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Abstract

Let k be a positive integer, and let G be a simple graph with vertex
set V(G). A function f: V(G) — {£1,£2,...,%k} is called a signed
{k}-dominating function if e N} f(u) 2 k for each vertex v € V(G).
The signed {1}-dominating function is the same as the ordinary signed
domination. A set {fi, f2,..., fa} of signed {k}-dominating functions on
G with the property that 32 | fi(v) < k for each v € V(G), is called a
signed {k}-dominating family (of functions) on G. The maximum number
of functions in a signed {k}-dominating family on G is the signed {k}-
domatic number of G, denoted by d(x)s(G). Note that d;;s(G) is the
classical signed domatic number ds(G). In this paper we initiate the
study of signed {k}-domatic numbers in graphs, and we present some
sharp upper bounds for d(x)s(G). In addition, we determine dir)s(G)
for several classes of graphs. Some of our results are extensions of known
properties of the signed domatic number.

Keywords: signed {k}-domatic number, signed {k}-dominating func-
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1 Introduction
In this paper, G is a finite simple graph with vertex set V = V(G) and edge

set E = E(G). For a vertex v € V(G), the open neighborhood N(v) is the set
{u € V(G) | wv € E(G)} and the closed neighborhood N{v] is the set N (v)U{v}.
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The open neighborhood N(S) of aset S C V is the set |J,¢ s N(v), and the closed
neighborhood N(S] of S is the set N(S)US. The minimum degree and maximum
degree of a vertex of G are denoted by 6(G) and A(G), respectively. We write
K, for the complete graph of order n and C,, for a cycle of length n. Consult
[10] for the notation and terminology which are not defined here.

For a real-valued function f : V(G) — R, the weight of f is w(f) =
Yvey f(v). For S C V, we define f(S) = 3 s f(v). So w(f) = f(V). Let
k > 1 be an integer. A signed {k}-dominating function (S{k}D function) is a
function f : V(G) — {+£1,42,...,+k} satisfying ZuEN[ﬂ] f(u) > k for every
v € V(G). The minimum of the values of 3,y (g, f(v) taken over all signed
{k}-dominating functions f is called the signed {k}-domination number and is
denoted by y(x)s{G). Since the function assigning +k to every vertex of G is
a S{k}D function, called the function €, of weight nk, v(x}s(G) < nk for every
graph G of order n. Hence v(k)s(G) = nk if and only if ¢ is the unique S{k}D
function of G. In the special case when k = 1, v(x}s(G) is the signed domination
number vg(G) investigated in (2] and has been studied by several authors (see,
for example, (1, 3}).

Observation 1. If G is the complete graph of order n, then v(x)s(G) = k.

A set {f1, f2,..., fa} of distinct signed {k}-dominating functions on G with
the property that Z?=1 fi(v) < k for each v € V(G), is called a signed {k}-
dominating family on G. The maximum number of functions in a signed {k}-
dominating family on G is the signed {k}-domatic number of G, denoted by
d{x}s(G). The signed {k}-domatic number is well-defined and d{x}s(G) 2 1 for
all graphs G since the set consisting of any one S{k}D function, for instance the
function ¢, forms a S{k}D family of G. A d(x}s-family of a graph G is a S{k}D
family containing d{x}s(G) S{k}D functions. The signed {1}-domatic number
d{135(G) is the usual signed domatic number ds(G) which was introduced by
Volkmann and Zelinka in (8] and has been studied by several authors (see for
example [4, 5, 6]).

We first study basic properties and sharp upper bounds for the signed {k}-
domatic number of a graph. Some of them generalize the results obtained for
the signed domatic number.

In this paper we make use of the following results.

Proposition A. [2] Let G be a graph of order n. Then v5(G) = n if and
only if every nonisolated vertex of G is either an endvertex or adjacent to an

endvertex.

Observation 2. Let G be a graph of order n and k a positive integer. Then
~es(G) = nk if and only if G is empty graph or every nonisolated vertex of G
is either an endvertex or adjacent to an endvertex when k = 1.

