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Abstract

A graceful n-permutation is a graceful labeling of an n-vertex
path P,. In this paper we improve the asymptotic lower bound on
the number of such permutations from ((5/3)") to £(2.37"). This
is a computer-assisted proof based on an effective algorithm that
enumerates graceful n-permutations. Our algorithm is also presented

in detail.

1 Graceful graphs and permutations

Let G = (V, E) be an undirected graph with |V| =n and |E| = m. We say
that a vertex labeling f : V ~ N together with an edge labeling g : E — N
are a graceful labeling of G if

e f(V)C{0,...,m} and f is one-to-one (injective),

e 9(B) ={1,...,m},

o g(uv) = |f(u) — f(v)| for every two vertices u,v € V such, that

w e Fb.

Graceful labelings of graphs have received a lot of attention; see [3] for
an extensive survey. In this paper we concentrate on the single case when
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G = P, is the n-vertex path. Note, that in this case m = n — 1, thus the
vertex labels are in bijection with the set {0,...,n - 1}. This justifies the
following definition:

Definition 1 A permutation [0(0),...,0(n—1)] of the set {0,1,...,n—1}
is e graceful n-permutation if

{lo(1) = a(0)],]0(2) —o(1)},...,lo(rn -1} —o(n - 2)|} ={1,...,n - 1}.

For instance, [0,6,1,5,2,4,3] is a graceful 7-permutation. The values of
a graceful n-permutation can be identified with the vertex labels in some
graceful labeling of P,, and vice versa. We shall use these notions inter-

changeably.

Denote by G(n) the number of graceful n-permutations. The sequence
G(n) is not well known, not even asymptotically. It has number AG06967
in the Sloane’s On-line Encyclopedia of Integer Sequences ([4]) where the
first 20 terms are listed. Its growth is exponential as shown in [2] and [1].
In the latter the best known estimate, G(n) = Q((g)") is proved. Here we
shall improve this result by proving the following:

Theorem 1 G(n) = Q(2.37").

This paper is organized as follows. In the next section we introduce a
recursive algorithm for the computation of G(n). Next we observe how its
efficiency can be vastly improved using some knowledge of the structure of
graceful permutations. In section 4 we use the computational data to prove
Theorem 1. Some closing remarks are included in section 5.

2 The search tree

We shall generate (and count) graceful n-permutations by the following
recursive search (think of path labelings for now): the edge label n — 1 can
only appear as |0 — (n — 1)|, therefore the vertices with labels 0 and n — 1
must be neighbours. Moving along, the next free edge label n — 2 can be
induced as |0 — (n — 2)| or |1 — (n — 1)], so either 0 and n — 2 or 1 and
n — 1 must be connected. This obvious procedure continues with further
edge labels down to 1. Of course we can only test adding a certain edge
if it does not conflict with the path structure of the created graph, i.e. if
what has been constructed so far is a collection of paths.

Figure 1 shows half of the search tree T,, obtained for n = 7. The nodes
of the tree will be referred to as partial permutations. The level, indicated
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in the left column, is the edge label just added. The vertex labels inducing
that edge label are underlined in each node. The 8 nodes on level 1 give
rise to 16 graceful 7-permutations (each can be read in the given order or
backwards), therefore G(7) = 32 (because the other half of the tree looks

just the same).
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Figure 1: Half of the search tree 77

Now we describe how the partial permutations are represented, so that
the expansion from a node on level k to the nodes on level kK — 1 can be
done quickly. Each node holds two arrays:

e free(0..n-1] — for each u the number free[u] is the number of
niree slots” of a vertex labeled . Initially free[u] :=2 for all u, and
the value drops down by one each time u is chosen an endpoint of
some edge. A vertex label with free [u]=0 must no longer be used,

e forb[0..n-1] — (forbidden): for every vertex label u, which is an
endpoint of some partial path in the partial permutation forb[u]
is the label of the other end of this path. These two vertices can-
not be connected by an edge, since a cycle would appear. Initially
forb[u] :=u.

Note that with this representation we do not know the actual order of
the labels in the permutation. However, they fall into three classes: yet
unused (with forb[u]=2), endpoints of partial paths (forb[ul=1) and no
longer available labels inside the paths (free[u]=0). As for the endpoints
their pairing is completely described by forb. Note that forb[forb[u]]=u
at all times.

Expansion is now easy: a new edge can be added between two labels iff
they both have at least one free slot and are not paired by forb. To update
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the forb array after a new edge addition note, that an edge can be added
in three ways: between two yet unused labels, between an unused label and
a path endpoint or between two endpoints of different paths. Supposing
that the labels being connected are u and v the following simultaneous
assignment:

(forb[forb[ull, forb[forb[v]]) := (forb[v], forb[u])

is valid in each case, which is an easy check to verify.

A straightforward recursive tree search procedure that counts graceful
n-permutations is an obvious outcome of the above considerations. Now

we shall work on efficiency.

3 Equivalence of partial permutations

In Figure 1 half of the search tree was omitted because it resembles the first
half. More precisely, if f : V+— N and g: F — N is a graceful labeling of a
graph G = (V, E) with m edges then the complementary labeling given by

f(w)=m—f(v), Fluw)=g(w)
is again graceful. The omitted half of the tree was, in this sense, comple-

mentary to the first half so it yielded equally many graceful permutations.

