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Abstract

Let G = (V, E) be a graph. A function f:V — {—1,1} is called
a signed dominating functionon Gif }° . Nolv] f(u) > 1foreachv €
V, where Ng|v] is the closed neighborhood of v. A set {f1, f2,..., fa}
of signed dominating functions on G is called a signed dominating
family (of functions) on G if 7, fi(v) < 1 for each v € V. The
signed domatic number of G is the maximum number of functions in
a signed dominating family on G. The signed total domatic number
is defined similarly, by replacing the closed neighborhood Ng[v] with
the open neighborhood Ng(v) in the definition. In this paper, we
prove that the problems of computing the signed domatic number
and the signed total domatic number of a given graph are both NP-
hard, even if the graph has bounded maximum degree. To the best
of our knowledge, they are the first NP-hardness results for these two
variants of the domatic number.

1 Introduction

In this paper we generally follow the notation and terminology of [3]. Let
G = (V,E) be a (simple and undirected) graph. For each v € V, Ng(v) =
{u | {u,v} € E} is the open neighborhood of v, and Ng[v] = Ng(v) U {v}
is the closed neighborbood of v. Let dg(v) = [Ng(v)| denote the degree
of v, §(G) = minyey dg(v) be the minimum degree of any vertex in G,
and A(G) = maxyev dg(v) be the maximum degree of a vertex in G. A
k-coloring of G is a mapping c: V' — {1,2,...,k}, and the coloring is said
to be legal if c(u) # c(v) whenever {u,v} € E. We also say G is k-colorable
if G has a legal k-coloring.

A signed dominating function on G, originally defined in [4], is a map-
ping f : V — {—1,1} satisfying that ZueNc[v] f(u) 2 1 for every v € V.
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A set {f1, f2,..., fa} of signed dominating functions on G is called a signed
dominating family (of functions) on G if Z:-i_.l fi(v) < 1lforallve V. The
signed domatic number, denoted by ds(G), is the maximum number of func-
tions in any signed dominating family on G. This concept was introduced
in [15] and has been further studied in, e.g., [9, 10, 11, 12, 13].

A signed total dominating function on G, introduced by [16], is a map-
ping f : V = {-1,1} satisfying that > N () f(u) 2 1 forevery ve V.
A set {f1, f2,..., fa} of signed total dominating functions on G is called
a signed total dominating family (of functions) on G if Zf=1 fi(v) <1 for
all v € V. The signed total domatic number, denoted by d5(G), is the
maximum number of functions in any signed dominating family on G. The
study of this parameter was initiated by [7] and continued in, e.g., (6, 8, 14].

Previous research on the signed domatic number and signed total do-
matic number of graphs mainly focuses on the graph-theoretic perspectives,
such as establishing their upper and lower bounds in general or special
classes of graphs. However, unlike signed domination [4, 16] or the original
concept of domatic number [5] which have been extensively studied from
algorithmic and complexity points of view, these two parameters have not
been explored from such aspects before, which motivates our study.

In this paper, we initiate the study of the algorithmic complexity of the
natural optimization problems associated with the signed domatic number
and signed total domatic number. More specifically, we prove that the
problems of computing these two parameters of a given graph are both
NP-hard, even if the graph has bounded maximum degree. The proofs are
by reductions from two variants of the graph coloring problem, of which one
is known and another is new to the best of our knowledge. The reductions
require some carefully designed gadgets, and we believe that the techniques
used in the reductions are of their own interests and may be useful in future
applications.

2 Complexity of Computing the Signed Do-
matic Number

In this section we show the hardness of computing the signed domatic
number of a graph. Our main result is as follows.

Theorem 1. Given a graph G of mazimum degree 8, deciding whether
ds(G) = 3 is NP-complete.

