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Abstract

If there are integers k and A # 0 such that a total labeling f of
a connected graph G = (V,E) from VUE to {1,2,...,|V]| + |E|}
satisfies f(z) # f(y) for distinct z,y € VU E and f(u) + f(v) =
k 4+ Af(uv) for each edge uv € E, then f is called a (k, \)-magically
total labeling ((k, A)-mit! for short) of G. Several properties of (k, A)-
mils of graphs are shown. The sufficient and necessary connections
between (k, A)-mtls and several known labelings (such as graceful,
odd-graceful, felicitous and (b, d)-edge antimagic total labelings) are
given. Furthermore, every tree is proven to be a subgraph of a tree
having super (k, A)-mitls.
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Keywords: graph labelings, (odd-)graceful labeling, harmonious
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1 Introduction and concepts

The problems of transforming a graph labelling into another one have appli-
cations in areas such as bioinformatics, (scale-free, small-world) networks,
VLSI, and so on. Labellings including f(u) + f(v) (vwv € E(G)) were used
to many problems. An example, studied first by Graham and Sloane in [8],
is the harmonious graphs of modular versions of additive bases problems
stemming from error-correcting codes [9]. Various graph labellings can be
found in the survey paper (6] in which the author collects more than 1600
articles on graph labellings. The conjectures listed in Conjecture 1 are
extensively studied [6].

Conjecture 1. Trees mentioned in the following have at least three ver-
tices.

1. (Graceful Tree Conjecture, 1966 [10]) Every tree is graceful.

2. (1970 [5]) Every tree admits an edge-magic total labelling.

3. (1980 [8]) Every tree is harmonious.
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4. (1991 [7]) Every tree is odd-graceful.
5. (1998 [4]) Every tree admits a super edge-magic total labelling.

It would be interesting to find connections between the conjectures listed
in Conjecture 1. For this reason, we show a new labelling in finding equiv-
alent connections among labellings. The graphs under consideration are
simple, finite, and loopless, unless otherwise specified. We use standard
terminology and notation of graph theory. Graph labellings mentioned
here can be found in [6]. The set of vertices that are adjacent to a ver-
tex u of a graph G is denoted as N(u), thus, the degree degy(u) of the
vertex u is equal to the cardinality |N(u)|. The shorthand notation [m,n|
stands for an integer set {m,m +1,...,n} withn > m > 0. A k-set S
is a set containing exactly k integers, and max(S) = max{z : z € S},
min(S) = min{z : z € S}. A (p,q)-graph is a graph having p vertices
and ¢ edges. For a graph G, a labelling f : § — [m,n] is proper if
f(z) # f(y) for distinct z,y € S, where § # S C V(G) U E(G). Write
f(S) = {f(z) : = € S}. Furthermore, f is bijection if f(S) = [m,n).

William et al. [11] defined a 6-edge magic total labelling as: Let G be
a (p,q)-graph and 6 be a positive integer. A bijection f from V(G) U E(G)
to [1,p + q) is called a 8-edge magic total labelling if for all edges uv, the
number f(u)+ f(v) +8f(uv) is equal to a fixed constant, and furthermore
f is a super 8-edge magic total labelling if the set of vertex labels is equal
to [1,p]. Yao et al. ([12], [13]) introduced a magical type of labelling:
A (p,q)-graph G has a k-magic coloring f : V(G) U E(G) — [1,p + 4]
if f(u)+ f(v) = k + f(uv) whenever uv € E(G), where k is a constant.
Motivated from the above labellings, we have

Definition 1. Let G be a connected (p, g)-graph. If there are integers k
and A # 0 such that a proper total labelling f of G from V(G) U E(G)
to [1,p + q) satisfies f(u) + f(v) = k + Af(uv) for uv € E(G). Then f is
called a (k, \)-magically total labelling ((k, A)-mtl for short) of G, k and A
are called a magical constant and a balanced number, respectively. Further,
f is super if f(V(G)) = [1,p], and G is f-saturated if f is no longer a
(k, \)-mtl of G + uv for any uv € E(G), where G is the complement of G.

