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Abstract

For given graphs Hy, Hs, the Ramsey number R(H;, Hz) is the
smallest positive integer n such that if we arbitrarily color the edges
of the complete graph K, with two colors 1 (red) and 2 (blue), then
there is monochromatic copy of H; colored with 1 or H; colored
with 2. We show that if n is even, ¢ = [{/n] is odd, and s =
n—(g—1)? < /2, then R(K22,K2,n) < n+2g—1, where Ky,m are
complete bipartite graphs. The latter bound gives the exact value of
R(K2,2,K2,18) = 27. Moreover, we show that R(K22, K2,14) = 22
and R(K3zz2, K2,15) = 24.

1 Introduction

For given graphs H;, H, the Ramsey number R(H;, H3) is the smallest
positive integer n such that if we arbitrarily color the edges of the complete
graph K, with two colors 1 (red) and 2 (blue), then there is a subgraph
G1 C K, isomorphic to H; and with all its edges red, or a subgraph
G, C K, isomorphic to Hy and with all its edges blue. Ramsey numbers
for complete bipartite graphs are quite well investigated, see 3, 4, 5, 6, 7, 8].
All known values and bounds can be found in [9]. Harary [3] proved that
R(Kyn,Kim)=n+m+e, where ¢ = 1 when n and m are even and € = 0
otherwise. Harborth and Mengersen [4] studied the properties of numbers
R(K32,Kmy) for 2 <m < 3 and m < n. The case m = 1 was studied by
Parsons [8] and the cases of m = 3 and 3 < n < 10 by Lortz [5).

In this paper we are interested in Ramsey numbers for Hy = K35 = Cy
and Hy = K» . Harborth and Mengersen [4] proved the following theorem.

JCMCC 87 (2013), pp. 137-145



Theorem 1 [see [{]] Forn > 2 let ¢ = [/n], s = n— (g — 1) and
M = {2,5,37,3137}. Then
n+2¢—1 fors=laendn¢ M
R(C4,Kan) £{ n+2q for2<s<qg-lorneM
‘ n+2q+1 otherwise

Moreover, if g is a prime power then

n+2¢—1 fors=1andn¢ {2,537}
R(Cy,Kapn)=¢ n+2g fors=¢g—1>2orne€{25,37}
n+2¢g+1 fors=gq

Additionally, R(Cy, K2,n) = n+2q+1 if g+1 is a prime power and s = 2¢—1.

Table 1 presents all known values of R(K5 2, K2 ,) for n up to 21.

2 3} 4 5 6 | 7

n 1
R(Kso,Kopn)| 4 | 6 [ 8] 9 11 12 | 14
n 819 (1011 12 13| 14
R(K22,K2,) [ 15|16 | 17| 18 20 22 | 22
n 16 |16 | 171 18 19 20| 21

R(Ka,,K2n) | 24 | 25 | 26 | 27 | 2820 | 30 | 32

Table 1: R(K>,2,K35) for n <21

The values for n = 1 and n = 2 were obtained by Chvétal and Harary
in [1] and [2]. The values in bold are obtained in this paper. All other were
presented by Harborth and Mengersen [4], who also proved the bounds:

(E1) 22 < R(Ka32,K3,14) <23,
(E2) 22 < R(Ka,2,Ks,15) <24,
(E3) 27 < R(Kz'z,Kg,ls) < 28.

The main result of this paper is an improvement of Theorem 1. Namely,
we show that if n is even, ¢ is odd, and s < ¢/2, then R(K32,K2,) <
n + 2q9 — 1. The latter gives the exact value of R(K32, K213) = 27. In
Section 3 we describe an algorithm which we used to determine the values
of R(Kg,z,Kz,u) = 22 and R(Kg,z,Kg,ls) =24.
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In the sequel by Ny(v) we shall denote the blue neighborhood of the
vertex v and by degy(v) = |Nj(v)| the blue degree of v. Similarly we define
N, and deg;.

2 Main Theorem

Theorem 2 For evenn > 2 let g = [/n] and s = n—(g—1)2. Ifq is odd
and s < q/2, then R(Kg’z,Kz'n) <n+ 2(] —1.

In order to prove the theorem we will need the following lemma.