Proof. If G is empty graph or every nonisolated vertex of G is either an endver-

tex or adjacent to an endvertex when k = 1, then obviously vxs(G) = nk.
Conversely, let vxs(G) = nk. If k = 1, then the result follows from Propo-

sition A. Assume now that k > 2 and suppose to the contrary that G is not
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empty. Then there exists an edge uv € E(G) and the function f : V(G) —
{£1,£2,..., £k} defined by f(u) = 1,f(v) = k—1 and f(z) = k for z €
V(G) - {u,v} is a signed {k}-dominating function of weight (n — 1)k which is
a contradiction. This completes the proof. O

Proposition B. [7] If G is a graph of order n, then
vs(G) +ds(G) <n+1.

Equality vs(G) + ds(G) = n + 1 occurs if and only if G = K, with n odd or
every nonisolated vertex of G is either an endvertex or adjacent to an endvertex.

Proposition C. [9] For any integer n > 1, we have

1 if nisodd
'rs(Kn)"{ 2 otherwise. g

Proposition D. (8] If G = K, is the complete graph of order n, then

n if n is odd,
ds(Kn)=<¢ p if n=2p and pis odd (2)
p—1 ifn=2p andpiseven.

2 Basic properties of the signed {k}-domatic num-
ber

In this section we present basic properties of d{;}s(G) and sharp bounds on the
signed {k}-domatic number of a graph.

Theorem 3. If G is a graph of order n, then

1< duys(G) <46(G) +1.
Moreover if d(x}s5(G) = §(G) + 1, then for each function of any d(x)s—family
{f1, fa,- - ,fd{} and for all vertices v of degree 6(G), ZueN[v] fi(u) = k and
Ele fi(u) = k for every u € N[v].

Proof. Let {f1, fa,..., f} be a S{k}D family of G such that d = d{x}s(G) and
let v be a vertex of minimum degree §(G). Then |N[v]| = §(G) + 1 and

Tim L
Zg=1 % ZuEN[v] fi (u)
ZMGN[V] 'l% Zg=l fi(u)

u€N[v] 1
0(G)+1.

1<d

A A

If d(x)s(G) = 6(G) + 1, then the two inequalities occurring in the proof become
equalities, which gives the two properties given in the statement. O
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The special case k = 1 in Theorem 3 can be found in [8]. The next corollaries
are consequences of Theorem 3.

Corollary 4. If T is a tree of order n > 2, then ds(T) = 1 when k = 1,
1< d{k}s(T) < 2 when k=2 and d{k}s(T) =2 when k > 3.

Proof. If k = 1, then since every signed dominating set assigns 1 to an endvertex,
we deduce that dix)s(T) = 1.

If k = 2, then Theorem 3 implies immediately that 1 < dx}s(T) < 2

Let k > 3. For a fixed vertex v € V(T), let V; = {uv € V(T) | dr(u,v) =
i} for i = 0,1,...,h, where h is the eccentricity of v. Define f : V(T) —
{£1,£2,...,+k} by f(u) = k-1 for u € V; when i is even and f(u) = 1
otherwise. Also define g : V(T) — {1,2,...,k} by g(u) = 1 for v € V; when ¢
is even and g(u) = k — 1 otherwise. Obviously, {f, g} is a signed S{k}D family
on T and the result follows from Theorem 3. O

Corollary 5. If T is a tree of order n > 2 such that every vertex is an endvertex
or adjacent to an endvertex, then dy2)s(T) = 1.