Proof. The problem is obviously in NP. We now present a polynomial time
reduction from the following NP-complete problem [2]: Given a (planar)
graph of maximum degree 4, decide whether it has a legal 3-coloring. Let
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G = (V, E) be an instance of the latter problem. We assume without loss
of generality that G has no isolated vertex. Now construct another graph
H = (V',E’) as follows. Let V' = XUY UZ, where X = {z, | v €
VLY ={ye |e€c E},and Z = {2,.; [vE€ e € E,1 < j <6} That
is, we have one vertex z, for each vertex v of G, one vertex y. for every
edge e of G, and for each pair (v,e) such that v is incident to e in G,
we have six vertices {zy.; | 1 < j < 6} associated with it. The set of
edges of H is defined as: E' = {{y,¥e} |v € e € E}U {{zy,2p,e1} | v €
e € E}YU {{zy,,)2ve,} | v € e € E,1 < j < j° < 6}. Thus, the
subgraph of H induced on X UY is precisely the incidence graph of G,
and the six vertices in {2y, | 1 < j < 6} form a clique for every pair
(v,e) with v € e € E. Moreover, the only edges between X UY and Z are
{{zv) 2v,e,1} | v € e € E}. It is easy to see that A(H) < max{6,2A(G)} < 8
and §(H) = 2.

We claim that G is 3-colorable if and only if dg(H) > 3, which will finish
the reduction. For the “if” part, assume ds(H) > 3 and let {f1, f2, f3} be
a signed dominating family on H. (Note that in this case we actually have
ds(H) = 3, since by the result of [15], ds(H) < 6H)+1 =3) For
convenience, given f : V' — {-1,1}, we say v/ € V' is signed dominated in
fIf ¥ senyw) f(&) 2 1. Let v be any vertex in V, and let e = {v,u} € E
for some u € V' (recall that G has no isolated vertex). By our construction
of H, y. is only adjacent to z, and :v,, in H. Since {fi, f2, f3} is a signed
dominating family on H, we have 21_1 fi(zy) < 1, which implies that at
least one of f1(z,), f2(xy), fa(zy) is —1. Now suppose at least two of them
are —1, and w.l.o.g., let fi(z,) = fo(z,) = 1. Then we must have f;(y.) =
fi(zy) = fo(ye) = fa(zy) = 1 otherwise y. is not signed dominated in
f1 and fa. As 2,_1 fi(ye) < 1, we have f3(ye) = —1, indicating that
fa(zy) = fa(zy) = 1. However, this would give that 3o, fi(z.) = 3 > 1,
violating the property of a signed dominating family. Hence, it holds that
exactly one of fi(zy), fa(zy), f3(2v) is —1. Now define a 3-coloring of G
as follows. For each v € V, find the unique index i € {1,2,3} for which
fi(zy) = —1, and assign v with color i. We show that this is a legal coloring
of G. For any edge e = {u,v} € E, suppose u and v are assigned with colors
J and j' respectively. If j = j/, then f;(z,) = fj(z,) = —1, implying that
fi(ye) + fi(zu) + fi(zv) £ —1. This contradicts with the fact that f; is a
signed dominating function on H. Therefore j # j/, which proves that the
coloring of G obtained in this way is indeed a legal 3-coloring. Hence, G is
3-colorable.

Now comes the “only if” direction, which necessitates a careful design
of signed dominating functions using the {2, . ;} gadgets. Suppose G is
3-colorable, and c is a legal 3-coloring of G in which vertex v receives the
color ¢(v) € {1,2,3}. We now define three functions f;, fa, fs on V’, and
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Zye,l | %ve2 | 2ve3 | 2ved | Zue,5 | 2u,e,6
fi 1 1 1 1 -1 -1
Jip | 1 1 -1 | -1 1 1
fis -1 -1 1 1 1 1

Table 1: Function values of zy e ;.

prove that they form a signed dominating family on H. For every v € V,

let L ifi= )
-1, ifi=clv
fi(zv) = { 1, otherwise.

For each e = {u,v} € E, let

filye) = { _i: f)fth—eriliese{.fi(xu)’fi(%)}’ or equivalently, i € {c(u), c(v)}

For every v, e such that v € e € E, let

_ _ 1, if fi(zy) = —1, or equivalently, i = ¢(v)
filzven) = { —fi(ye), otherwise.

Let V" = XUY U{zye, | v € e € E} be the collection of vertices of H
whose function values have already been given. Before assigning function
values to the remaining vertices, we first verify that 21—1 fi(r) = 1 for every
r € V", that is, among fi(r), fo(r) and fa(r) there are exactly two 1’s and
one —1. This is clear for all z, € X. For y. € Y where e = {u, v}, since ¢
is a legal 3-coloring, we have ¢(u) # c(v), and hence fi(y.) will be 1 twice
(when i is the color of u or v) and be —1 exactly once. Now consider a vertex
Zy,e,1- By our definition, fc(v)(xv) = -1, fc(v)(ye) =1and fc(v)(zv e l) =1
Assuming {1,2,3}\{c(v)} = {i, '}, we have {fi(ve), fir (¥e)} = {1, —1}, and
thus {fi(2v,e,1) fi (2v,e,1)} = {—fi(¥e), = fir(ve) } = {—1,1}. Therefore, the
condition Zf=1 fi(r) =1 holds for all vertices r € V"