Lemma 3 Let g = [\/n] be odd and s = n — (g —1)? < ¢/2. Then any
2-coloring of the edges of Kny2q—1 contains red Koo or blue K, when
there ezists a vertez v € V with

(1) degr(v) >gq, or
(2) degr(v) <gq

Proof (1) combine in pairs vertices from N,(v) (see Fig. 1). Firstly, two
vertices v;, v; form a pair if the edge {vi,v;} is red. We may assume that
each vertex from N,.(v) can by connected by a red edge with at most one
other vertex from N;(v). Note that, if two vertices u,w € N,(v) have a
common red neighbor z # v, the coloring contains red Cy. Other vertices
from N, (v) we combine in pairs arbitrarily. There is |deg(v)/2] > (g+1)/2
pairs. In Ny(v) there is degy(v) = n+2¢ — 1 — (deg(v) +1) <n+¢—3
vertices and, again, we may assume that each of them can be connected by
a red edge with at most one vertex from N, (v). That means that there is a
pair, without loss of generality say (v1,v2) in N.(v), which is connected by
red edges with at most (n+q—3)/|degr(v)/2] vertices from Ny(v). Let B C
Np(v) be the set of these vertices. Thus |B| < |(n + ¢ — 3)/|deg-(v)/2]] <
|2(n+q—3)/(g+1)]. The pair (v, v2) with vertices from the set (N.(v)\
{v1,v2}) U (Ny(v) \ B) creates blue complete bipartite graph K;; where
l=|V|-3—|B|2n+2¢—4—|2(n+q—3)/(g+1)] 2n—|2s/(g+1)).
The latter inequality follows from the fact that s = (2—¢)(g+1)+n+q-3.
Since 2s < ¢ + 1, we have [ > n and the coloring contains blue Kj .

(2) Let v be a vertex with 0 < deg,(v) < ¢ and u € N,.(v) (see Fig. 2),
then the vertices {u, v} together with the vertices from Ny(v)N Ny(u) create
blue Ko where | = n + 2q — 1 — (deg,(v) + deg,(u)) > n. If degr(v) =0
then v creates blue K3, with any other u and the set Ny(v) N Np(u). O
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Figure 1: Example for deg,(v) = 6 and |(Ny(v1) U Nr(v2)) N Np(v)| =5

Q.............)

Figure 2: Example for deg,(v) = 3 and deg(u) =5

Proof of theorem 2 From Lemma 3, we know that every coloring of
K, +24-1 contains a red Cy or a blue K3 5, if there exists a vertex v with
degr(v) # g. On the other hand Kpn;24-1 has odd number of vertices and
by the hand shaking rule, there is no coloring with odd number of vertices
having odd red degree. This means that every coloring of K, 42,1 contains
a red Cy4 or blue K3 ,, so R(Cy = K22,K2n) <n+2¢-1. m]

Corollary 3.1 R(Kj 2, K 18) = 27.

Proof For n = 18, we have ¢ = 5 and s = 2 < ¢/2, so by Theorem 2,
R(K3,2, K2,18) < 27 and by the bound (E3), we get the final result. ]

3 Coloring Algorithm

In this section we describe the algorithm used for the searching of critical
colorings of the complete graph K, i.e. colorings which contain neither
a red K, 2 nor a blue K3 ,. Every coloring of K, is represented by the
adjacency matrix A = (ai j)pxp, Where a;; € {1,2} is the color of the edge
{3,5}. The coloring is fully described by the values above diagonal and
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represented as the (") bit number rep(G) = by 2b; 3...b1 pb2,3...02,p...bp—1 .
where b; ; = 1 if the edge {i,7} is red and b; ; = 0 otherwise.

Roughly speaking the algorithm checks one by one colorings of K, which
are possible good. In order to speed up the process of checking we sklp some
colorings which are bad. At each step, if the algorithm finds that a coloring
Gact is bad, because it contains a red K3 5 or a blue K, then it may skip
many colorings which also contain a red K3 or a blue K3 5. To do this it
looks for the most significant bit b; ; satisfying one of the conditions:

e b;; = 1 and the edge {3, j} together with some edges represented by
more significant bits create a red K,

e b;; =0 and the edge {%,;} together with some edges represented by
more significant bits create a blue K ,

e b;; =1 and the edge {,j} together with some edges represented by
more significant bits create a vertex u with deg,(u) > A,

e b; ; = 0 and the edge {7, 7} together with some edges represented by
more significant bits create a vertex u with deg,(u) < §,.

where A, and 4, are two parameters of the algorithm (maximum and mini-
mum degree of a vertex in critical coloring). If we find such a bit b; ; we can
omit many colorings. Regardless of which value will have less significant
bits the coloring will contain red K33 or blue K3 ,. All such colorings can
be omitted and the coloring considered next should be represented by the
smallest number with flipped b; ; bit and greater than rep(Gget).

4 R(Kas, Kora) = 22

We use algorithm described in previous section to bound the values of
R(K3,2, K2,14). The algorithm checks all possible coloring of K3;. In order
to speed up the process of searching we shall limit down to 6 cases the ways
the edges going out of the first 6 vertices (with numbers 1, 2, 3, 4, 5, 6) are
colored.

