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Abstract

Let R be a commutative ring and Z(R) be its set of all zero-
divisors. The total graph of R, denoted by Tr(R), is the undirected
graph with vertex set R, and two distinct vertices = and y are adja-
cent if and only if 2 + y € Z(R). In this paper, we obtain a lower
bound as well as an upper bound for domination number of Tr(R).
Further we proved that the upper bound for the domination number
of Tr(R) is attained in the case an Artin ring R. Having proved this,
we have identified certain classes of rings corresponding to which the
domination number of the total graph equals the upper bound. In
view of these assertions, we conjecture that the domination number
equals to this upper bound. Certain other domination parameters are
also obtained for Tr(R) under the assumption that the conjecture is
true.
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complement of a graph, domination number.
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1 Introduction

Let R be a commutative ring with 1, Z(R) be its set of zero-divisors and
Reg(R) = R — Z(R), set of all regular elements in R. Anderson and Liv-
ingston (3] introduced, the zero-divisor graph of R, denoted by I'(R), as the
(undirected) graph with vertices Z*(R) = Z(R) — {0}, the set of nonzero
zero-divisors of R, and for distinct z,y € Z(R), the vertices = and y are
adjacent if and only if zy = 0. Several authors [13, 14] have extensively
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studied about this zero-divisor graph. Recently Anderson and Badawi (2]
introduced the concept of the total graph corresponding to a commuta-
tive ring and the subgraph Regr(R) is the subgraph of Tr(R) induced by
Reg(R). In recent years, the study on graphs out of algebraic structures has
grown in various directions. At the heart is the interplay between the ring
theoretic properties of R and the graph theoretic properties of Tr(R), for
which one can refer to reader [2, 1, 7, 18, 17, 16, 15]. For basic definitions
and properties about commutative rings, we refer to Kaplansky [12].

Let G = (V,E) be a graph. For a subset S C V, < § > denotes the
subgraph of G induced by S and for a vertex v € V, deg(v) is the degree
of a vertex v, N(v) = {u € V : u is adjacent to v} and N[v] = N(v) U {v}.
A subset S of V is called a dominating set if every vertex in V — S is
adjacent to at least one vertex in S. A dominating set S is called a strong
(or week) dominating set if for every vertex u € V — S there is a vertex
v € S with deg(v) > deg(u) (or deg(v) < deg(u)) and u is adjacent to
v. The domination number v of G is defined to be minimum cardinality
of a dominating set in G and such a dominating set is called y-set of G.
In a similar way, we define the strong dominating number v, and the weak
dominating number v,. A graph G is called excellent if, for every vertex
v € V, there exists a v-set S containing v. A domatic partition of G
is a partition of V, into dominating sets in G. The maximum number
of classes of a domatic partition of G is called the domatic number of G
and is denoted by d(G). A graph G is called domatically full if d(G) =
6(G) + 1, which is the maximum possible order of a domatic partition of
V(G) and §(G) is minimum degree of a vertex of G. The disjoint domination
number 7y(G) defined by vy(G) = min{|Si| + |Sz2| : S1,S2 are disjoint
dominating sets of G}. Similarly, we can define #4(G) and ¥i(G). For double
domination parameters, we refer to reader [8]. The bondage number b(G)
is the minimum number of edges whose removal increases the domination
number. A set of vertices S C V is said to be independent if no two vertices
in S are adjacent in G. The independent number Bo(G), is the maximum
cardinality of an independent set in G. A graph G is called well-covered if
Bo(G) = i(G). The cartesian product of graphs G and G is the graph
G10G, whose vertex set is V(G;) x V(G2) and whose edge set is the set
of all pairs (u1,v1)(uz,vz) such that either ujus € E(G1) and v; = vy, or
v1v3 € E(G2) and u; = us. For basic definition and results in domination,
see Ref. [9] and for any undefined graph-theoretic terminology, see Ref. [6].