A (0,1)-mtl of a (p, g)-graph G is also a 1-sequentially additive labelling
defined by Bange et al.[6] in 1983. A super (0,1)-mtl of G is also a (p +
1,1)-edge antimagic vertex labelling of G [6]. A (k,—1)-mtl of G is just
an edge-magic total labelling of G defined first by Kotzig and Rosa [5] in
1970, 1966 under the name of magic valuations. In 1972, they proposed
the magical tree problem: Whether do all trees have the edge-magic
total labellings? Kotzig and Rosa contributed various labellings for solving
problems of graph decompositions, and they proposed some interesting
open problems and conjectures, such as the Graceful Tree Conjecture, a
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longstanding conjecture up to now. Rosa [10] has identified essentially
three reasons why a graph G fails to be graceful: (1) G has “too many
vertices” and “not enough edges”; (2) G has “too many edges”; and (3)
G has “the wrong parity”. In fact, many problems of graph labelling have
some of these three characteristics.

Figure 1: (a) A bi-star has a (0,2)-mtl; (b) a graph with a super (—5,1)-mtl;
(c) K3 admits a (4,1)-m#; (d) K4 — e admits a (6, 1)-mil.

Let G be a connected (p, ¢)-graph having a proper total labelling f :
V(G)UE(G) — [1,p+q], and let m be an integer. Several labellings related
with the above labelling f are

1. The dual labelling h of f is defined as h(z) = p+g+1— f(z) for
z € V(G) U E(G) (see Figure 2(b)).

2. A total m-float labelling h of f is defined as h(z) = m + f(z) for
z € V(G)UE(G).

3. An edge m*-float labelling (respectively, an edge m™-float labelling)
h of f is defined as h(u) = f(u) for u € V(G) and h(uv) = m + f(uv)
(respectively, h(uv) = m — f(uv)) for uv € E(G).

Figure 2: A tree T has: (a) a super (21, —1)-mtl f; (b) the dual labelling of f is
a (27, —1)-mtl; (c) the partially dual labelling k of f is a super (21, —1)-mtl; (d)
the edge-partially dual labelling of k is a (—3,1)-mti.

We will define some labellings that are relevant to (k,\)-mtls in the
following. Let G be a connected (p, ¢)-graph having a (k,\)-mtl f.

1. Suppose that f is super. (i) The partially dual labelling h of f is
defined as h(x) = p+1— f(z) for z € V(G) and h(zy) = 2p+q+1 - f(zy)
for zy € E(G) (see Figure 2(c)). (ii) The edge-partially dual labelling h of
f is defined as h(z) = f(z) for z € V(G) and h(zy) = 2p+ g+ 1 — f(zy)
for zy € E(G) (see Figure 2(d) and Figure 3(d)).
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2. Suppose that f(E(G)) = [1,q]. The vertez-partially dual labelling h
of f is defined as h(z) = 2g+p+1— f(z) for z € V(G) and h(zy) = f(zy)
for 2y € E(G) (see Figure 3(b)).

Figure 3: (a) A graph G admits a (—4,1)-mt! f; (b) G has a (16, —1)-mtl that is
the vertex-partially dual labelling of f; (c) Petersen graph has a super (-7, 1)-mtl
a; (d) a 2-star has a super (19, —1)-mtl.

Example 1. Let G be a connected (p, g)-graph having a (k,A)-mtl f.
Let P = uyup -+ - up and C = P+ uju, be a path and a cycle on n vertices
in G, respectively. By the definition of a (k, A)-mtl, the path P holds

flug) = ——2‘—"?"'(—1)J Flur) + A (—1) f(wiir) | 15 € [1,n—1);
i=1

and the cycle C holds i(;;.ﬂi (2f(u1)—k) = (-1)"A Y, (1) F (winigr)
(uns1 = uy mod n). If C is an even cycle, the sum [, (—1) f(usuiy1)
(2n41 = w1 mod n) equals to zero. Conversely, these two properties can be
used to define a (k, A)-mtl.

