y, bool direction);

void update_arcs();

bool has_cycle();

void delete_arcs(int* a);

void reset_arcs();

bool in_out_degree_greater_equal(int k, int vertices);

b
#endif // DIGRAPH_H

Source code: digraph.cpp

#include "digraph.h" // class’s header file
#include <iostream>

using namespace std;

// class constructor

// Creates a complete bipartite (simple) digraph D[][] without any loops
// and with "int _n_A" and "int _n_B" being the orders of the partition
/I sets A and B. After construction all arcs of D[](] are directed

/f from partition set A to partition set B.

// Furthermore, the size of the subset of arcs that are to be

// deleted is determined by the argument "int _deleted_arcs”, and

// the according arc set "deleted_arcs[..]" is initialized.
digraph::digraph(int _n_A, int _n_B, int _deleted_arcs)

n_A=_n_A;

n_B=_n_B;

n_D=(n_A+n_B);

n_sqr=(n_D*n_D);

D.resize(n_D);

for (int i=0;i<n_D;++1i)

Dl[i}.resize(n_D);

for (int i=0;i<n_D;+-i) for (int j=0;j<n_D;++j)
D(i]jl=((i<n_A)&&(j>=n_A));

m_D=(n_A*n_B);

arcs.resize(m_D);

number_deleted_arcs=_deleted_arcs;

16

deleted_arcs.resize(number_deleted_arcs);

}

// class destructor
digraph::~digraph()
{

}

/I Forxin 1,..,n_A and y in 1,..,n_B the function sets the arc
// from x to y in the digraph D[][] according to the given "direction”.
// The old arc is overwritten. If "direction==true" then x— >y is the
// arc between x and y, and if "direction==false" then y— >x is.
void digraph::set_arc(int x, int y, bool direction)
{
if (direction) {D[(x—1)][(y+n_A—1)}=1; D[(y+n_A—-D)[(x—1)]=0;}
else { D[(x—D][(y+n_A-1)]=0; D[(y+n_A-D)][(x~1)]=1; }
}

/I After the construction of the digraph or after some arcs

{/ of D[][] have changed, the function "update_arcs(..)" enumerates
/1 the arcs of D[][] within the vector "arcs[..]", so that arc

// number i can be directly adressed by the value given in "arcs[i]".
void digraph::update_arcs()

{

int counter=0;
for (int i=0;i<n_D;++i)
for (int j=0;j<n_D;++j)
if (DL][1) && (counter<m_D))
{
arcs[counter]=((n_D*i)+j);
---+counter;
}
}

// The function "has_cycle()" determines whether or not
// the bipartite digraph D[][] contains an oriented cycle
// and returns the according Boolean value.
bool digraph::has_cycle()
{

bool cycle=false;

bool mark1{n_D];

bool mark2[n_D];

17

int i,abort;
if (n_A<=n_B)
{ i=0; abort=n_A—1; }
else { i=n_A; abort=(n_A+n_B—1); }

while ((i<abort) && (Icycle))
{
for (int k=0;k<n_D;+-+k)
{ mark1[k]=false; mark2[k]}=false; }
mark1[i]=true;

int j=0;
int 1=0;
while ((1<(n_sqr)) && (Icycle))
{
if ((mark1[j]) && (!(mark2[j])))
{
for (int k=0;k<n_D;++Kk)
if (DI
{
if (k==i) cycle=true;
else mark1[k]=true;
}
mark2[j]=true;

}
++j; j=(G%n_D); ++1;
}

++i;

}
if (cycle) { return true;}
else { return false; }

}

// The array "int* a" contains the numbers of the arcs
// that are to be deleted from D[][]. The deleted arcs
/! are stored within the arc set "deleted_arcs[..]".
void digraph::delete_arcs(int* a)

{
for (int i=0;i<number_deleted_arcs;++i)
deleted_arcs[i]=arcs[a[i]];
for (int i=0; i<number_deleted_arcs; +-i)
D[(deleted_arcs[i}/n_D)][(deleted_arcs[i]%n_D))=false;
}

18

// The arcs formerly deleted by the function "delete_arc(..)"
// and stored within the arc set "deleted_arcs[..]" are restored.
void digraph::reset_arcs()
{
for (int i=0; i<number_deleted_arcs; ++i)
D[(deleted_arcs[i}/n_D)]((deleted_arcs[i]%n_D)]=true;
}

// Determines whether or not the in- and out-degrees of the first
/1 "vertices" number of vertices in D[][] are greater or equal than
// the number "k". E.g. a call like
// "in_out_degree_greater_equal(2,n_A)" would check if the in-
// and out-degrees of the (first n_A) vertices of the first partition set
// are greater or equal two.
bool digraph::in_out_degree_greater_equal(int k, int vertices)
{

int n=0;

bool regular=true;

while ((regular) && (n<vertices))

int row_sum=0;
int column_sum=0;
for (int i=0;i<n_D;++1)

{ row_sum+-=DI[n][i]; column_sum+=D[i][n]; }
regular=((row_sum>=k) && (column_sum>=k));
+-+n;

}

return (regular);

19

