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ABSTRACT

A red-blue coloring of a graph G is an edge coloring of G in
which every edge is colored red or blue. For a connected graph
H of size at least 2, a color frame F of H is obtained from a red-
blue coloring of H having at least one edge of each color and in
which a blue edge is designated as the root edge. An F-coloring
of a graph G is a red-blue coloring of G in which every blue edge
of G is the root edge of a copy of F in G and the F-chromatic
index of G is the minimum number of red edges in an F-coloring
of G. An F-coloring of G is minimal if whenever any red edge of
G is changed to blue, then the resulting red-blue coloring of G
is not an F-coloring of G. The maximum number of red edges
in a minimal F-coloring of G is the upper F-chromatic index of
G. In this paper, we investigate F-colorings and F-chromatic
indexes of graphs for all color frames F of paths of orders 3
and 4.

1 Introduction

The subject of edge colorings is one of the major areas of graph theory.
While there are many concepts and problems in graph theory dealing with
edge colorings, the best known and most studied is that of proper edge
colorings of a graph G where each edge of G is assigned one color from
a given set of colors and adjacent edges are colored differently. That is,
an edge coloring of G is proper if the two edges in every copy of P; in G
are colored differently. The fundamental problem here is determining the
minimum number of colors needed in a proper edge coloring of G. This
number is called the chromatic indez of G and is denoted by x'(G). The
classic theorem in this connection is due to Vadim Vizing [16] who proved
that A(G) < x'(G) < A(G) +1 for every nonempty graph G. A graph G is
said to be of Class 1 if x'(G) = A(G) and of Class 2 if x'(G) = A(G) + 1.
In particular, a regular graph G is of Class 1 if and only if G is 1-factorable.
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Determining which graphs belong to which class is a major problem of study
in this area.

There are edge colorings of a graph G where adjacent edges may be
colored the same but containing a certain subgraph where no two edges are
colored the same. A subgraph of G all of whose edges are colored differently
is called a rainbow subgraph of G. For a graph F of order p without isolated
vertices and a given integer n > p, the rainbow number rb,(F) of F is the
smallest positive integer k such that every edge coloring of K, with k colors
in which each color is assigned to at least one edge results in a rainbow F.
One result in this connection involves the Turdn graph T, x—, which is
the (k — 1)-partite graph of order n, the cardinalities of whose partite sets
differ by at most 1. The size of T, x—1 is denoted by £, x—1. This Turédn
number k-1 is the maximum size of a graph of order n containing no
complete subgraph of order k. Montellano-Ballesteros and Neumann-Lara
(15] proved for 3 < k < n that 7b, (Kit1) = tnx—1 + 2.

A rainbow coloring of a connected graph G is an edge coloring of G such
that every two vertices of G are connected by a rainbow path. The minimum
number of colors used in a rainbow coloring of a connected graph G is the
rainbow connection number of G and is denoted by rc(G). It was shown in
3] for integers s and ¢ with 2 < s <t that re(K,,) =min {[v2 ], 4}.

Among the most famous problems in graph theory are those concerning
edge colorings of complete graphs with two colors. By a red-blue coloring
of a graph G is meant an edge coloring of G in which every edge is colored
red or blue. For given graphs F and H, the Ramsey number R(F, H) of
two graphs F' and H is the minimum positive integer n for which every
red-blue coloring of K, results in either a red F' (a copy of F' where each
edge is colored red) or a blue H. It is consequence of a theorem of Ramsey
that the Ramsey number R(F, H) exists for every pair F, H of graphs.

A related Ramsey number is the rainbow Ramsey number RR(F, H) of
two graphs F and H, defined as the minimum positive integer n for which
every edge coloring of K, using any number of colors results in either
a monochromatic copy of F' (where all edges are colored the same) or a
rainbow copy of H. As a consequence of a result of Erdés and Rado (7],
the rainbow Ramsey number RR(F, H) exists if and only if F is a star or
H is a forest. On the other hand, if H has size m and k is an integer
with & > m, then for every pair F, H of graphs, there is always a smallest
positive integer n such that any edge coloring of K, using no more than k
colors always results in a monochromatic F' or rainbow H (see [5, p. 319]).
This number is denoted by RR(F, H). In particular, RR3(K3, K3) = 11.

While proper edge colorings, monochromatic subgraphs, rainbow sub-
graphs and rainbow colorings have been the subject of many studies, there
are also numerous other red-blue colorings of graphs whose definitions de-
pend on a fixed graph H, certain red-blue colorings of H and a specified
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blue edge of the resulting edge-colored graph F of H. This gives rise to
the concepts of color frames F' of a given graph H and red-blue colorings of
graphs called F-colorings. We study such F-colorings for all color frames
F' of the paths of orders 3 and 4 and show that these F-colorings provide
a new framework for edge independence and various types of edge domina-
tion in graphs. We refer to the book [4, 6] for graph theory notation and
terminology not described in this paper.

2 F-Colorings of Graphs

As noted earlier, in a red-blue coloring of a graph G, every edge of G is
colored red or blue (where adjacent edges may be colored the same). Also,
all edges of G may be colored red or all edges may be colored blue. Let F
be a connected graph of size 2 or more with a red-blue coloring in which at
least one edge is colored red and at least one edge of F is colored blue. One
of the blue edges of F is designated as the root edge of F. The underlying
graph of F' is the graph H obtained by removing the colors assigned to
the edges of F'. In this case, F is called a color frame of H. The simplest
example of this is the unique color frame Fj of the path P; of order 3 (shown
in Figure 1). The five (distinct) color frames F, F3, ..., Fs of the path P,
of order 4 are also shown in Figure 1, where each root edge is indicated by
a bold line.