Example 2. Let n;(G) be the number of vertices of degree one in a
graph G. If a tree T admits a (k, A)-mtl f, then T has 2™(T) (k, \)-mils.
Suppose that an edge uv € E(T) satisfies degr(u) = 1. We define a
labelling h of T as: h(z) = f(z) for z € V(T)UE(T) and = ¢ {u,uv}; and
h(u) = f(uwv), h(uv) = f(u). Clearly, h also is a (k,A)-mtl of T. Thereby,
depending on the (k, A)-mtl f, there are 2"1(T) (k, \)-mitis of T.

2 Results on (k, \)-mtls

Theorem 2. Let G be a connected (p, q)-graph.
(i) G admits a (k,A)-mtl f if and only if for two adjacent edges uv and

vw of G,
fu) = f(w) = A[f(uv) = flvw)]. 1)



(1) G admits a (k,\)-mtl f if and only if the dual labelling h of f is a
(k',A)-mtl, where k' =(2—N(p+q+1)—k.

(#49) G admits a (k,X)-mtl g with A > 1 if and only if it admits a
(k'y—=A)-mtl h, where k' = k+ MM + m) for M = max(f(E(G))) and
m = min(f(E(G))).

(tv) G admits a super (k,\)-mtl f if and only if the partially dual la-
belling h of f is a super (k', X)-mtl, where k' = 2(p+1)—k—A(2p+q+1).

(v) G admits a super (k,\)-mtl f if and only if G admits an edge-
partially dual labelling h of f which is a super (k', —\)-mil such that k' =
k+A2p+q+1).

(vi) G admits a (k,))-mtl f with f(E(G)) = [1,q] if and only if G
admits a vertez-partially dual labelling h of f which is a (k', —X)-mtl, where
k'=4q9+2(p+1)—k.

Proof. (i) Let f be a (k, A)-mtl of a connected (p, g)-graph G. For distinct
u,w € N(v) (v € V(G)), we subtract f(v) + f(w) = k + Af(vw) from
f(u)+ f(v) = k + Af(uv), and then get the equation (1).

Conversely, for an arbitrary vertex v € V(G) and distinct u,w € N(v),
the equation (1) holds. Hence,

f(u) + f(v) = Af(uwv) = f(v) + f(w) — Af(vw) @)

Let k = f(u) + f(v) — Af(uv). Notice that v € N(u) N N(w) and G is
connected. By (1) and (2), then f(u) + f(s) — Af(us) = k for each vertex
s € N(u), and f(w) + f(t) — Af(wt) = k for each vertex t € N(w), which
means that f really is a (k, A)-mtl

(i) By the definition of the dual labelling k of the (k,))-mtl f, we are

able to testify

h(u) + h(v) = 2(p + g +1) — [f(v) + f(v)]
=2p+q+1) - [k+Af(uv))
=2(p+q+1)—{k+A[(p+q+1) - h(w)]}
= [2-N(p+q+1) — k] + M(uv),
which means that A is a (k’,A)-mtl with &’ = (2 - A)(p+ g+ 1) — k. The

proof of ‘only if’ is similar with the above one, since f is also the dual
labelling of A.

(#i7) We define directly an edge (M + m)~-float labelling A of the la-
belling g by setting h(u) = g(u) for u € V(G) and h(uv) = M +m — g(uv)
for any edge uv € E(G). Since A > 1 we have

h(u) + h(v) = g(u) + g(v) = k + Ag(uv)
=k+A[M +m — h(uv)] = [k + MM +m)] + (=A)h(wv)
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for each edge uv € E(G). Let k' = k+ A(M +m). Clearly, his a (k’, —\)-
mil of G. Notice that g(V(G)) = h(V(G)), that is, the labellings g and h
both have the same labels of vertices. Furthermore, a super (k,A)-mtl h
corresponds to a super (k’, —\)-mtl g, and vice versa.

(tv) From the definition of the partially dual labelling h of the super
(k,A)-mtl f, we obtain h(V(G)) = [1,p], and moreover

h(z) + h(y) = 2(p+1) — [f(z) + f(¥)] =2(p+1) — [k + Af(zy)]
=2(p+1)-{k+ /\[(2p+q+ 1) - h(xy)]} = k'+ Mhr(zy),

where k' = 2(p+ 1) — k — A(2p + g + 1). The proof of ‘only if’ is similar
with one above.