Many researcher studied the interplay between the ring theoretic prop-
erties of R and the graph theoretic properties of the zero divisor graph I'(R),
see Ref. [1, 2, 3, 7, 13, 14]. The concepts of dominating sets and domina-
tion numbers are very important concepts in graph theory. Dominating
sets are the focus of many books in graph theory, for example Ref. [9, 10].
But not much research has been done about the domination parameters of
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graphs associated to algebraic structures (groups, rings, modules) in terms
of algebraic properties. Tamizh Chelvam and Asir [16, 17] studied about
the domination number, some other domination parameters and dominat-
ing sets of Tp(Z,). In fact, it is proved that v(Tr(Z,)) = p where p is
the smallest prime divisor of n [17, Theorem 2] and also obtained a char-
acterization for all y-sets in Tr(Z,) (17, Theorem 3]. The purpose of this
article is to study about the domination number of the total graph of a
commutative ring through ring theoretic properties. More specifically, we
continue the investigation begun in [16] regarding domination in the total
graph on Z,, and we prove that the domination number of Tr(R) depends
up on the maximum cardinality of the maximal annihilator ideal of R.

This paper is organized as follows. In section 2, we obtain a lower
bound and an upper bound for the domination number of the total graph
of a commutative ring. In the main theorem of section 2, we prove that the
domination number of the total graph of an Artin ring equals the upper
bound. Using this, we conjecture that v(Tr(R)) = u where p(upper bound)
is the number of distinct cosets of an ideal I of R, where I is an ideal with
maximum cardinality among all maximal annihilator ideals of R. Under the
assumption that the conjecture is true, in section 3, we determine various
domination parameters of Tr-(R). In section 4, with the assumption that
Z(R) is an ideal of R, we obtain several domination parameters of Tr(R).

Throughout this paper, R denotes a commutative ring (not necessar-
ily finite) with 1 # O and we denote 1 + 1 as 2. For any @ € R,
Ann(a) = {z € R : az = 0} is the annihilator ideal of @ in R. When
R is finite, we take I as a maximum annihilator ideal among all maximal
annihilator ideals of R. i.e., I is a maximal annihilator ideal such that
|| = maz{|A| : Ais a maximal annihilator ideal of R}. When R is in-
finite, we take I as a maximal annihilator ideal of R such that |R/I| is
minimum under the assumption that such an ideal exists. Thus in both the
cases |R/I| is finite. Let us take |I| = X, |Z(R)| = o, |R/Z(R)| = 8 and
|R/I| = p. We denote R; x R; for the direct product of two rings R; and
R3. Also for a subset S € V(G), < S > denotes the subgraph of G induced
by S and G;0G; denotes the Cartesian product of two graphs G; and G,.

The following observation proved by H.R. Maimani et al. (7] is used
frequently and hence given below.

Observation 1.1. ({7, Lemma 1.1]) Let R be a finite commutative ring,
Z(R) be its set of all zero-divisors in R. Then the following are true:

(i) If 2 € Z(R), then deg(v) = |Z(R)| - 1 for every v € V(Tr(R)).

(i) If 2 ¢ Z(R), then deg(v) = |Z(R)| — 1 for every v € Z(R) and
deg(v) = |Z(R)| for every vertezrv ¢ Z(R).

(#i) Tr(R) has no vertez of degree |R| — 1.

149



2 Domination number of Tr(R)

In this section, we obtain a lower bound and an upper bound for the dom-
ination number of the total graph of a commutative ring. Having observed
bounds for the domination number, we propose a conjecture for equality of
the upper bound. As mentioned in the introduction, let I be a maximum
annihilator ideal of R. That means, I is 2 maximal annihilator ideal of
R such that |R/I| = min{|R/A] : A is a maximal annihilator ideal of R}.
We begin this section with a theorem, which exhibits a relation between
the product of rings and the product of corresponding total graphs. More
specifically, the relation is concerning the domination number of the total
graph of the direct product of two rings and the domination number of
Cartesian product of the total graphs of rings.

Theorem 2.1. Let R; and Ry be two commutative rings with identity.
Then 7(Tr(Ry x Ra)) < 1(Tr(R1)OTr(Ry)).