Fy O—Lo—b—o
F: o b 0 L O 4 O
F: o LA 5 o—r le}
F: oo T ot o
Fi: o—"—» b ~0 4 o)
Fy: o——o0 b O b o

Figure 1: Color frames of P; and P,

For a color frame F, an F-coloring of a graph G is a red-blue coloring
of G in which every blue edge of G is the root edge of a copy of F in G.
If G contains no subgraph isomorphic to F, then the only F-coloring of
G is that in which every edge of G is red. The F-chromatic indez x-(G)
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of G is the minimum number of red edges in an F-coloring of G. Since
the edge coloring of G that assigns red to every edge is an F-coloring of
G, the number x-(G) exists for every color frame F' and every graph G.
An F-coloring of G having exactly x(G) red edges is called a minimum
F-coloring of G. These concepts were introduced by Chartrand and Zhang
and first studied in [12] by Johnston, Kratky and Mashni. A vertex version
of this concept was introduced in [2], which provided a generalization of the
area of domination, and studied further by many (see [1, 8, 9] for example).
Although these concepts are related through the line graph of a graph, this
fact, as with proper colorings, has shown no benefit.

As an illustration, consider the five red-blue colorings ¢; (1 £ ¢ < 5) of
Q3 shown in Figure 2, where the solid lines are red edges and the dashed
lines are blue edges. The coloring c; is an Fi-coloring for each color frame F;
(1 € i < 5) shown in Figure 1. For each j with 2 < j < 5, the coloring c; is
a minimum Fj-coloring of Q3. Thus xF,(Q3) = x5, (@3) =4, xF,(Q3) =2
and X, (Q3) = 3. The coloring cs is 2 minimum Fj-coloring (j = 0,1) and

50 XF,(Qa) = Xp, (Q3) = 3.

o— 0

Figure 2: Fi-colorings of Q3 for 0 <i <5

If G is a disconnected graph with components Gy, Ga, ..., Gx Where
k > 2, then x5 (G) = xp(G1) + xF(G2) + - -+ + x(Gk). Thus, it suffices
to consider only connected graphs. For an F-coloring ¢ of a graph G, let
E,,, denote the set of red edges of G and E, the set of blue edges of G.
(We also use E, and E for E.r and E,, respectively, when the coloring ¢
under consideration is clear.) Thus {E,, Ep} is a partition of the edge set
E(G) of G. Furthermore, let G, = G[E,| denote the red subgraph induced
by E, and G, = G[Ej| the blue subgraph induced by Ej.
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For a given color frame F, a minimal F-coloring of a graph G is an
F-coloring with the property that if any red edge of G is re-colored blue,
then the resulting red-blue coloring of G is not an F-coloring of G. Obvi-
ously, every minimum F-coloring is minimal but the converse is not true
in general (as we will soon see). The maximum number of red edges in a
minimal F-coloring of G is the upper F-chromatic indez x/t(G) of G. Since
every minimum F-coloring of G is minimal, x(G) < x#(G). For example,
consider the two red-blue colorings ¢z and ¢z of Q3 shown in Figure 2. The
coloring ¢5 is a minimum Fp-coloring and so ¢ is also minimal. On the
other hand, the coloring ¢; is a minimal Fy-coloring that is not minimum.
In fact, x5, (Q3) = 4, while X (Q3) = 3 as we saw earlier.

In the next two sections, we show that Fp-colorings of graphs (and
the Fo-chromatic index) have connections with two well-known concepts in
graph theory.

3 A Bichromatic View of Matchings

A central topic in graph theory is that of matchings. In fact, Lovész and
Plummer have written a book [14] on the theory of matchings. A set of
edges in a graph G is independent if no two edges in the set are adjacent in
G. The edges in an independent set of edges of G form a matching in G.
If M is a matching in a graph G with the property that every vertex of G
is incident with an edge of M, then M is a perfect matching in G. Clearly,
if G has a perfect matching M, then G has even order and the subgraph
induced by M is a 1-factor of G.

A matching of maximum size in G is a mazimum matching. Thus every
perfect matching is a maximum matching but the converse is not true. In
particular, if the order of G is odd, then G cannot have a perfect matching.
The edge independence number o’(G) of G is the number of edges in a
maximum matching of G. The number o/(G) is also referred to as the
matching number of G.

A matching M in a graph G is a mazrimal matching of G if M is not a
proper subset of any other matching in G. While every maximum match-
ing is maximal, a maximal matching need not be a maximum matching.
The minimum number of edges in a maximal matching of G is called the
lower edge independence number or lower matching number o’(G) of G.
Necessarily, a’(G) < o/(G). We will see that matchings in graphs can be
looked at in terms of F-colorings for a specific color frame F. In particular,
we show for the unique color frame Fp of P; that the Fy-chromatic index
X, (G) is in fact the lower edge independence number of G. We begin with
a lemma.
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Lemma 3.1 Let G be a connected graph of size 2 or more and Fy the color
frame of Ps. If G has a minimum Fy-coloring ¢ with |E. .| = k, then G
has a minimum Fy-coloring ¢’ with |Ey | = k such that Ey . is a matching
of G.