The proofs of the assertions (v) and (vi) can be obtained directly by the
definitions of the edge-partially and vertex-partially dual labellings. The
proof of the theorem is complete. O

Theorem 3. Let G be a connected (p,q)-graph having a (k,A)-mtl f.

(?) Ifk <0, then A > 1.

(42) If |A| is even, then G is bipartite and k is odd, and otherwise all
labels of vertices of G have the same parity and k is even.

(id) [M(A(G) -1) <p+g-1.

Proof. Let f be a (k,\)-mtl of a connected (p,g)-graph G. (i) Since f(u)
and f(uv) are positive, thus, 0 < f(u) + f(v) —k = Af(uv) when k <0,
which leads to A > 1.

(1) From the assertion (i) of Theorem 2, for any vertex v of G and
distinct u,w € N(v), the difference f(u)— f(w) = A[f(uv) — f(vw)) is even
for f(u) > f(w) since |A| is even. So, the labels of any two neighbors of the
vertex v have the same parity. Therefore, we can partition V(G) into two
subsets, that is, V(G) = V. U V,, where V, = {f(z) = even: z € V(G)}
and V, = {f(z) = odd : z € V(G)}. If one of V, and V, is empty, thus,
all labels of vertices of G have the same parity and k is even. Suppose
that V, # 0 and V, # 0, and G contains an odd cycle C. Then there
is an edge ry € E(C) such that z,y € V, (or z,y € V,), which means
N(z) U N(y) C V.. Immediately, V, is empty since G is connected; a
contradiction. Therefore, G is bipartite and k is odd.

(#4%) The proof of the assertion (iii) is as the same as one shown in the
assertion (iii) of Theorem 4. O

Theorem 4. Let G be a connected (p,q)-graph having a super (k, A)-mtl
f.
(2) |A] is odd.

(%) If k> 0, then A < 0.
(i4i) Let A be the mazimum degree of G, then |A|(A-1) <p—1.
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(W) k25—-Ap+g) andk < (2—Np—(A+3) forp>3.

(v) If G is regular, then g is odd and k = (p+1) — JA(2p+ g +1).

(vi) If G is bipartite, (X,Y') is the bipartition of G such that max(f(X)) <
min(f(Y)) and A=1. Thenk=1-|Y]|.

Proof. Notice that f(V(G)) = [1,p] and f(E(G)) =[p+1,p+q].

(?) Since f is a super (k, A)-mtl, this assertion () is an immediate con-
sequence of the assertion (iz) of Theorem 3.

(i) Notice that G is connected, and there exists an edge uv € E(G)
with f(uv) = p+4q. Thereby, 2p — 1 —k > f(u) + f(v) — k = Af(uw) =
AP +q) = A(2p — 1). Immediately, A < 0 follows k > 0.

(447) Notice that A # 0. Since two distinct vertices z and y of N(u)
satisfy f(z) - f(y) = /\[ fluz) - f (uy)] by the assertion (i) of Theorem 2.
Let f(uz) = max{f(uv) : v € N(u)} and f(uy) = min{f(uv) : v € N(u)}.
Thereby, [N(w)|~1 < [f(uz) — ()] = (§17(=)~ Fu)] < (p—1), which
implies [A|(A-1)<p-—-1.

(4v) Notice that there exists an edge wz € E(G) such that f(wz) = p+q.
We have k = f(w) + f(2) — Af(wz) = f(w)+ f(2) = Mp+9g) 2 3— Ap+q).
By the assertion (iv) of Theorem 2 the partially dual labelling A of £, also,
isa (k',A)-mtl, where k' = 2(p+1) — k — M(2p+ ¢ + 1). Notice the bound
3—A(p+q) is the smallest one, so it implies that the bound 2(p+¢q)—A—1
is the largest one. We discuss the bounds of k again.

If Kk = 3 — A(p+ q) (which means A > 1 by Theorem 3), then we
have an edge ry € E(G) with f(zy) = p + ¢ such that f(z) + f(y) =
k+ Af(zy) = 34+ Af(zy) —p—q] < 3. For any edge uv # zy of G,
7 < f(u)+F(v) = k+Af(wv) = 3+A[f(zy) —p—q] < 3+(p+g—1)-p—g=2;
a contradiction. Thereby, we have: (1) E(G) \ {zy} = 0, that is p = 2; (2)
k >4 — \(p+ q). We shall consider the following cases.