PT‘OOf. Let G] = Tr(Rl)DT[‘(Rz) and Gz = Tr(Rl X Rz) If (.’tl,yl)
(z2,y2) € E(G1), then either z; + 22 € Z(R;) or y1 + y2 € Z(Rz). Since
Reg(Ry x Ry) = Reg(R,) x Reg(Rz), (z1,¥1) + (2,¥2) € Z(R1 x Rp) and
so (z1,%1)(z2,y2) € E(G2). From this we get that, G, is an edge induced
spanning subgraph of G2 and so ¥(Tr(R1 X R2)) < v(Tr(R1)0Tr(Rg)). O

For any integral domain R, the maximum degree A(Tr(R)) < 1. If R
is a finite integral domain, then v{(Tr(R)) = L‘ﬂ;—k + k where k = |{a €
R :a = —a}|. If R is infinite, then there exists no positive integer k such
that v(Tr(R)) = k. So hereafter, we assume throughout this section that
all rings are commutative which is not an integral domain. In the following
theorem, we obtain lower and upper bounds for the domination number of
the total graph of a commutative ring.

Lemma 2.2. Let R be a commutative ring (not necessarily finite) with
identity, I be o mazimum annihilator ideal of R and |R/I| = u(finite).
Then 2 < ¥(Tr(R)) < p.

Proof. First assume that R is finite and let |I| = A. As noted in Observa-
tion 1.1(4#i), no vertex in Tr(R) has degree |R| — 1 and so v(Tr(R)) > 2.
Let H be the spanning subgraph of Tr(R) in which two distinct vertices
z,y € R are adjacent if z+y € I. By noting that each maximal annihilator
ideal I is prime, one can obtain, in the same way as in Theorem 2.2 [2], H
is a spanning subgraph of G and further
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K)‘ULK)\UK,\U...UKé if2el

(u—l)vco;u'es 1
K,\Uﬁ)‘UK)\,AU...UKA,A if2¢l. @
(‘%L) copies
Note that each of the connected components of H as described above cor-
responds to a coset of I in R. Take one element in each of the cosets of I in
R and they form a minimum dominating set of H and so y(H) = p. Since
H is a spanning subgraph of Tr(R), v(T+(R)) < p.

If R is infinite. By the assumption that R/I is finite, we have I is
infinite. If 2 € Z(R), then for all x € R, < z + I >C Tr(R) is an infinite
complete graph. On the other hand, if 2 ¢ Z(R), then for all z € R,
<z+IU-z 41 >C Tr(R) is an infinite complete bi-partite graph. Thus,
in either of these cases y(Tr(R)) < p. a

H=

Hereafter, by H, we mean the edge induced spanning subgraph induced
by a maximum annihilator ideal I of R. The following example shows that
the lower and upper bounds are sharp.

Example 2.3. (i) If R = Z3 x Z4, then I = {(0,0), (0,2), (1,0), (1,2),
(2,0),(2,2) }, A\ =6, =2 and v(G) = 2.
(i) If R = Zgs, then I = {0,5,...,30}, A\=7, u =5 and 7(G) = p.

Now we find the domination number for the total graph of certain classes
of commutative rings. First of all, if Z(R) is an ideal of R, then the maximal
annihilator ideal in R is Z(R) and so by Lemma 2.2, one can have the
following lemma.

Lemma 2.4. If R is a commutative rings with identity, Z(R) is an ideal
of R and |R/Z(R)| = p, then y(Tr(R)) = p.

Now we prove the main theorem of this section. If R is an Artin ring with
|R/J| is finite for at least one maximal ideal J of R, then the domination
number of Tr(R) is min{|R/I| : I is an maximal annihilator ideal of R}.

Theorem 2.5. Let R be an Artin ring, I be a mazimum annihilator ideal
of R and |R/I| = p. Then 4(Tr(R)) = u.

Proof. Clearly by Lemma 2.2, 4(Tr(R)) < p. Further, since R is an Artin
ring, by [4, Theorem 8.7], one can write R R; x ... x R,, where each R;
is an Artin local ring with maximal ideal m;. Note that Z(R;) = m;
is the unique maximal annihilator ideal of R;, and so by Lemma 2.4,
Y(Tr(R:)) = |R;/m;| foralli. Let I; = Ry X...x R;_y xm;x Riy1 X...X Ry,
and u; = |R/L|. It is easy to see that I;’s (1 < i < n) are the only

151



maximal annihilator ideals of R and so I = [maz I;. From this p =
<i€<m
lﬁz?n’Y(Tl‘(Ri))- Suppose S = {(xlll Z12,.-- 7xlm), (x21,$22, oo ax2m)v L)

(T(u-1)1) T(u=1)21 - - » T(u—1)m)} is a dominating set of Tr(R). Let

Sk = {Z1k) T2k, . - - » T(u—1)k } for 1 < k < m. Since y(Tr(Ry)) = p; > p-1,
S; is not a dominating set of Tr(R;) and so there exists an element y; € R;
such that y; is not dominated by S; for each j = 1,2,...,m. Therefore
(¥1,%2,---,Ym) € R which is not dominated by S, contraction to S is a
dominating set of Tr(R). Hence v(TT(R)) = p. O

Let R be a finite commutative ring. Since every finite ring is an Artin
ring, we have the following corollary.