Proof. Let F = Fy. Among all minimum F-colorings of G with exactly
k red edges, let ¢’ be one such that the red subgraph G, = G|E. .| has the
maximum matching number. We claim that E. . is 2 matching, for suppose
that E. , contains two adjacent edges, say uv and vw where u,v,w € V(G).
If either u or w is an end-vertex of G, say the former, then the red-blue
coloring obtained from ¢’ by changing the color of uv to blue is also an F-
coloring of G with fewer red edges, which contradicts ¢’ being a minimum
F-coloring of G. Thus neither u nor w is an end-vertex of G. Suppose that
wy,Ws, ..., W, are the vertices distinct from v that are adjacent to w. If
some edge ww; (1 <1 < a) is red, then the red-blue coloring obtained from
¢’ by changing the color of vw to blue is also an F-coloring of G with fewer
red edges, a contradiction. Thus all edges ww; (1 < i < a) are blue. If there
exists some vertex w; (1 < i < a) such that w; is not incident to a red edge,
then we can change the color of vw to blue and the color of ww; to red,
producing a minimum F-coloring in which the matching number of the red
subgraph is larger than that of ¢/. This contradicts the defining property
of ¢/. Thus every vertex w; (1 < ¢ < a) is incident to at least one red edge.
However then, the red-blue coloring obtained from ¢’ by changing the color
of vw to blue is again an F-coloring of G containing a smaller number of
red edges, a contradiction. Therefore, E » is a matching, as claimed. =

Theorem 3.2 Let G be a connected graph of size 2 or more. If Fy is the
color frame of Ps, then X, (G) = o"(G) and X%, (G) 2 o/(G).

Proof. Let F = Fy. We first show that x»(G) = o’(G). To verify that
Xr(G) < o"(G), let M be a maximal matching of G with |M| = o"(G).
Since the red-blue coloring of G in which M is the set of red edges is an F-
coloring of G, it follows that x=(G) < |M| = o”(G). Next, we verify that
a"(G) £ x»(G). By Lemma 3.1, G has a minimum F-coloring ¢ such that
E. . is a matching of G. We show that E.  is maximal. Let e € E(G)—E.,r
be a blue edge. Since ¢ is an F-coloring of G, it follows that e is adjacent
to some edge in E, . This implies that E. . U {e} is not a matching and so
E. . is a maximal matching of G. Therefore, a’(G) < |E.,-| = X(G) and
so Xr(G) = o’'(G).

To show that x%(G) = o/(G), let M be a maximum matching of G and
so |M| = a’(G). Then the red-blue coloring ¢ of G in which E., = M is
an F-coloring of G. It remains to show that ¢ is a minimal F-coloring of
G. Assume, to the contrary, that ¢ is not minimal. Then there is a red
edge e such that the red-blue coloring ¢’ obtained from ¢ by changing the
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color of e to blue is also an F-coloring of G. Since E./, = M — {e} and the
blue edge e is not adjacent to any red edge in E ., it follows that ¢’ is not
F-coloring of G, a contradiction. Therefore, x%(G) > |M| = o/(G) ]

Although there are many connected graphs G for which x, (G) = «/(G),
it is also possible that x%, (G) > &(G). For example, Figure 3 shows a
connected graph G of order 7 such that x%, (G) = 4 and o/(G) = 3 together
with a minimal Fy-coloring with 4 red edges (indicated by bold lines).

NN
3

Figure 3: A graph G with x%,(G) =4 and o/(G) =3

As a result of Theorem 3.2, we see that the lower matching number of
G is the minimum number of red edges in an Fy-coloring of G, where Fj is
the color frame of P3. Theorem 3.2 therefore provides a new setting for the
lower edge independence number (the lower matching number) o’/ (G) of a
graph G. Furthermore, if G is a connected graph of size 2 or more, then
maximal matchings of G and minimal Fp-colorings of G are closely related,
as we now show.

Theorem 3.3 Let G be a connected graph of size 2 or more, Fy the color
frame of P3 and M a matching of G. Then M is a mazimal matching of
G if and only if G has a minimal Fy-coloring whose set of red edges is M.

Proof. First, suppose that M is a maximal matching of G. As we saw
in the proof of Theorem 3.2, the red-blue coloring having M as the set of
red edges is a minimal Fy-coloring of G. It remains to verify the converse.
Assume that ¢ is a minimal Fp-coloring of G such that E., = M. We claim
that M is maximal, for otherwise, there is e ¢ M such that M U {e} is a
matching. This, however, implies that there is the blue edge e that is not
adjacent to any red edge in M and so ¢ is not an Fp-coloring of G, which
is a contradiction. "

It was shown in [13] that if G is a graph and k is an integer with
o"(G) £ k £ &/(G), then G contains a maximal matching with k edges.
The following is then a consequence of this result and Theorem 3.3.
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Corollary 3.4 Let G be a connected graph of size 2 or more and Fy the
color frame of P3. If k is an integer with &/'(G) < k < a/(G), then there is
a minimal Fo-coloring of G with exactly k red edges.

We now describe the structure of the red subgraph produced by a min-
imal Fy-coloring of a graph. A graph H is a galazy if each component of H
is a star of order at least 2.

Theorem 3.5 Let G be a connected graph of size 2 or more and Fy the
color frame of Ps. If ¢ is a minimal Fy-coloring of G, then the red subgraph
induced by the set of red edges in G is a galazy.

Proof. Let ¢ be a minimal Fy-coloring of G and let S be a component of
the corresponding red subgraph G, of G. If S contains a path or triangle
(u,v,w,z) of length 3 as a subgraph, then the red-blue coloring obtained
from c by changing the color of vw to blue is also an Fy-coloring of G with
fewer red edges, which contradicts that ¢ is minimal. Hence S contains no
cycle and the diameter of S is at most 2, which implies that S is a star.