To consider the case k = 4 — A(p + q), we take an edge zy € E(G) with
f(zy) = p+q, which turns out f(z)+ f(v) = k+Af(zy) = 4+ A(f(zy)—p—
g) < 4. Then, for any edge uv # zy of G, 6 < f(u) + f(v) = k + Af(uv) =
4+ Af(uww)—p—q) <4+ (p+qg—1) —p—q=3; a contradiction.

Fromk 25— Mp+q), k' =2(p+1) -k - A2p+q+1) <2(p+1) -
54+Ap+q)—-A2p+q+1)=(2-Np—(A+3).

(v) Let G be t-regular, so 2¢ = tp. The addition of f(u) + f(v) =
k + Af(uv) about ¢ edges uv € E(G) yields t(1 + 2+ --- + p) = gk +
A [pq + 9-(9?"’-1-1], and furthermore (p+1)q = tl%ilz = gk+A [pq + 1(9#2] ,

solvek = (p+1)— %(2p+ g+ 1), as we have wished. Clearly, g is odd since
|A| is odd by the assertion (i) of this theorem.

(vi) Notice that max(f(X)) < min(f(Y)). For each edge zy € E(G)
with z € X and y € Y we have k + Af(zy) = f(z) + f(v) > | X| + 2,
and k + Af(zy) = f(z) + f(y) < |X|+p. There are f(uv) = 2p — 1 and
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f(wz) = p+1 for some certain edges uv, wz € E(G). Thereby, k+Af(wz) =
k+Ap+1)2|X|+2,and k+ Af(uv) = k+ A(2p — 1) £ |X]| + p. Notice
that p = |X|+|Y|. We have | X|+2-Ap+1)<k<|X|+p—-A(2p-1).
Clearly, k =1—|Y| when A = 1. O

Example 3. Suppose that a connected (p, g)-graph G is bipartite and
regular. If G admits a super (k,1)-mtl f with max(f(X)) < min(f(Y)),
where (X,Y) is the partition of V(G), then we have ¢+ 1 = 2|Y]|.

Theorem 5. If a connected (p, q)-graph G admits a super (k, A)-mtl f with
X > 1, then g < [(2p — 3)/X], and the equality holds if and only if G is
f-saturated.

Proof. Let V(G) = {u; : i € [1,p]} and f(u;) < f(uiy1) for i € [1,p — 1],
where f is defined as the statement of the theorem. The neighborhood of
each vertex u; of degree d; is denoted by N(u;) = {vi,1,vi,2,...,%i,d;} such
that f(vi;) < f(vi,j4+1) for j € [1,d; — 1]. It is not hard to obtain f(u;) +
[f(v11) + (G — 1)A] = k+ A[f(u1vn1) + (F — 1)}, j € [1,d1). In other words,
f(vr;) = flor1)+ (G — 1A and f(uvy;) = f(urvn) +(5—1) for j € [1,d4].
In general, f(u:)+ [f(vi,1)+(F = 1DA] = k+A[f(wivia) +(5~1)],5 € [1,di],
i € (1,p], which means that

fvig) = fin) + (7= 1)A and fluvig) = fluivin) + (G - 1), 3
For j € [1,d:], i € [1,p]. Since f is super, so f(u1) = 1, we then have

thim ke o) + 00 epa
and from f(up) = p,
m+p=k+>\[f(upvp,1)+m——-fr(1-j-p—'1—)], me(l,p-1]. (5)

Clearly, ’—'f—(;'i‘ﬁ < E}1 for j € [2,p] and m—f)(\””") < (""il"l for m €
{1,p—1] since A > 1. Notice that the inequalities 1+j < f(z)+f(y) < m+p
hold for all edges zy € E(G), and furthermore f(zy) # f(uv) for distinct
edges zy,uv € E(G) according to the definition of a (k,A)-mtl. Thereby,
the forms (3), (4) and (5) imply ¢ < [(2p — 3)/A].