Corollary 2.8. Let R is a finite commutative ring, I be a mazimum an-
nihilator ideal of R and |R/I| = p. Then v(Tr(R)) = p.

Now using Theorem 2.5, one can find the domination number for the
total graph of certain classes of commutative rings. In this fact this exhibits
that, there are families of infinite graphs whose domination number is finite.

Corollary 2.7. (i) [17, Theorem 2] If n is a composite integer, then
Y(Tr(Z,)) = p where p is the smallest prime divisor of n.

(ii) For any n,k € Z¥, 'y(Tp(%L%)) = 7(Tr(<—xz,,2’5%],‘;) = p where p
is the smallest prime divisor of n.

(iii) If R;’s are finite integral domains, then Y(ITr(R1 x R X ... X Ry)) =
min{IRll, lel, ey lel}

(iv) If n is a composite positive integer, then Y(Tr(Zn xZ % ...XZ)) = p
where p is the smallest prime divisor of n.

(v) Let n be a composite positive integer, k € Z* and F be a field. If
R=2,xFx...xForR=2 xZx...xZ, then y(Tr(R)) = p where
p is the smallest prime divisor of n.

Proof. (i) Note that the maximum annihilator ideal of Z(Z,) is I =
Ann(Z) = {0,p,2p,...,n — p} and so |R/I| = p = p. Thus by Theo-
rem 2.5, Y(Tr(Z,)) = p.

(i1) Let %L% = {ao + a1z + ... + ax12F 1+ < z* >: a; € Zy, for
i =0,1,...,k — 1} and let us take the maximum annihilator ideal of

Z, as J = Ann(3). Now the maximum annihilator ideal of f;’; is

I ={ao+az+...+a-12"'+ < z*¥ > a € J and a; € Zy, for
i=1,...,k—1} and so |I| = & and |R/I| = p. Therefore, by Theo-
rem 2.5, 'y(Tr(%;—L%)) = p. Similar way one can get, ')’(T[‘(?:‘;%) =p.

(i4i) Assume that |R;| = min{|Ry|,...,|Rk|}. The maximum annihila-
tor ideal of Ry X ... x R is I = {(al,...,a.'_;,O,ai_,.l ...,ak) taj € Rj}
and so |R/I| = |R;|. Thus ¥(Tr(R1x RaX...x Ry)) = min{|Ry|,...,|Rk|}.
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(iv) Let R=2Z, x Z X ... x Z. Note that Z(R) = {(ay,...,ax) € R:

k—1 times
a1 € Z(Zy,) or a; = 0 for some i = vk}, Let J = Ann(2) in Z,.
Clearly, the maximum annihilator 1deal in R isI=JxZx...x Z and so
e e

k—1 times
|R/1| = |Zn/J| = p
(v) In line with the proof of part (iv), one can find y(Tr(R)) =p. O

Having obtained the domination number of the total graph of some
classes of rings, now we propose a conjecture for the domination number of
the total graph of a commutative ring.

Conjecture 2.8. Let R be a commutative ring with identity which is not
an Artin ring, Z(R) be not an ideal of R and I;’s are mazimal annihilator
ideals of R. If |R/I;| = finite for some i, then y(Tr(R)) = min{|R/L} : I;
is a mazimal annihilator ideal of R}, where the minimum is taken over all
I; for which |R/I;| is finite.

3 Some domination parameters of Tr(R)

In this section, we find certain domination parameters of Tr(R) under the
assumption that y(Tr(R)) = u. As mentioned earlier, I is a maximum
annihilator ideal in R, |I| = A and |R/I| = u. By Lemma 2.2, we have the

following,.

Lemma 3.1. Let R be a commutative ring. If v(Tr(R)) = u, then the set
S = {z1,72,...,2,} C V(Tr(R)) is a y-set of G where z; ¢ z; + I for all
t,j=1,...,0 and i # 3.