Therefore, G, is a galaxy. s

4 A Bichromatic View of Edge Domination

An area of graph theory that has received increased attention during recent
decades is that of domination. Two books [10, 11] by Haynes, Hedetniemi
and Slater were devoted to this subject. An edge e in a graph G is said to
dominate itself and all edges adjacent to e. A set S of edges of G is an edge
dominating set of G if every edge of G is dominated by some edge in S.
The minimum size of an edge dominating set of G is the edge domination
number of G and is denoted by v/(G). Moreover, ¥'(G) is the domination
number of the line graph of G. An edge dominating set of size v'(G) is
called a minimum edge dominating set of G, while an edge dominating set
S of a graph G is a minimal edge dominating set if no proper subset of S
is also an edge dominating set of G. While a minimum edge dominating
set is minimal, the converse is not true. The maximum size of a minimal
edge dominating set in G is the upper edge domination number of G and is

denoted by v"/(G).

Theorem 4.1 Let G be a connected graph of size 2 or more. If Fy is the
color frame of Ps, then v'(G) = xr (G) and v"(G) = Xk, (G).

Proof. Let F = Fy. We first show that v'(G) = x7(G). Let X be an edge
dominating set with |X| = 7/(G). Define a red-blue coloring c of G such
that E., = X. Let e be a blue edge of G. Since X is an edge dominating
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set of G, it follows that e is adjacent to at least one red edge in X = E,,.
Thus ¢ is an F-coloring of G and so xx(G) < [X| = 7/(G). Next, let ¢/ be
an F-coloring of G with |Ec ;| = x7(G). Thus every edge not in Ey , is
adjacent to at least one edge in Ey ,, which implies that E. . is an edge
dominating set of G. Thus v'(G) < |Ex | = xR(G).

Next, we show that v/(G) = x%#(G). Let Y be a minimal edge dominat-
ing set in G with [Y| = 4”(G). Define a red-blue coloring ¢ of G such that
E.r =Y. Let e be a blue edge of G. Since Y is an edge dominating set of
G, it follows that e is adjacent to at least one red edge in Y = E, ;. Thus
c is an F-coloring of G. We claim that ¢ is minimal, for suppose that c is
not is minimal. Then there is e € E., such that the red-blue coloring co
obtained from ¢ by changing the color of e to blue is also an F-coloring of
G. This implies that each blue edge in the coloring cg is adjacent to at least
one edge in E¢, - = E. — {e} and so the proper subset E,,  of E,,, is an
edge dominating set of G, a contradiction. Thus, as claimed, ¢ is minimal
and so x7(G) 2 |Y| = v”(G). Next, let ¢’ be a minimal F-coloring of G
with |Ey r| = x%(G). We claim that E. , is a minimal edge dominating
set in G. Since ¢’ is an F-coloring, every edge not in E. , is adjacent to at
least one edge in E. » and so E. r is an edge dominating set of G. Since ¢/
is minimal, if the color of any edge €’ in E.s , is changed to blue, then the
resulting red-blue coloring is not an F-coloring. Thus some blue edge not
in Ecr r — {€} is not adjacent to any edge in E , — {€’} and so E. . — {e'}
is not an edge dominating set of G. This implies that no proper subset
of Ex - is an edge dominating set in G. Hence, Ey , is minimal. Thus
7"(G) 2 |Eer,r| = x(G) and so v"(G) = x5 (G). .

As a result of Theorem 4.1, the edge domination number of a connected
graph G of size 2 or more is the minimum number of red edges in an
Fy-coloring of G and the upper edge domination number is the maximum
number of red edges in a minimal Fy-coloring of G. Therefore, Theorem 4.1
provides a new setting for the two edge domination numbers 7/(G) and
7"(G) of a graph G. Furthermore, the proof of Theorem 4.1 shows that (1)
if ¢ is 2 minimal Fp-coloring of G, then E. , is a minimal edge dominating
set of G and (2) if S is a minimal edge dominating set of G, then the red-
blue coloring ¢’ of G with E.., = S is a minimal Fp-coloring. Therefore,
there is a one-to-one correspondence between the set of all minimal edge
dominating sets of G and the set of all minimal Fy-colorings of G. Hence
the following is a consequence of the proof of Theorem 4.1.

Corollary 4.2 Let G be a connected graph of size 2 or more and Fy the
color frame of P3. Then S is @ minimal edge dominating set of G if and
only if G has a minimal Fy-coloring whose set of red edges is S.
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In view of Theorems 3.2 and 4.1, Fp-colorings of graphs provide a new
framework for both edge independence and edge domination and lead us to
consider F-colorings of graphs for other choices of color frames F'.

5 The Color Frames of P,

In this section, we turn our attention to F-colorings of connected graphs
of size at least 3, where F' is one of the five color frames F\, F5,..., F; of
P4 shown in Figure 1 and the five parameters xp,(G) (1 < ¢ < 5) of a
graph G. We begin with the color frame Fj, which we also refer to as the
blue-red-blue color frame of Py.

5.1 The Blue-Red-Blue Color Frame Fj of P,

Because of the symmetry of the blue-red-blue color frame F; of P; shown
in Figure 1, it doesn’t matter which of the two blue edges is chosen as the
root edge of F). Since every F)-coloring is also an Fp-coloring, it follows
that

X7 (G) < XF, (G) for every connected graph G of size at least 3. (1)

There are conditions under which equality in (1) holds. Let 4(G) denote
the minimum degree of a graph G.