We proceed to define the functions on V/\V" = {z,.; |v€eec E,2 <
j < 6}. We will do this separately for each pair (v,e) with v € e € E; so
in the following we assume (v, €) is fixed. From previous analysis, we know
that there is a permutation (i1,12,13) of (1,2,3) such that fi, (2v,¢,1) =
fiz(2zv,e1) = 1 and fiy(2v,e,1) = —1. (Of course such permutation is not
unique, but we only need to choose an arbitrary one.) Now we define the
functions on z,, ; for 2 < j < 6 according to Table 1. (The table is viewed
in the obvious way; for example, fi,(zy,e,4) is at the crossing of the 3rd row
and the 5th column.) Doing this for all pairs (v, e) completes the definition
of the three functions.

It is clear that 5 . fi(r) = 1 is fulfilled for all 7 € V’. Thus, it
only remains to show that for any i € {1,2,3}, f; is a signed dominating
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function on H. We will consider all the vertices of H and prove that they
are signed dominated in each of the three functions. There are four cases
to be examined.

1. ye with e = {u,v} € E. We have Ny[y] = {ye, Tu,Ts}. By our defi-
nition, there are exactly two 1’s and one —1 among f;(ye), fi(zv), fi(zo),
for each ¢ € {1,2,3}. Thus, y. is signed dominated in every function.

2. z, with v € V. We have Ny(zy] = {Zy} U {ye, zv,e,1 | v € € € E}.
When ¢ = ¢(v), we have fi(z,) = —1 and fi(r) = 1 for any r €
Ny(z,), implying that 3°, . v, 1) fi(zv) 2 1 (note that | Ny (z,)| > 2
since G has no isolated vertex). When i # c(v), we have fi(z,) =1
and fi(2v,e,1) = —fi(ye), which means ZTGN”[%] fi(zy) = 1. Hence,
z, is signed dominated in all three functions.

3. 2ye; With v € e € Eand 2 < j < 6. We have Ny(z,.,;]
{zv,e,x | 1 <k < 6}. From Table 1 we find that Z"GNﬁlzv.z.j] fi(r)

22=1 fi(2v,e,k) = 2 for any i € {1,2,3}. Thus 2,,,; is signed domi-
nated in the three functions.

4. zye,1 withv € e € E. We have Ny[z,¢ ] = {2} U{2v,ex | 1 Sk <

6}. Thus, ZreNH[zv'e,l] fi(r) = fi(zv)'i'z:g:l fi(zv,er) 2 —1+2 =1,
for any i € {1,2,3}. Therefore, 2,,,1 is signed dominated in all three
functions.

By the above case analysis, we have shown that {f,, f2, f3} is indeed a
signed dominating family on H, and thus ds(H) > 3. This completes the
proof of the “only if” part of the reduction, and hence concludes the whole
proof. O

The following corollary follows immediately from Theorem 1.

Corollary 1. It is NP-hard to compute the signed domatic number of a
given graph of mazimum degree 8.

3 Complexity of Computing the Signed Total
Domatic Number

This section is devoted to the hardness proof of computing the signed total
domatic number of a graph, as indicated in the following theorem.

Theorem 2. Given a graph G of mazimum degree 11, deciding whether
d?(G) > 3 is NP-complete.
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To prove Theorem 2, we design a reduction from a hypergraph coloring
problem. A hypergraph G is a pair (V, E), where V is the set of vertices
of G, and E C 2V \ {0} is the set of edges of G. The degree of a vertex
v € V (in G) is dg(v) := |{e | v € e € E}|, i.e., the number of edges of
G that contains v. A hypergraph is called k-uniform if every edge of it
contains exactly k vertices. (Thus, a graph can be defined as a 2-uniform
hypergraph.) A strong k-coloring of a hypergraph G = (V,E) [1] is a
mapping ¢ : V — {1,2,...,k} such that c(u) # c(v) whenever v # v and
{u,v} C e for some e € E; that is, vertices that are contained in a common
edge of G have pairwise distinct colors. The 3-uniform hypergraph strong 3-
coloring problem (3HS3C for short) is to decide whether a given 3-uniform
hypergraph has a strong 3-coloring. As far as we are aware, the complexity
of this problem has not been investigated before.