The inequality ¢ < [(2p—3)/A] shows that none of edges of G is labeled
with some numbers of the form f(uivi1) + +(j — f(vn1)) for j € [s,p] or
Fupvp) + $(m — f(vp,1)) for m € [t,p — 1]. Thereby, we can add some
edges to G, the resulting graph is denoted by H, and then label the edges
of E(H) \ E(G) such that the labelled edges of E(H) \ E(G) satisfy the
form (4) or the form (5), the last labelling is denoted by h. It is evident
that h is a super (k, A)-mtl and the graph H is h-saturated. O
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Example 4. A graph H has its vertex set V(H}:) = {u1,%z,...,un}
and its edge set E(Hy) = {usuip1 i € [L,n— 1]} U {wuip2 1 i € [1,n— 2]}
for n > 3. It is sufficient to define directly a super (k,1)-mi! f, of H; in
the way that f,(u;) = i fori € [1,n]; fu(uiuiy1) = n+2i—1fori € [1,n—1);
Ja(uitiy2) =n+2ifor i € [1,n - 2}; and fr(un—1u,) = 3(n —1). It is not
hard to show that (2 — n) is a magical constant of the (kn,1)-mil £y, i.e.,
kn = 2 —n. Notice that H}; has (2n — 3) edges, k, = n — (2n - 3) — 1,
so Hy is fn-saturated. We have H;_; = H} — un, fa-1(u) = fa(u) and
San—1(wv) = fo(uv) — 1 as well as k,—; = k, + 1. Another characteristic
of Hy is that it is an outer planar graph having each inner face being
triangular. The inequality in Theorem 5 is tightened by some H;. The
graph H; admits another super (3n, —1)-mtl g,, defined by gn(u) = fn(u)
for v € V(H;) and gn(uv) = 3n — 2 — fn(uv) for uv € E(H}). H§ and its
saturated labellings are shown in Figure 4(a) and (b).

@

Figure 4: (a) Hg admits a super (—4,1)-mtl; (b) H§ admits a super (18,—1)-
mil; (c) a star K13 has a super (—2,1)-mtl; (d) a path on 4 vertices has a super
(17, —2)-ml.

Theorem 6. Let G be a connected (p, q)-graph possessing a super (k, \)-
mtl f. If A < 2, there then is a graph H = G + uw obtained by adding a
new vertez u to G and joining u with a certain verter w of G such that H
admits a super (k — A, A)-mil.

Proof. Since f(uv) € [p+ 1,p + g] for every edge uv € E(G), there exists
an edge zy such that f(z) + f(y) = k + A(p + q), where f(zy) = p+gq,
and f(x) + f(y) < 2p — 1. We can select a vertex w from G which holds
flw) = A+ f(z) + f(y) —p— 1 < p, no matter k is positive or negative.
Now, joining w with a new vertex u out of G enables us to obtain a new
graph H = G +uw. Before we define a super (k’, A)-mtl of H let us define
an edge 1-float labelling k& of the super labelling f, thus,

h(s)+h(t) = f(s)+f(t) = k+Af(st) = k+A[h(st)—1] = k—A+Ah(st) (6)

for each edge st € E(G). Now we define a desired labelling g of H in the
way that g(z) = h(z) when z € V(G) U E(G), g(uw) = p+q+ 2 and
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g(u) = p+ 1. Thereby,

gu)+gw)=p+1+h(w)=p+1+ flw)
=p+1+A+f(@)+fy)—p-1=Xr+f(z)+ f(v)
=A+k+Af(zy)=A+k+Ap+q)
=k =A)+Ap+g+2)=(k—A)+ Ag(uw).

For st € E(H)\{uvw}, the definition of g shows g(s) + g(t) = k — A+ Ag(st)
from (6). Hence, g is a super (k — A, A)-mtl of H. (]

3 Connections between (k, A\)-mtls and known
labellings

Graceful type of labellings. If a (p,gq)-graph G has a labelling f :
V(G) — [0,q] with f(z) # f(y) for distinct z,y € V(G) such that the edge
label set f(E(G)) = {f(wv) = |f(u) — f(v)| : wv € E(G)} = [1,q], then
we say that G is graceful, and f is a graceful labelling of G. Similarly, a
(p, q)-graph G is odd-graceful if it admits a mapping f : V(G) — {0,291
with f(z) # f(y) for distinct z,y € V(G) such that the edge label set
FH(E(@) = {f(w) = |f(w)- f©)| : wo € E@)} = {1,3,5,...,2g~1}, and
f is called an odd-graceful labelling of G.