Theorem 5.1 Let G be a connected graph of size at least 3 and Fy the
blue-red-blue color frame of Py. If G is (i) triangle-free and 6(G) > 2 or
(i4) 8(G) 2 3, then X, (G) = X', (G)-

Proof. By (1), it remains only to show that xf, (G) < xf,(G). Let
M be a maximal matching of G such that |[M| = &”(G). By Theorem 3.2,
X, (G) = @”(G). Let ¢ be a minimum Fo-coloring of G such that E,, = M.
We claim that c is an Fj-coloring of G. Let e; be a blue edge of G. Since
E., is a maximal matching, E., U {e;} is not a matching and so e; is
adjacent to a red edge e, in E.,. We may assume that e, = uwv and
ey = vw. If G is triangle-free and §(G) > 2 or §(G) > 3, then u is adjacent
to some vertex u’ distinct from v and w. Since e, € E., and E,, is a
matching, uu’ cannot be red and so is blue. Thus e; belongs to the copy
of F with E(F) = {u'u,uv,vw} rooted at e, in G and so c is an F}-
coloring of G, as claimed. Hence X/ (G) < |Ecr| = @”(G). Therefore,
XF, (G) = &"(G) = X, (G)- .

The conditions (i) and (ii) in Theorem 5.1 are only sufficient for equality
to hold in (1). For example, the graph Py in Figure 4 is triangle-free and
has minimum degree 1 but xi (Ps) = XxF,(Fs) = 1. Furthermore, the
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graphs H), and Hj, also shown in Figure 4, contain triangles but have
minimum degree 1 and 2, respectively; yet x, (H1) = x (H1) = 2 and
X, (H2) = Xp, (Hy) = 1.

Figure 4: Graphs G with xp (G) = x/, (G)

There are graphs G not satisfying the conditions stated in Theorem 5.1
such that x5, (G) # xF, (G). For example, consider the graphs G1,G; and
Gs in Figure 5.

x ..... 0 v
6 o
Ga XFy(G2) =1 XF,(G2) =2

Gs XF,(G3) =2 Xr,(G3) =3
Figure 5: Graphs G; with X/ (Gi) < X}, (G:) (1 i< 3)

The graph G is triangle-free and 6(G1) = 1, G contains a triangle and
6(G2) = 1 and G3 contains a triangle and §(G3) = 2. For each graph G;
(1=1,2,3), X5,(G:) < xF,(G:). A minimum Fy-coloring and a minimum
Fj-coloring for each of these graphs are shown Figure 5. In each red-blue
coloring, the solid edges are red edges and the dashed lines are blue edges.
For i = 1,2,3, xF,(Gi) = X7 (G:) + 1. The difference x}, (G) — X, (G)
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can not only be arbitrarily large, there is essentially no restrictions on the
values of Xz, (G) and X, (G) of a graph G.

Theorem 5.2 For each pair a,b of positive integers a < b, there is a
connected graph G such that X (G) = a and xp, (G) =b.

Proof. First, assume that a = b. If a = b = 1, then x5 (P4) = X/, (P4) =
1; while if @ = b > 2, then X}, (K22) = XF,(K22) = a. Thus, we may
assume that 1 < a < b. For a = 1, the star K; 5 has x5, (K1) = 1 and
X, (K1,6) = b (as K1 5 contains no Py as a subgraph). Thus, we may assume
that a > 2. First, let G1,Ga,...,G, be a copies of the star K p_q41 of
order b — a + 2, where

V(G:i) = {vi,vi,1,vi2, -+« Vijp—at2}

and v; is the central vertex of G; for 1 < ¢ < a. The graph G is obtained
from these a graphs by adding a new vertex v and joining v to each vertex
v; in G; for 1 < i < a. Then x5 (G) = o”(G) = a. It remains to show that
XF,(G) = b. Since the red-blue coloring ¢ with

E.,=E(G))U{vv;: 2<i<a}

is an Fl-colormg of G, it follows that xF, (G) < |E,r| = b. Next, we show
that x, (G) > b. Let ¢’ be a minimum Fl-colormg of G. For each integer ¢
with 1 < i < a, if ¢’ assigns blue to an edge in E(G;), then ¢/(vv;) must be
red and some ¢(vv;) must be blue where j # 4. This in turn implies that ¢’
must assign red to all edges in E(G;). Furthermore, ¢’ must assign blue to
at least one edge in E(G;) U E(G2) U - .- U E(G,) (for otherwise, all edges
in G must be colored red). We may assume that E(G1) U {vvz) C Ev ».
Also, ¢/ must assign red to at least one edge in E(G;)U {vv;) for3<i<a,
it follows that |E¢ r| > (b—a+2) + (a — 2) = b. Therefore, x, (G) = b, as
claimed. ]

5.2 The Red-Blue-Red Color Frame F;, of P,

Consider the red-blue-red color frame F; of P4 in Figure 1 in which the
only blue edge is the root edge of F. Since every Fs-coloring is also an Fp-
coloring, X, (G) < X', (G) for every connected graph G of size at least 3.
A set S of edges of G is a k-edge dominating set of G if every edge in
E(G) — S is dominated by at least k edges in S. Since E(G) is such a set,
every graph G has a k-edge dominating set. The minimum size of a k-edge
dominating set of G is the k-edge domination number of G and is denoted
by 74(G). A k-edge dominating set of size v, (G) is called a minimum k-
edge dominating set of G. Observe that if c is an F, coloring of a graph G,

126



then each blue edge is adjacent to two independent red edges. Thus E. . is
a 2-edge dominating set of G. This implies that

72(G) £ XF,(G) for every connected graph G of size at least 3. (2)

Furthermore, no blue edges can be pendant edges; that is, every pendant
edge must be colored red in any Fz-coloring of G. Hence if G has p pendant
edges, then xf,(G) > p. For example, if G is a double star (a tree of
diameter 3) of size m > 5, then x5, (G) = m — 1. Since 14(G) = 3, it
follows that X, (G) — 72(G) = m — 4 which can be arbitrarily large. In
fact, more can be said.