Lemma 4 The coloring of Kay contains o red Kp g or a blue Ko 14 when
it satisfies one of the following conditions:

(1) there exists v € V with deg,(v) > 5
(2) there exists v € V with deg,(v) < 4

141



(3) there exist u,v € V with deg,(v) = degr(u) = 4 and the edge {u,v} is
red.

Proof (1) combine in pairs vertices from N, (v) like in proof of Lemma 4
(see Fig. 1). Ny(v) has 22 —deg,(v) —1 < 15 elements and we may assume
that each of them can by connected by a red edge with at most one vertex
from N,(v). There are at least 3 pairs. Hence, there is a pair (v1,vz) which
is connected by red edges with at most 5 elements from Np(v), so vy, v,
and the set Np(v1) N Np(v2) create blue Ky 14.

(2) First, let us assume that 1 < deg,(v) < 3 and let © € N,(v) (see
Fig. 1). By (1), we can assume that deg,r(u) < 5. Then [Ny(v) N Np(u)| =
22 — deg,(u) — degr(v) > 22 — 5 — 3 = 14 so u, v and Np(v) N Np(u) create
blue K 14. If deg,(v) = 0 then v creates a blue K514 with any other « and
the set Np(v) N Np(u).

(3) In this case |Np(u) N Np(v)| = 22 — degr(u) — degr(v) = 14, so u, v
with Np(u) N Np(v) create a blue K7 14. m]

Observation 4.1 From Lemma 4 it follows that if we are looking for a
coloring of Koy which contains neither a red Kz 2 nor a blue Ky 14 then it
is enough to check colorings satisfying the following properties.

o Every vertez v has deg,(v) € {4,5}

o There is o vertex v with deg-(v) =5

Observation 4.2 Let va be a vertez with deg.(va) = 5. If a vertez u from
N,(va) has less then 3 red neighbors in Ny(va) then the coloring of Koo
contains blue Ko 14 formed by va, u and Np(va) \ Ny(u).

By Observation 4.1, we can assume that there is a vertex va with 5 red
neighbors. Let va have the number 1, and his red neighbors the numbers 2,
3, 4, 5, 6. We can consider three cases: (a) there are no red edges between
N(1) (see Fig. 3), (b) there is one red edge (2,3) (see Fig. 4), or there are
two separate red edges (2,3) and (4,5) (see Fig. 5). Each of the vertices
from N,(1) has 3 or 4 red neighbors in Np(1). Since Np(1) has 16 elements
we have only two possibilities: either all 5 vertices have 3 neighbors or 4 of
them have 3 neighbors and one has 4 neighbors. We may assume that the
vertex with 4 neighbors has number 6. Observe that we can exclude the
case when a vertex from N,(1) has four red neighbors in Np(1) and a red
neighbor in N,(1), because then it could have 6 red neighbors. All these
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Figure 3: Possibility 1a) when the dashed edge is red and 1b) when dashed
edge is blue

Figure 4: Possibility 2a) when the dashed edge is red and 2b) when dashed
edge is blue

Figure 5: Possibility 3a) when the dashed edge is red and 3b) when dashed
edge is blue

means that we can consider only 6 cases of the coloring of the edges going
out from the vertices 1, 2, 3, 4, 5, 6. Hence we have only six versions of
the first six rows of the matrix. Running algorithm described in section 3
on a computer we checked that all colorings of K32 contain either red Kz o
or blue K3 14. Thus R(K> 2, K> 14) < 22 which with the bound (E1) gives
the theorem.

Theorem 5 R(Kz’g,Kg‘M) = 22.
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5 R(Kaa, Kis5) =24
Theorem 6 R(szz,Kz,w) =24.

Proof We used algorithm described in section 3 and find the following
coloring of K3 that contains neither a red Kz 2 nor a blue K» 15.

X2222222222222222211111
2X222222222222111122221
22X22222222111222122212
222X2222211221221222122
2222X222121212212221222
22222X22221122122212222
222222X1222221212212222
2222221X112222122222212
22221221X22212122222122
222122212X2122222221222
2221112222X222212222212
22122122212X12222222221
221212221221X2221222222
2211221222222X222122122
21222121122222X22122222
212212122212222X2222221
2121222222221222X212222
21122222222221122X21222
122221122222222212X1222
1222122221222222211X222
12212222122221222222X21
121222212212222222222X2
1122222222212221222212X

Hence, R(K2 2, K2,15) > 23 and by the bound (E2), we get the final
result. =]

6 Conclusion

In this paper we have studied Ramsey numbers R(K32,K2,,). The next
open problem to attack is the number R(K3 2, K2,19). We know that 28 <
R(K32,K2,10) < 29 and one can try to use the computer and look for
critical coloring in K2g. The number of possible colorings of K»g is much
greater than the number of possible colorings of K23 and we do not know
how to narrow the searching space. We only know that we can exclude
colorings with vertices of red degree lower than 3 or greater than 6.
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