Theorem 7. Let T be a tree on p vertices, and (X,Y) be the bipartition of
T. Then T admits a super (k, —1)-mtl f with max(f(X)) < min(f(Y)) and
k=2p+1+|X| if and only if T admits a graceful (odd-graceful) labelling
g with max(g(X)) < min(g(Y")).

Proof. Let X = {z; :i € [,s]} and Y = {y; : j € [1,t]}, where s + ¢ =
p, for the partition (X,Y) of vertex set of a tree T on p vertices. We
show the first part of the theorem: T admits a super (k,~1)-mtl f with
max(f(X)) < min(f(Y)) and k = 2p + 1 + |X| if and only if T admits a
graceful labelling g with max(g(X)) < min(g(Y’)).

To show the proof of ‘if’ we take a super (k,A)-mtl f of T such that
max(f(X)) < min(f(Y)), where k = 2p+1 + 5. Since f is super, without
loss of generality, f(z;) =i fori € [1, 5], f(y;) = s+j for j € [1,¢]. Clearly,
max(f(X)) < min(f(Y)). Notice that f(E(T)) = [p+1,2p —1]. To find
a desired labelling g of T, we set g(z;) = f(z:) —1=1i—1fori € [1,s],
9(y;) = fye—jy1) —1=s+t—j+1—-1=p—jfor j € [1,¢]. Hence,
max(g(X)) < min(g(Y)). According to f(z:)+f(y;) = (2p+1+5)—f(ziy;)
for each edge z;y; € E(T) we have f(z:y;) = 2p+1+5)— f(z:) — f(y;) =
2p—i—j+1=p+(p—3)—(i—1)=p+g(y;) - 9(z:), thus, g(z:y;) =
9(y;) — 9(z:) = f(ziy;) — p, which means g(E(T)) = [1,p — 1]. Hence, g is
a graceful labelling of T with max(g(X)) < min(g(Y)).
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We present the proof of ‘only if’. Suppose that « is a graceful labelling of
T with max(a(X)) < min(a(Y')). By the definition of a graceful labelling,
it is reasonable to set a(z;) = i — 1 for i € [1,s], a(y;) = s+ j — 1 for
j € (1,%]. It is straightforward to define another labelling 8 of T as: 8(x;) =
a(z;)+1 =ifori € (1,s); B(y;) = a(ye-j41)+1 = s+(t—j+1)—1 = p—j+2
for j € [1,t]; B(ziy;) = alziy;) + p for every edge z;y; € E(T). Notice that
a(z:y;) = a(y;) —a(xi) = s+j—1—1 for each edge z;y; € E(T). Thereby,
B(x:) + By;) + Blziy;) =i+ (p—5+2)+(s+5—1—-9)+p=2p+s+1,
that is, T’ admits 3 as a super (2p+ s + 1, —1)-mtl.

We, now, consider the second part of the theorem about the odd-graceful
labellings of trees.

For the proof of ‘if’, assume that f is a super (2p+1+s, A)-mtl of T such
that max(f(X)) < min(f(Y’)). By the choice of f, we can set f(z;) =i
for i € [1,s], f(y;) = s+ j for j € [1,¢]. Next we extend the labelling f
to another labelling A of T' by setting h(z;) = 2(f(z;) — 1) = 2(i — 1) for
i € [1,8), h(y;) = 2(f (yej41)—1)—1 = 2(s+t—j+1—1)—1 = 2(p—j)—1 for
J € [1,t]. For every edge z;y; € E(T), we have h(z;y;) = h(y;) — h(z:) =
2(p—i—j)+1, and

2[f(zys) ~p] —1=2[2p+ 145 - f(z:) - fly;) —p] - 1
=2(pp+14+s—-i-s-j)—-1=2(p—-i—j)+1.
Since f(E(T)) = [p+1,2p — 1], so h(E(T)) = {1,3,5,...,2(p — 1) — 1}.
Evidently, h is an odd-graceful labelling of T with max(h(X)) < min(h(Y)).