Proof. Suppose to the contrary that dis)s(T) = 2, and let {f1, f2} be a S{k}D
family on T. Let v be an arbitrary endvertex and u its neighbor. Then it
follows from Theorem 3 that fi(v) + fi(u) = 2 and fa(v) + f2(u) = 2 and thus
fi(v) =1 and fo(v) = 1 and so fi(u) =1 and fo(u) = 1. Since every vertex
of T is an endvertex or adjacent to an endvertex, we obtain the contradiction

flEngl. O

Let 7" be the tree consisting of the vertex set
V(T,) = {zl: Z2,Z3,T4,T5,T6, Vi, V2, V3, w}

such that w is adjacent to v;,v2 and vz and z; and zp are adjacent to v,
z3 and x4 are adjacent to vo as well as z5 and xg are adjacent to vz. Define
fi : V(T') = {£1,£2} for ¢ € {1,2} by fi(z) = 1 for each z € V(T”) and
fo(w) = -1 and fo(z) = 1 for each = € V(T")— {w}. Clearly, {f1, f2} is a signed
S{k}D family on T" and hence if follows from Theorem 3 that d(5)5(T”) = 2.

This example and Corollary 5 demonstrate that if T is a tree, then d{2)s(T') =
1 and dy9)5(T) = 2 are possible.

Problem 1. Characterize all trees T' with the property that d(s)5(T) = 2.
Corollary 6. If P is a path of order n > 2, then dy2;5(P) = 1.

Proof. Let P = z1x;...z, & path of order n. Suppose to the contrary that
di23s(P) = 2, and let {f1, f2} be a S{k}D family on P. We have seen in the
proof of Corollary 5 that fi(z;) = fi(z2) = fa(z1) = fa(z2) = 1. Since fi(z1) +
fi(z2)+ fi(x3) = 2, it follows that fi(z3) > 1fori=1,2. As fi(za)+ fa(z3) <2,
we conclude that fi(x3) = fa(zs) = 1. If we continue this process, we finally
arrive at fi = fo = 1, a contradiction. O
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If C, is the cycle of order n, then it was shown in [8] that d,(C,) = 3 if
n = 0 (mod 3) and d,(C,) = 1 otherwise.

Corollary 7. For positive integers k > 2 and n > 3,

3 if n=0(mod3),
dixys(Cn)=¢ 2 if n#0(mod3)andk >3,
1 if n#0(mod3)andk=2.

Proof. Let Cp, = (v1v2...vn). By Theorem 3, d{z}s(Cr) < 3. Assume first that
n =0 (mod 3). Define f; : V(T) — {£1,+£2,...,4k} for i € {1,2,3} by

fi(vaj—2) =k, fi(vsj—1) =k and fy(vs;) = —k,

fo(vsj—2) = =k, fa(vsj—1) =k and fo(vs;) =k,
fa(vsj—2) =k, fa(vaj-1) = —k and f3(vs;) =k

for 1 < j < n/3. Obviously, {f1, f2, fa} is a S{k}D family on C, and therefore
d{x}s(G) = 3 in that case.

Now let n # 0 (mod 3). We show that d(;s5(Cn) < 2. Suppose to the
contrary that d(xys(Cr) = 3. Let {f1, f2, fa} be a S{k}D family of C,. It follows

from Theorem 3 that for all vertices v, 3, ¢ v, fi(¥) = k and Z:.;l i(v) = k.
We claim that f;(v) > 0 for every ¢ € {1,2,3} and each v € V(G). Suppose
to the contrary that f;(v) < 0 for some i € {1,2,3} and some v € V(G). We
may assume fj(v;) < 0. Since ZueN(v] fi(u) = k for all vertices v, it is easy
to verify that fi(v1) = fi(va) = ... = fivz|3)41), fi(va) = fi(ws) = ... =
fl(v3l§1+2) and fi(vs) = fi(vg) = ... = fl(v3[?;J)' If n = 2 (mod 3), then it
follows from 2f1(v1) + fi(vn) = Xuenp,) f1(u) = k that fi(v,) > k which is
a contradiction. If n = 1 (mod 3), then we obtain f;(v;) = fi(v,) which leads
to the contradiction 3, ¢ () f1(u) < 0. Thus fi(v) > 0 for every i € {1,2,3}
and v € V(G).