Corollary 3.2, LetRbea commutative ring. If y(Tr(R)) = p, then
(i) ¥ (Tr(R)) = u, where v (G) is the inverse domination number of G.
(i) Tr(R) is excellent.
(iii) the domatic number d(Tr(R)) = A

Proof. Since A > 2, (i) is true. The proof for (i7) and (4ii) are trivial. O

Theorem 3.3. For a commutative ring R, if Z(R) is not an ideal of R,
R =< Z(R) >(i.e., R is generated by Z(R)) and v(Tr(R)) = u, then
Ye(Tr(R)) = 7(Tr(R)) = p

Proof. If Z(R) is not an ideal of R and R =< Z(R) >, then by Theorem
3.3 [2], Tr(R) is connected. Let I be a maximum annihilator ideal in R
and z; € I. Since Tr(R) is connected, there exists a vertex z3 € a; + I for
some a1 € R — I such that z; is adjacent to z;. Again by connectedness of
Tr(R), there exists a coset az + [ for some a; ¢ I as well as ay & a3 + [

153



such that at least one element of as + I is adjacent to either a vertex in I
orinay +1I,say I.

If there exists an element a € a; + I which is adjacent to some b € a; +T1
with a ¢ a; + I, then each vertex in a; +I is adjacent to at least one vertex
ina; + I. For, if a + b = c for some c € Z(R), then c € a; +a; + I. Let
dy € a; + I. Take d; € R such that d; +dz = ¢. From this d € a; + I and
d, is adjacent to d2. Therefore, each vertex in a; + I is adjacent to at least
one vertex in a; + I.

Thus z; is adjacent to some vertex z3 € ag + I. Similarly, we can
select coset representatives z;, for 4 < 7 < p, in distinct cosets of I in R
other than I, a; + I and ap + I such that < z,,%3,...,z, >C Tr(R) is
connected. Then, by Lemma 3.1, {z),z2...,z,} is a y.-set of Tr(R) and
s0 7.(Tr(R)) = p- Since, for any graph G, we have ¥(G) < 1%:(G) < 1.(G),
7(Tr(R)) = p. 0

Remark 3.4. Let R be a commutative ring and G = Tr(R). If R is not an
integral domain, then G satisfies (G —v) = ¥(G) for all v € V(G). Having
observed this, we obtain the bondage number of the total graph.

Theorem 3.5. For a finite commutative ring R, if y(Tr(R)) = p, then
bondage number b(Tr(R)) = |Z(R)| — 1.

Proof. Let = be a vertex in Tr(R) of minimum degree. Then deg(z) =
|Z(R)| — 1. Take some arbitrary |Z(R)| — 2 edges incident at = and let
y be the remaining vertex adjacent to z. By Lemma 3.1, there exists a
v-set S in Tr(R) with cardinality x and containing y. If we remove all
the |Z(R)| — 1 edges incident at z, then z is an isolated vertex and so we
have to add two vertices in S from the coset of I in R containing z. Thus
b(Tr(R)) < |Z(R)| — 1. Also by the structure of H and Tr(R), removal of
any other set with less than |Z(R)| — 1 edges cannot increase the value of
domination number and so &(Tr(R)) = |Z(R)| — 1. O

4 Domination parameters of Tr(R) and Tt (R)
when Z(R) is an ideal of R
In this section, we assume that Z(R) is an ideal of R and so I = Z(R),

A =a, u = and ¥{Tr(R)] = B. We recall the following structure theorem
for further discussion.
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Lemma 4.1. [2, Theorem 2.2] Let R be a finite commutative ring such
that Z(R) is an ideal of R, |Z(R)| = a and |R/Z(R)| = B. Then

KaUKaUKaU...UK, if 2€ Z(R)
_ (ﬂ-l;rcopies
(B =\ K UKaoUKaaU...UKen if2¢Z(R). ©@
(a'rl):opies

Lemma 4.2. Let R be a finite commutative ring such that Z(R) is an ideal
of R. Then v(Tr(R)) = 2.