Lemma 1. The 3HS3C problem is NP-complete even on hypergraphs of
mazimum degree 4.

Proof. The problem is clearly in NP. We give a polynomial time reduction
from the problem of deciding whether a given graph of maximum degree
4 is 3-colorable (which is also used in the proof of Theorem 1) to it. Let
G = (V,E) be a graph of maximum degree 4. Construct a 3-uniform
hypergraph G’ = (V’, E') by letting. V' = {z, |ve V}U {z. | e€ E} and
E' = {{zy, Ty, zc} | € = {u,v} € E}. It is easy to see that G’ has maximum
degree 4. If G’ has a strong 3-coloring, then this coloring naturally induces
a legal 3-coloring of G (by identifying v and z, and neglecting the z.’s).
.Conversely, assume G has a legal 3-coloring ¢ where v has the color ¢(v).
Define a 3-coloring ¢’ of G’ as follows. For any v € V, let ¢/(z,) = c(v).
For any e = (u,v) € E, let ¢(z.) be the (unique) color different from c(u)
and c(v). It is easy to see that ¢’ is a strong 3-coloring of G’. Therefore,
G is 3-colorable if and only if G’ has a strong 3-coloring, completing the
proof of Lemma 1. a

We now prove Theorem 2.

Proof of Theorem 2. Clearly the problem is in NP, so it suffices to perform
a polynomial time reduction from the 3HS3C problem to it. Let G = (V, E)
be a 3-uniform hypergraph of maximum degree 4, which is an instance of
the 3HS3C problem. We modify G in the following way: for each v € V such
that dg(v) is even, add two new vertices v’,v"” and a new edge {v,v’,v"},
which makes the degrees of v,2' and v” all become odd. It is easy to see
that the new graph has maximum degree at most 5, and that G has a strong
3-coloring if and only if the new hypergraph does. Thus, we can assume
w.l.o.g. that dg(v) is odd for every v € V and A(G) < 5.

We create a graph H = (V’, E') as follows. Let V/ = X UY U Z, where
X={z,|veV},Y={y|e€cE},and Z = {255 [v € V1 <P <
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de(v)+1,1 <5 <9}. Let B/ = {{zy,%.} |ve€e€ E}U{{zy, 2,01} | v E
Vii<i<deg(w)+1}U{{2v,i5y 20,05} [vEV,1 Si<de(v)+1,1<j<
J' £ 9}. It is easy to verify that A(H) < max{9,2A(G) + 1} < 11 and
§(H)=3.

We shall prove that G has a strong 3-coloring if and only if d¥ (H) > 3,
which will complete the reduction. For the “if” direction, suppose d (H) >
3. Since df(H) < §(H) = 3 [7], we actually have dS(H) = 3. Let
{f1, f2, fa} be a signed total dominating family on H. Let v be an ar-
bitrary vertex in V, and e = {v,u,w} € E be an edge containing v. Since

?=1 i(zy) < 1, at least one of fi(zy), f2(zy) and f3(z,) is —1. Assume
that there are two —1's among them, say, fi(z,) = f2(zy) = —1. For
convenience, given f : V' — {-1,1}, we say v’ € V' is signed total dom-
inated in f if ZIGNH(,,,) f(z) 2 1. As Ny(ye) = {2, Zu,Tw} and y. is
signed total dominated in f; and f2, we have fi(z,) = fi(zw) = fo(zu) =
fa(zw) = 1, from which it follows that f3(z,) = f3(zw) = —1. However,
this implies 3, ¢ Ni(we) fa(v') £ -1, a contradiction. Thus, exactly one of
fi(zv), f2(zv) and f3(z,) is —1. Now define a coloring of G by giving vertex
v the unique color j such that f;(z,) = —1. For every e = {u,v,w} € E,
its vertices must receive all three colors. Otherwise, w.l.o.g. assume u and
v both have color j; that is, fj(zu) = fj(zy) = —1. Then y,. is not signed
total dominated in f;, a contradiction. Thus, G has a strong 3-coloring.

Next we consider the “only if” direction, and assume that G has a strong
3-coloring c in which each vertex v € V' is colored with c(v) € {1,2,3}. We
now define three functions fi, f2, f3 on V’, and prove that they form a
signed total dominating family on H. For every v € V, let

: _J -1, ifi=c(v)
filzy) = { 1, otherwise.