Since the f;s are distinct, we may assume that fi(v;) > fo(vi) > fa(v;) for
some %, say ¢ = 1. It follows from Zf=1 fi(v1) = k that fi(v1) > k/3. As
above we have fi(v1) = fi(vs) = ... = fi(vag)41), fi(v2) = fi(ws) = ... =
fi(vs g )+2) and fi(vs) = fi(ve) = ... = fi(v3 g)). If n = 2 (mod 3) (the case
n =1 (mod 3) is similar) then from }_ . Njwy) J1() = k and 3 iy f1(2) =
k, we deduce that 2fi(v1) + fi(va) = fi(v1) + 2f1(vn) = k which implies that
fi(v1) = fi(va) = k/3. It follows that f(v) = k/3 for each v € V(C,). Since
fa(v1) < k/3 and fa(v1) + fa(ve) + fa(vn) = k, we may assume, without loss
of generality, that fa(vz) > k/3. An argument similar to that described above
implies that fa(v) = k/3 for each v € V(Cy), a contradiction. Thus

dixys(Cn) < 2. (3)

If £ > 3, then the method in Corollary 4 shows that d{x}s(Cn) > 2 and
hence d{k}s(cn) =2.
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Now let k = 2. By (3), d{x)s(Cn) < 2. We show that dx)s(Cn) < 1.
Suppose to the contrary that dix}s(Cn) = 2. Let {f1, fo} be a SEIc}D family of
Cn.

Fact 1. fi(vj)€{-1,1,2} foreachi=1,2andeach1 <j< n.

Suppose to the contrary that fi(v;) = —2 for some i and j. We may assume,
without loss of generality, that fi(v:) = —2. Since 3 ey, fi(2) 2 2 and
Youe N{va) fi(u) > 2, we obtain f1(v2) = fi(vn) = 2 and f1(v3) = 2, respectively.
Since fi(v2) + fa(v2) < 2 and fi(vs) + f2(vs) < 2, we deduce that f2(v2) <0
and fp(v3) < 0. This implies that }_ Nlva] fa(u) < 0 which is a contradiction.
Thus f;(v;) # —2 for each ¢ and each j.

Fact 2. For each %, there is no 1 < j < n such that fi(v;) = fi(vj41) = 2,
where the sum is taken module n.

Suppose to the contrary that fi(v;) = fi(vj4+1) = 2 for some i and j. We may
assume, without loss of generality, that fi(vi) = fi(v2) = 2. Since fi(vi) +
f2(v1) € 2 and fi(v2) + f2(v2) < 2 we deduce that fo(v1) < 0 and fo(wz) < 0.
It follows that 3°,¢ n(u,) f2(u) < 0 which is a contradiction.

Fact 3. For each i, there is some 1 < j < n such that fi(v;) = 2.

Suppose to the contrary that fi(v;) < 2 for some i and each j. We may assume
i=1 Since ) Niv;] fi(u) > 2, we deduce that fi(v;) = 1 for each j. On
the other hand, fi(v;) + f2(v;) < 2 implies that fp(v;) < 2 for each j. Since
e Niv;) f2(u) 2 2, we deduce that fo(v;) =1 for each j. Thus f; = fo which
is a contradiction.

By Fact 3, we may assume, without loss of generality, that fi(v;) = 2.
Since fi(v1) + fa(v1) £ 2, we obtain fy(v1) = —1 by Fact 1. It follows from
ZueN[w] fo(u) > 2 that fa(ve) = 2 or fo(vn) = 2. Suppose that fa(vg) = 2.
This implies that f;(ve) = —1. Since 3, Niva] fi(u)>2and - o Niva] fa(u) >
2, we must have fi(v3) > 1 and fao(vz) > 1. It follows from f1(v3) + fa(vs) <2
that fi(vs) = fa(vs) = 1. Since 3 ey f1(u) 2 2, we obtain fi(vs) =
2. If we continue this process we finally arrive at fi(v1) = fi(vs) = ..

fHi(vagp41) = 2, fi(ve) = filvs) = ... = fivag)42) = —1, fi(va) = fx(vs.)
.. = filvag)) = 1, fa(v1) = fi(va) = ... = fi(va 3)41) = =1, fi(ve) =
filus) = ... = filvaz)+2) = 2 and fi(ws) = fi(ve) = ... = fi(va 3y) = L.