Proof. For z € Z(R) and y € R — Z(R), by Lemma 4.1, § = {z,y} is
a dominating set of Tr(R). Since Tr(R) has no vertex of degree |R| — 1,

1Tr(R) = 2. 0

Remark 4.3. Let R be a finite commutative ring and G =< Reg(R) >C
Tr(R). If2 € Z(R) and 8 = |R/Z(R)| = 2, then G = K, and s0 7(G) = o.
By Lemma 4.1, in all remaining cases of R, we have v(G) = 2. Therefore

(< Reg(R) >) = {;‘ if2e Z(R)and =2

otherwise.

The following corollary is immediate from the definition of the inverse
domination number.

Corollary 4.4. (i) Let R be a commutative ring_except the one with
2€Z(R),a>2,3=2andG= <Reg(R! > znTp R) Then v (G) = 2.
(it) For any commutative ring R, v (Tr(R)) =

Theorem 4.5. Let R be a commutative ring such that Z(R) is an ideal of
R and G = Tp(R). A set S = {x),Z3,...,28} C V(G) is a y-set of G if
and only if x; € z; + Z(R) for all 1 < 4,5 < B and i # 5.

Proof. If part follows from Lemma 3.1. Conversely, let S be a ~y-set of G.
Suppose, there exist j,k € {1,...,8} such that z; € z; + Z(R). Since
|{S| = B, there is a coset z + Z(R) such that z; ¢ £ + Z(R) for all z; € S.
Now vertices in —z+ Z(R) can not be dominated by §, a contradiction. O

As proved above, one can prove the following:

Corollary 4.6. Let R be a commutative ring such that Z(R) is an ideal of
R and G = Tr(R). A set S = {z1,22} C V(G) is a v-set of G if and only
ifeg & 2y + Z(R)
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Corollary 4.7. Let R be a finite commutative ring with Z(R) is an ideal
of R. Then

(i) Tr(R) and Tr(R) are excellent.

(i) d(Tr(R)) = o and dTT(R)) = [J%lj .

(i) If Gy = Regr(R), then

e 1 if2€ Z(R) and B =2
(G1) = [1322!&1_, otherwise.

(iv) Tr(R) is domatically full.

Theorem 4.8. Let R be a finite commutative ring with Z (R) is an ideal
of R and G = Tr(R). Then G and G are well-covered.

Proof. If 2 € Z(R), then by Lemma 4.1, i(G) = 8. If 2 ¢ Z(R), all vertices
in one partition of each K, o together with a vertex of Z(R), form an i-set

of G and so i(G) = (&51)a + 1. Similarly fo(G) is same as i(G). Thus
. B if2e Z(R)
G) = =
i(G) = Al(C) (%)a +1 otherwise.
Similarly, if 2 € Z(R), then by equation (1), each coset of R/Z(R) is an
i-set of G and 50 i(G) = a. If 2 ¢ Z(R), the set {z,y} wherey € —z+Z(R)
is an i-set in G. Also fo(G) = i(G). Therefore

o if2 € Z(R
i(G) = Po(G) = {2’ ;thefwis(e.)

Hence G and G are well-covered. a

Corollary 4.9. If R is a finite commutative ring such that Z(R) is an
ideal of R and |Z(R)| = a, then w(Tr(R)) = a.

As proved above, one can prove the following.

Theorem 4.10. Let R be a finite commutative ring such that Z(R) is an
ideal of R, |Z(R)| = o, |R/Z(R)| = B and G = Tr(R). Then
. 23 if 2€ Z(R)

() 1(C) = {ﬂ +1 otherwise.

(i1) ’Yt(_@ =2.

(i) 1:(C) = 2. o

(iv) 4s(G) = 1w(G) = B and 75(G) = 1(G) = 2.

(v) 1(G) = .

(vi) %(G) =2 if B =2.

(vii) If G1 =< Reg(R) > in Tr(R), B = 2 and 2 ¢ Z(R), then
'7p(G1) =2.
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Theorem 4.11. Let R be a finite commutative ring with Z(R) is an ideal
of R, |Z(R)| =, |R/Z(R)| = B and G = Tr(R). Then
(i) 7(G) =28.

T o if 2€ Z(R)
(%) vi(G) = {[3 +(&1)a+1  otherwise.
o [2B if 2€ Z(R)
(i) 4(G) = { 2(851Ya+2  otherwise.
48 if 2€ Z(R) and o > 4
(iv) t(G) = { 2(B +1) if 2¢ Z(R)

does not exists otherwise.
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