For each e € E, let

-1, ifi=1
filye) = { 1, otherwise.

For every vertex z,,:,j, if 1 < ¢ < (dg(v) +1)/2, then define the functions
on it according to Table 2; if (dg(v) +1)/2 < i < dg(v) +1, then define the
functions on it according to Table 3. (Recall that dg(v) is odd, and hence
(de(v) +1)/2 is an integer.)

We now show that {fi, fa, fa} is a signed dominating function on H.
Clearly, Zi;l fi(r) =1 for all r € V'. So we only need to prove that f; is
a signed dominating function on H for every i € {1,2,3}. We will consider
all the vertices of H and prove that they are signed total dominated in each
of the three functions. There are three cases to investigate.
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Z2yi1 | 2v,i,2 | %v,i,3 | %v,id4 | 2v,i,5 | Zv,i6 [ %0,i,7 | %v,i,8 | 2v,i9
N 1 1 1 1 1 1 -1 ~1 -1
Jo 1 1 1 -1 -1 -1 1 1 1
fa -1 -1 -1 1 1 1 1 1 1

Table 2: Function values of z,; ; when 1 < i < (dg(v) +1)/2

2vi1 | 2v,i,2 | 2v,i,3 | Zvid | Zvd,5 | 2v,i6 [ 20,47 | 2v,i8 | 20,9

fi| 1 1 1 -1 | -1 | -1 1 1 1
fa| =1 | =1 | =1 1 1 1 1 1 1
fal 1 1 1 1 1 1 -1 | -1 | -1

Table 3: Function values of 2, ;; when (dg(v) +1)/2 < i < dg(v) +1

1. ye with e = {u,v,w} € E. We have Ng(ye) = {Zu,Tv,Tw}. Since
c is a legal 3-coloring of G, for every i € {1,2,3}, exactly one of
fi(zw), fi(zy) and fi(zy) is —1. Hence y. is signed total dominated
in every function.

2. z, withv € V. We have Ny(z,) = {ye |v €6 € E}U{zyi1 |1 S i <
dg(v) +1}. By our definition, fi(ye) = —1 for all e and fi(zv,51) =1
for all v,j. Therefore, 3 e nyy (2, f1(r) = (da(v) +1) — dg(v) = 1.
When i = 2 or 3, by our construction, exactly one half of fi(zy,j,1)’s,
1 < j < dg(v)+1, are —1, and another half are all 1. (For example, by
Tables 2 and 3, fa(2y,5,1) = 1if j < (da(v)+1)/2, and fa(2y,5,1) = -1
otherwise.) Also, fi(ye) =1 for all e. Thus 3° . (,,) fi(T) 2 1. We
have shown that z, is signed total dominated in ali three functions.

3. 2k Withv € V, 1 < j < dgv)+1land1l <k <9 We
have Ng(zy k) = {2vjp | 1 S K < 9,k # k} if k # 1, and
Ni(zojx) = {Zo} U {2vp | 1 < K < 9,k # k} if k = 1. From
Tables 2 and 3, we find that for any function f;, exactly three values
among {fi(zv ) | 1 < k' <9} are —1. Thus, in any function f;, at
least 5 neighbors of z, ;x have function value 1, and at most 4 neigh-
bors of it have function value —1. This shows that z, ;x is signed
total dominated in all three functions.

By the above case analysis, we have shown that {f1, f2, fa} is indeed a
signed total dominating family on H, and thus d(H) > 3, finishing the
“only if” part of the reduction. Therefore, G has a strong 3-coloring if and
only if d5 (H) > 3. This completes the proof of Theorem 2. O

The following corollary is straightforward.
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Corollary 2. It is NP-hard to compute the signed total domatic number
of a given graph of mazimum degree 11.

4 Concluding Remarks

In this paper, we proved that it is NP-hard to compute the signed domatic
number and the signed total domatic number of a given graph, even if
the graph is of bounded maximum degree. On the other hand, these two
parameters of a graph of maximum degree 2 (which is the union of disjoint
paths and cycles) can be easily decided {15, 7]. What happens if the graph
has maximum degree 3? This motivates us to pose the following open
question for future research.

Question 1. Is it NP-hard to compute the signed (total) domatic number
of a graph of marimum degree 37
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