If n = 1 (mod 3), then we obtain fp(v2) = fa(vn) = —1 which implies that
2 ueNw] f2(#) £ 0, a contradiction. If n =2 (mod 3), then we obtain fi(v,) =
fi{vn) = 2 which contradicts Fact 2, and the proof is complete. [m]

Theorem 8. If k > 2 and n > 3 are integers, then d(x}s(Kn) = n.

Proof. Assume that {z,2,...,Tn} is the vertex set of the complete graph K.
First let n = 2p + 1 be odd. Define the signed {k}-dominating functions

f11f21~'-7fn b)'
fi(zs) = fi(@ig1)=...= fi($i+p) =k

and f;(z;) = —k otherwise for ¢ = 1,2,...,n, where all numbers are taken
modulo n. It is easy to see that ZUGV(K,.) filv) = kforl <4 < nand
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Yi1 fi(v) = k for each v € V(Ky). Hence {f1, fa,..., f»} is a S{k}D fam-
ily on Ky, and therefore d{x)s(Kn) > n. In view of Theorem 3, we see that
d{k}S(Kn) < n, and thus d(k}s(K,,) =n.

Second let n = 2p > 4 be even. Define the signed {k}-dominating functions
fiyfay - fa by fi(®i) =k, filzin1) = 2, filzise) = fi(zizs) = =1, fi(Tiv2;) =
1 and fi(Tig4o;41) =—1fori=1,2,...,n and 2 < j < p — 1, where the indices
are taken modulo n. It is easy to see that 3 oy ) fi(v) =k for 1 <i<n

and 377, fi(v) = k for each v € V(Kn). Hence {f}, fo,....fn} is a S{k}D
family on K, and therefore d(i}s(Kn) > n. In view of Theorem 3, we see that
dixys(Kn) < n, and thus d(iys(Kn) = n. o

If &£ = 1, then Proposition D shows Theorem 8 is only valid in the case that
n is odd. If n = 2, then it follows from Corollary 4 that Theorem 8 is also valid
for & > 3. Now Proposition D, Theorem 3, Corollaries 4 and 5 and Theorem 8
imply the next result immediately.

Corollary 9. If k is a positive integer and G a graph of order n, then
dix}s(G) < n,

with equality if and only if K = 1 and G is isomorphic to the complete graph
K, and n is odd or k = 2 and G is isomorphic to the complete graph X, and
n# 2 or k> 3 and G is isomorphic to the complete graph K,,.

As a further application of Theorem 3, we will prove the following Nordhaus-
Gaddum type result.

Proposition 10. Let G be a graph of order n, minimum degree 6(G), maximum
degree A(G), and let G be its complementary graph. Then

d(iys(G) +dgsys(C) Sn+8(G) ~ A(G) +1 <n+ 1. @)
The equality d(x}s(G) + dx}s(G) = n + 1 implies that G is a regular graph.
Proof. Since 6(G) = n — A(G) — 1, it follows from Theorem 3 that
dixys(G) +dixys(G) S (6(G) + 1) + (n - A(G)) S n+ 1.

If dirys(G) + d{k}s(a) =n+ 1, then §(G) = A(G) and G is regular. O

If k=1 and nis odd or ¥ > 2 and n > 4, then Proposition D or Theorem 8
impliy that d(x}s(K.) = n and consequently

dikys(Kn) + dgys(Bn) =n + 1.

This example demonstrates that Proposition 10 is sharp.
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Theorem 11. Let G be a graph of order n with signed {k}-domination number
v{x}s(G) and signed {k}-domatic number d(xs(G). Then

Yix}s(G) - d(xys(G) < nk.