Proposition 5.3 For each pair a,b of integers with 2 < a < b, there is a
connected graph G such that v4(G) = a and Xp (G) =b.

Proof. We consider two cases, according to a = b or a < b.

Case 1. a = b. If a is even, say a = 2k where k > 1, then let G be the
graph obtained from kP; by adding a new vertex v and joining v to each
end-vertex of kP3. Then 73(G) = xF,(G) = a. If a is 0dd, say a = 2k + 1
where k > 1, then let G be the graph obtained from the union kP; U P; of
kP3; and P, by adding a new vertex v and joining v to each end-vertex of
kP; U P;. Then v3(G) = x,(G) = a.

Case 2. a < b. Fora = 2,let G = K. Then 7(G) = 2 and
XF,(G) = b. For a = 3, let G be a double of size b+ 1. Then ¥(G) = 3
and xf,(G) = b. We now assume a > 4. Let G be the graph described in
Case 1 such that v;(G) = x,(G) = a. Let v € V(G) be the vertex of G
such that degv = a if a is even and degv = a + 1 if a is odd. Let H be the
graph obtained from the graph G in Case 1 by adding b — a new vertices
and joining each of these new vertices to the vertex v. Then v(H) = a
and xp, (H) = b. L]

5.3 The Red-Red-Blue Color Frame F; of P

Consider the red-red-blue color frame F3 of Py in Figure 1 in which the
only blue edge is the root edge of F. Since every Fz-coloring is also an Fp-
coloring, X (G) < X', (G) for every connected graph G of size at least 3.

A total edge dominating set in a connected graph G is a subset S of E(G)
such that every edge of G is adjacent to an edge of S. Thus a total edge
dominating set contains no independent edges. If G is a nonempty graph
containing no component K3, then £(G) is a total edge dominating set and
so every connected graph of order at least 3 has a total edge dominating
set. The total edge domination number v;(G) is the minimum size of a
total edge dominating set. A total edge dominating set of size v(G) is a
minimum total edge dominating set of G.
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Theorem 5.4 If G is a connected graph of size at least 3, then
7(G) £ Xk, (G).

Proof. First, we make an observation. If G has a minimum Fj-coloring ¢
such that E, - contains no independent edges, then each red edge is adjacent
to a red edge and each blue edge is adjacent to a red edge, which implies
that E., is a total edge dominating set of G and so v;(G) < |Ecr| =
X, (G)- Thus, it suffices to show that such a minimum F3-coloring exists.
Among all minimum Fj3-colorings of G, let ¢ be one such that the number
of independent edges in E. , is minimum. If E , has no independent edges,
then ¢ has the desired property. Thus, we may assume that E., contains
an independent edge f. Thus f does not belong to any copy of F3 in this
coloring ¢. Since G is connected and f is not adjacent to any red edge, f is
adjacent to an blue edge e. Because ¢ is an F3-coloring, e belongs to a copy
of F3. Suppose that f = uv, e = vw and e belongs to the copy (v,w,z,y)
of F3 where then wz and xy are red edges.

Now the coloring ¢’ obtained from ¢ by interchanging the colors of f
and e is a minimum F3-coloring the number of whose independent edges is
smaller than that of ¢. This contradicts the defining property of ¢. [

For each positive integer ¢,
V¢(Pat) = X'r, (Pae) = 2¢ and v;(Pyet2) = X, (Paes2) =20 + 1.

Therefore, for each positive integer k, there is a connected graph G such
that 7{(G) = x,(G) = k. On the other hand, X, (G) — 7:(G) can be
arbitrarily large. In fact, more can be said. Two end-vertices of a graph
are said to be similar if they are adjacent to a same vertex.

Proposition 5.5 For each positive integer k, there is a connected graph
Gy such that
XFy (Gk) = 1:(Gr) = k.

Proof. We recursively construct a sequence Gy, Gs,... of graphs as fol-
lows. Let G; be the graph shown in Figure 6. The graph G; has two pairs
of similar end-vertices, namely {uj,u2} and {w;,wz}. The graph G, is
obtained from G; and another copy of G; by identifying a pair of similar
end-vertices in each graph (see Figure 6 where the solid vertices are iden-
tified vertices). Thus G2 has two pairs of similar end-vertices. For each
k > 3, the graph Gy is obtained from Gr—; and a copy of G; by identifying
a pair of similar end-vertices in each graph. The graph G3 is also shown in
Figure 6.
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o A
o 1<
o OO 1<

Figure 6: The graphs G; and G,

For each integer k > 1, let Sk be the set of bridges that are not pendant
edges in G, where then the subgraph Gi[S] induced by S is kP;, and
let X be the set of pendant edges each of which is incident to the center
vertex of some component P; in Gi[Sk]. For example, S; = {uv,vw} and
X1 = {vr}. Thus Sk N Xy =0, |Xx| = k and the subgraph G[Sk U Xi]
induced by Sx U X} is kK1, 3. Since Sk is a minimum total edge dominating
set of G and the red-blue coloring ¢ with E,, = S; U X) is a minimum
F3-coloring of Gy, it follows that

X7, (Gk) = |8k U Xi| = |Sk| + | Xi| = 7(Gk) + k

fork>1. .

5.4 The Two Red-Blue-Blue Color Frames F; and Fj
of .P4

The two red-blue-blue color frames Fy and Fy of P, are shown in Figurelin
which one of the two blue edges is the root edge of the color frame. Again,
we indicate the root edge in each of Fy and F by a bold edge. It appears
that xF, (G) is not related to any known edge domination parameters.