Now we shall generalize this, and define an equivalence relation between
the nodes on one level in the search tree.

Definition 2 Let (free;, forby) and (freez, forbz) be the arrays free
and forbd in two partial permutations Ny and N on the same level of the
search tree T,,. We say the nodes N and N are equivalent if either

Y, freei(u] = freeslu] and Vy (freeifu] =1 = forbi[u] = forbs[u})

or
V. freei[u] = frees[n — 1 —u]

and V, (freei(u] =1 = forbi[u] =n—1— forbs[n —1 —u])
Less formally, N7 and M, are equivalent if they have the same forb-
pairing of endpoints and the same set of used labels, possibly after taking

the complementary labeling in one of the nodes. This is an equivalence
relation with the following additional property:
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Fact 1 If N1 and N2 are equivalent then the number of graceful permuta-
tions they expand to (i.e. number of leaves on level 1 in the subtrees of T,
rooted in Ny and N, respectively) are equal.

Proof. This follows from the remark in the previous section, that only
the forb-pairing and the set of free labels influence the expansion algo-
rithm (exact location of inside-path labels does not matter). On the other
hand complementary nodes yield symmetrical (complementary) subtrees.
In either case equivalent partial permutations expand to isomorphic rooted

subtrees of 7,,.

This observation leads to a breadth-first search of the search tree. With
each node we keep its multiplicity — the number of nodes in its equivalence
class. We only keep one representative of each class. After expansion from
level k to k — 1 we group the new nodes into equivalence classes again and
sum up multiplicities accordingly. The final answer G(n) is the sum of
multiplicities of all nodes on level 1. Note, that comparing two nodes with
respect to equivalence takes ©(n) time, thus full comparison of new nodes
during the expansion from level k to & — 1 would be expensive. To speed
this up a hash table was used to keep new nodes. Observe, that the choice
of the hash function is not completely arbitrary — it must not distinguish
equivalent nodes.

Here are some sample numbers to indicate the power of the optimization
thus achieved: G(40) ~ 0.2 - 10 is the number of nodes at level 1 in
T40. Hovewer, there are less than 3 - 10° distinct equivalence classes of
partial permutations at each level, therefore at most this many partial
permutations must be kept in memory and expanded at a time.

4 The main results

To get a lower bound on G(n) we follow precisely the method of [2] and [1].
First, extend the notation G(n) to:

¢ G(n;a) — the number of graceful n-permutations with left endpoint
a (that is 0(0) = a), let us call them graceful (n; a)-permutations,

® G(n;a,b) — the number of graceful n-permutations with endpoints
a,b (that is 0(0) = a,0(n — 1) = b), let us call them graceful (n;a, b)-
permutations.

Lemma 1 ({2], [1]) For any numbers r,m, j, j < m we have the inequality
G(r +2m;j) 2 G(2m; j,j + m)G(r; 7).
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Proof (sketch). First prove that a graceful (2m;j, j + m)-permutation
is in fact bipartite graceful — all edges connect large (greater or equal m)
vertex labels with small ones. Then add r to all large vertex labels in a
(2m; 3, j+m)-permutation, add m to all vertex labels in a (r; j)-permutation
and glue these two by adding an edge between 7 + m + r and j + m. This
yields a (r + 2m; j)-permutation.

By iterating the last inequality & times we get:
G(r + 2km; j) > G(2m; 4, j + m)*G(r; j).
Hence, for fixed m, j we have an estimate (n is the variable):
G(r) 2 G(n; ) = Q (G(2m; 4,5 +m)™) ™).

It remains to find m, j, that make yn, ; = G(2m;j,j +m)!1v= possibly large.
Observations show, that for a fixed m ym ; is the biggest for j = |Z]
and that the sequence vy, || is increasing. Hence it is desirable to com-
pute Ym, |z form as big m as possible, which is equivalent to computing
G(2m; I_—’{,ﬁ-j—, | 2] + m). The results so far were:

e in [2]: G(20;5,15) = 4382, hence G(n) = Q(1.521"),

e in [1]: G(26;6,19) = 636 408, hence G(n) = Q(1.671") = Q((3)").

With slight easy modifications the algorithm described in the previous
section can be used to enumerate also graceful (n;a,b)-permutations. It
was efficient enough to compute:

G(64;16,48) = 1172380428 523169 632 220 649

which in turn yields 733,16 = G(64;16,48)1/64 > (10%4)1/64 > 237
Eventually we get:

G(n) 2 G(n; 16) = Q(2.37T").

This completes the proof of Theorem 1.
5 Closing remarks

Additionally the values of G(n) have been computed for n < 40 (they
have been submitted to [4]). The quotients G(n + 1)/G(n) tend to gather
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between 3 and 4.5, suggesting that the lower bound 2.37" is poor. This
is no surprise, because we have in fact estimated the size of only a small
part of all graceful n-permutations, namely the bipartite graceful (n; 16)-
permutations. It also remains an open question to find an exponential
upper bound on G(n). :
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