Moreover, if v{x}5(G)-d{x}s(G) = n, then for each dx)s-family {fi,fay: -+, fa}
on G, each function f; is a y(x}s-function and 2?:1 filv)=kforallveV.
Proof. Let {f1, f2,..., fa} be a S{k}D family on G such that d = dg;)s(G) and
let v € V. Then 4

d-v(x)s(G) Z:}:l Yix}s(G)
Li=1 Zv‘fv fi(v)
ZvEV Ei=1 fi(v)

vEV
nk.

WIAT A B

If v{k}s(G) - dxys(G) = nk, then the two inequalities occurring in the proof
become equalities. Hence for the dx)s-family {f1, f2," -, fa} on G and for
each i, 3 cv fi(v) = Y{x}s(G), thus each function f; is a y(x)s-function, and

Z?:l fi(v) = k for all v. 0

The upper bound on the product y(x)s(G) - d{x}s(G) leads to a bound on
the sum.

Theorem 12. If k > 1 is an integer and G a graph of order n, then
Y(k}s(G) + dixys(G) S nk +1

with equality if and only if G is isomorphic to the empty graph or k=1and G
is isomorphic to K, and n is odd or k£ = 1 and every nonisolated vertex of G is
either an endvertex or adjacent to an endvertex.

Proof. Applying Theorem 11, we obtain

i kn
G)+d G) L ———+d G). 5
Yikys(G) + dirys(G) Z535C) x}s(G) (5)

Theorem 3 implies that 1 < d(x}s(G) < n. Using these inequalities, and the
fact that the function g(z) = z + (kn)/z is decreasing for 1 < z < vkn and
increasing for vkn < x < n, we deduce the desired bound as follows

kn
Yix}s(G) + dixys(G) < max {kn+ L—+ n} =nk+1.

If G is isomorphic to the empty graph, then y(x)s(G) = kn and d(x)s(G) = 1
and thus y(kys(S) + d(x}s(G) =nk + 1. If k=1 and G = K, where n is odd
or k = 1 and every nonisolated vertex of G is either an endvertex or adjacent
to an endvertex, then vs(G) + dg(G) = n + 1 by Proposition B.
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Conversely, assume that G is not the empty graph, G # K, when k = 1
and n odd, and that not every nonisolated vertex of G is either an endvertex or
adjacent to an endvertex when k = 1. If k = 1, then it follows from Proposition
B that vs(G) + ds(G) < n. Thus we assume that k > 2. Since G is not
the empty graph, there exists an edge vw € E(G). Now define f : V(G) —
{£1,£2,...,£k} by f(w) = k-1, f(v) =1 and f(z) = k for z € V(D)\ {v,w}.
Then f is a signed {k}-dominating function on G and hence v(x}s(G) < k(n—1).

If d{x)s(G) = 1, then v(x}s(G) + dx)s(G) < k(n — 1) +1 < kn.

Assume next that dx)s(G) > 2. Using these facts and inequality (5), we
obtain

kn
G)+d G) € —m——m—+d G
Y(x}s(G) + dixys(G) 2075 (C) xys(G)

{Icn kn }
maxq —+2,—+n
2 n

IA

= max{%+2,k+n}

kn
= -2—+2$k:n.

This completes the proof. ]
Corollary 13. Let G be a graph of order n and k > 1 an integer. If

min{y(x}s(G), d{x)s(G)} > a,

with 2 € a < Vnk, then

k
Yik}s(G) + dixys(G) < a + %

Proof. Since min{v{x}s(G),d(x}s(G)} 2 a, it follows from Theorem 11 that
a < dg.(G) < Ea—. According to Theorem 11, we obtain

k
G) + dys(G) € dimys(G) + —F .
Yik}s(G) + d(xys(G) £ diiys(G) Z575(C)

The bound results from the facts that the function g(z) = = + (nk)/z is de-
creasing for 1 < < vnk and increasing for vVnk < z < nk. O
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