We consider the Fs-colorings of a connected graph of size at least 3. A
set S C E(G) is a restrained edge dominating set if every edge not in S is
adjacent to an edge in S and to an edge in E(G) — S. Every graph has
a restrained edge dominating set since E(G) is such a set. The restrained
edge domination number v,(G) is the minimum size of a restrained edge
dominating set of G. A restrained edge dominating set of size v.(G) is
a minimum restrained edge dominating set of G. If c is an Fs-coloring of
G, then every blue edge is adjacent to a red edge and a blue edge. Thus

129



the set E., of red edges is a restrained edge dominating set of G and so
¥(G) < |E. |- Therefore,

7+(G) £ X7, (G) for every connected graph G of size at least 3.  (3)

Proposition 5.6 Let a and b be positive integers with a < b. Then there
is a connected graph G of size at least 3 such that v,(G) = a and x,(G) = b
if and only if (a,b) # (1,1).

Proof. Assume, to the contrary, that there is a connected graph G of size
at least 3 such that v,.(G) = xk(G) = 1. Let S = {e} be a minimum
restrained edge dominating set of G. Then each edge f distinct from e in
G must be adjacent to e and another edge f’ that is also adjacent to e.
Since (1) f and f’ are adjacent and (2) f and f’ are both adjacent to e,
it follows that {e, f, f’} forms a triangle. This implies that G — e is the
complete bipartite graph K for some positive integer k and the edge e
joins the only two vertices in one of the partite sets of G. If k = 1, then
G = K3 and x,(G) = 3, a contradiction. Thus k¥ > 2 and the graph G
is shown in Figure 7. Let ¢ be a minimum Fs-coloring of G where then
|Ee,r| = 1. First assume that E., = {e}. If F is a copy of F; in G, then e
is the middle edge of F and so no blue edge belongs to a copy of Fs. Thus
E., = {f} where f # e. However then, the edge f’ adjacent to both f and
e does not belong to a copy of Fs in G, a contradiction.

f

fl
Figure 7: A graph G with 7/.(G) =1

For the converse, let a and b of positive integers with a < b such that
(a,b) # (1,1). First, assume that @ = b > 2. Let G = S(K; ) be the
subdivision of K 4; that is, G is obtained from K, by subdividing each
edge exactly once. Let S be the set of pendant edges of G. Then S is a
minimum restrained edge dominating set of G and the red-blue coloring ¢
with E;, = S is a minimum Fjs-coloring of G. Thus v,(G) = x,(G) = a.
Next, assume that a < b. Let G be the graph obtained from S(K) )
by adding b — @ pendant edges at a vertex of degree 2 in S(K;,). Then
7+(G) = a and X, (G) = b. .

There is no connected graph G of size 3 or more such that xp (G) =
X, (G) = 1. On the other hand, since X[, (Ps¢+2) = X, (Pse42) = £€+1 for
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each £ > 1, there is a connected graph G such that x; 7(G) = X5, (G) =
for each integer k > 2.

Proposition 5.7 For each positive integer k, there is a connected graph
G such that
X%’s (Gk) - X'F( (Gk) =k.

Proof. For each k > 1, let Gx = S(K1,44) be the subdivision of Kj k4
and let S be the set of pendant edges of G. Since (1) every Fs-coloring of
G must assign red to each edge in S and (2) the red-blue coloring ¢ of G
such E., = S is an Fj-coloring, Xr(Gk) = |S| =k +4.

Next, we show that xp, (Gx) = 4. Let

V(Gk) = {u,u1,uz, ..., Ursq,v1,02,... y U4}

where u is the central vertex of the subgraph K x44 in Gk, u is adjacent
towu; for 1 €7 < k+4 and u; is adjacent to v; for 1 < i < k+4. The
red-blue coloring co with E¢, » = {uuy,u1v1,ugvq,usvs} is an Fy-coloring
of G and so X[, (Gk) < 4. Assume, to the contrary, that x, (Gx) < 3. Let
¢’ be a minimum Fjy-coloring of Gy where then |E.,| < 3. Note that ¢’
must assign blue to at least two edges in {uu; : 1 <i < k+4}, say uu; and
uuy are blue. Since each of wu; and uu; belongs to a copy of Fy, it follows
that ¢/ must assign red to at least two pendant edges in Gk, say u,v, and
ugvy are red, where then 1 < s # t < k 4+ 4 and wu, and uu; are blue. Let
j €{1,2,...,k +4} — {s,t}. Either ujv; is red or u;jv; is blue. If u;v;
is blue, then some edge uu, must be red where p ¢ {1,2,7,s,t}. Hence
|Ecrr| = 3 and either

(1) Eerr = {usvs, vy, ujv;} or (ii) Egr = {usvs, ueve, utp}.

If (i) occurs, then each blue edge u;v; where i € {1,2,...,k+4} — {s,¢, 5}
does not belong to a copy of Fy; while if (ii) occurs, then the blue edge u,v,
does not belong to a copy of Fy. In any case, a contradiction is produced
and so X, (Gk) = 4. Therefore, X, (Gk) — X, (Gx) = k. ]

Although there are graphs G for which x, (G) > x/r, (G) (see the graph
Gin Flgure 8), it is not known whether there is a connected graph Gy such
that X, (Gx) — X, (Gx) = k for every positive integer k.

For the five color frames Fy, F3,..., F5 of Py, a 2-element set {i,j},
where 4, € {1, 2,. 5}, is called a realizable set if there exist a graph G
such that x5 (G) < xF (G) and a graph H such that xF (H) < xp,(H).
We will see that every 2-element subset of {1,2,...,8}is realizable with one
possible exception. In order to show this, we ﬁrst present three examples.
In each of the following figures, the solid lines are red edges and the dashed
lines are blue edges.
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o For the graph G of Figure 8, x5, (G) = 1, x,(G) = 3 for i = 2,3,4
and x, (G) = 2. For 1 <i < 5, minimum F;-colorings of G are also
shown in Figure 8.

G Fj-coloring Fy-coloring
‘.0.. .'o.o
O e dg ...... o fo) G . G -0 o o ..... O—O
Fs-coloring Fy-coloring Fs-coloring

Figure 8: Minimum F;-colorings of a graph G for 1 <i <5

e For the graph G of Figure 9, xF, (G) = 3, XF,(G) = 5, Xg,(G) = 2
and xF, (G) = X, (G) = 4. Minimum F;-colorings of G are shown in
Figure 9 for 1 <1 <5.

0
> ....... o—q > ....... o————4<
Fj-coloring ° Fy-coloring
>—0—< 0. .0
c .:'j.o—o——a’_'. > ....... O <
o -
F3-coloring F-coloring, i = 4,5

Figure 9: Minimum Fj-colorings of a graph G for 1 <i <5

e For the graph G of Figure 10, xj, (G) = 1, xF,(G) = 3, X[, (G) =2
and x, (G) = xF,(G) = 4. Minimum F;-colorings of G are shown in
Figure 9 for 1 < ¢ < 5.

We are now prepared to present the following.
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Re) <
Fy-coloring Fs-coloring
.0
G

o—o0—o0, o——o——o<:
"o
F3-coloring F;-coloring, i = 4,5

Figure 10: Minimum Fj-colorings of a graph G for 1 <i <5

Theorem 5.8 Every 2-element subset of {1,2,...,5} is realizable except
possibly {1,2}.

Proof. For each subset {7,5} C {1,2,...,5} and {i,5} # {1,2}, where
i < j, we construct two graphs G;; and H;; such that x} (Gi;) <
Xr;(Gi;) and X, (Hi ;) < X, (Hi ;). Recall that xfr, (Qs) = 3, X, (Q3) =
X, (Q3) = 4, XF,(@3) = 2 and X, (Q3) = 3.
e For the set {1,3}, let G13 = P4 and H;3 be the graph in Fig-
ure 9. Then 1 = x5 (Py) < XE,(P1) = 2and 2 = Xp, (H1,3) <
Xh(Hl.s) = 3.

e For the set {1,4}, let G),4 be the graph in Figure 8 and Hj 4
Qs. Then 1 = x},(G14) < XF,(G14) = 3 and 2 = X}, (Q3)
XF(Q3)= 3

e For the set {1,5}, let G1 5 be the graph in Figure 8 and Hj 4
P4 + 2K, (the join of P; and 2K;) shown in Figure 11. Then 1
Xk (G1s) < X, (Gr5) = 2 and 2 = x, (His) < X, (His) = 3.
(If G = P4 + kK, then x, (G) = 2 and x5, (G) = k+1 and so
XF, (G) — xF,(G) can be arbitrarily large.)

]

A

~O..... ‘..-‘:O-;-.

F)-coloring Fy-coloring
Figure 11: A graph G with X/, (G) = 3 and x5, (G) =2

o For the set {2,3}, let G2 3 = Cs and Ha 3 = P5. Then 3 = XF,(Cs) <
XF,(Ce) =4 and 2 = X'pa(Ps) < X'p,(Ps) = 3.
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o For the set {2,4}, let G4 be the graph of Figure 10 and Hz 4 be
the graph of Figure 12. Then 3 = x%,(G24) < XF,(G2,4) = 4 and
3 = X, (H2,a) < X (H24) = 4.

Fy-coloring Fy-coloring
Figure 12: A graph G with 3 = x,(G) < xR,(G) = 4

e For the set {2,5}, let Ga;5 be the graph of Figure 10 and Hz5 =
Qs. Then 3 = Xf,(G2,5) < Xp,(Gas) = 4 and 3 = X, (Qs) <
X,FQ(Q3) = 4

o For the set {3,4}, let G3,4 be the graph shown in Figure 13 and let
H3z 4 = Q3. Then 2 = x,(G3,4) < XF,(G3,4) = 3 and 2 = x, (Q3) <
Xpy (@3) = 4.

[e] o}
G: OO—-O——Q O—0---O-ee-

° .
F3-coloring Fs-coloring
Figure 13: A graph G with x», (G) = 2 and x,(G) = xR, (G) =3

e For the set {3,5}, let G35 be the graph G shown in Figure 13 and let
H3zs = Q3. Then 2 = x},(G35) < X, (G3,5) = 3 and 3 = xj,(Q3) <
XF,(Q3) = 4

o For the set {4,5}, let G45 = Q3 and let Hys be the graph G shown
in Figure 8. Then 2 = X, (Q3) < X, (Q3) = 3 and 2 = x5, (Has) <
X, (Has) = 3. .

For every connected graph G that we have encountered, x, (G) <
X, (G). Furthermore, since xf,(G) = 7'(G) < 7(G) < xR, (G), it fol-
lows by Theorem 5.1 that if §(G) > 3 or if G is triangle-free and §(G) > 2,
then xf, (G) < X[, (G). This leads us to the following conjecture.
Conjecture 5.9 For every connected graph G of size at least 3,

xF, (G) £ X7, (G).
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We saw that if G is a disconnected graph with components Gy, Ga, ...,
Gy where k > 2, then x(G) = xp(G1) + X7(G2) + - + X (Gk). Thus
there are graphs G consisting of two components such that the numbers
XF.(G), i = 1,2,3,4,5, are distinct. Whether there is a connected graph
with this property is not known.
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