To see the proof of ‘only if’, we take an odd-graceful labelling ¢ of T
with max(¢(X)) < min(¢(Y)). Clearly, all elements of ¢(X) have the
same parity, so do all elements of ©(Y"). Without loss of generality, we may
assume that each element of ¢(X) is even, and each element of ¢(Y’) is odd.
By ¢(E(T)) ={1,3,5,...,2(p — 1) — 1} and max(p(X)) < min(p(Y)), we
have ¢(z;) = 2(i — 1) for i € [1,s] and @(y;) = 2(s — 1) + 2j — 1 for
j € [1,t]. Thus, p(ziy;) = o(y;) —p(@i) =2(s — 1) +2j ~1-2(i - 1) =
2(s+j —1) — 1 for each edge z;y; € E(T). Based on the labelling ¢, we
can define another labelling 9 of T in the way that ¥(z;) = 3¢(z:) +1 =1,
V(y;) = 3lo(ye—j+1)+1]+1 = J[2(s—1)+2(t—j+1) =141+ 1 =p—j+1,
and ¥(z:y;) = p(ziy;) + 1] +p = p+s+j—i for every edge zy; € E(T).
Thereby, ¥(z:) + ¥(y;) + ¥(ziy;) =i +p—j+1+p+s+j—i=2p+1+s
is a constant, which means that ¢ is a super (2p + 1 + s, —1)-mtl with
max(f(X)) < min(f(¥)).

The proof of the theorem is complete. O

An explanation of Theorem 7 is shown in Figure 5(a), (b) and (c).

Example 5. Since every caterpillar T admits a graceful labelling g with
max(g(X)) < min(g(Y)), where (X,Y) is the bipartition of V(T), by The-
orem 7, T admits a super (k, \)-mtl. We show that T has another supper
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Figure 5: A tree T has: (a) a graceful labelling f with max(f(X)) < min(f(Y));
(b) an odd-graceful labelling g with max(g(X)) < min{g(Y)); (c) a super
(36, —1)-mtl h with max(h(X)) < min(h(Y)); (d) a felicitous labelling obtained
from h.

(kg,1)-mtl in the following. Let £(T') be the set of all leaves of a caterpillar
T on p vertices. Hence, the graph T — L(T') is a path, say P = ujuz -+ - um,
m > 1. Let S; = {wi1,%i2,-..,%in;} be the set of all leaves adjacent to
u; € V(P) for i € [1,m]. Clearly, L(T) = Ui~ Si. If m =1, T is a star.
We have a (2 —p, 1)-magical labelling h of T as: h(u;) = 1, h(u1,;) =1+7
and h(ujuy ;) = p+j for j € [1,p—1]. For m > 2, we define directly a
labelling f of T in the followmg Let Z,_ ng; =0 and s = |(m + 1)/2],
we have f(use—1) = t+ Y j_; nar and f(uz;) = f(uge-1) + j with respect
to j € [1,ng] and ¢ € 1, 5].

If m =2s, let Q@ = f(uzs,ns,) = f('uqs_1) +ngs. Set f(uy;) =Q+j for
j€[1,m), and fluze) = Q + ¢+ Fi_y nau—1 and fluzesnz) = fluae) +j
for j € [1,n2e41) and t € [1,s — 1). Thereby, f(uz) = f(um) = p. Now
we go on to the case m = 2s — 1. Let R = f(um) = s + o lng, and
set f(uy;) = R+ j for j € [1,n], and f(uz) = R+t + 21— Ngj—1
and f(uge41,5) = fuze) + j for j € [1,n2e41] and t € 1,5 — 1]. Clearly,
f(u2s-1,n5,-,) = f(um, m) =P

The rest labels are assigned to all edges of T. We have f(ujuy,;) =p+jJ
for j € [1,n1] and f(ustrt1) = p+t+zl_ ng and f(ueue,;) = f(ueues1)+7,
where j € [1,n;] and ¢t € {1,m — 1] It is not hard to compute the magical
constant ko = 1 —p+ | 2| + M. na, where M = [3(m—1)]. Thereby,
f is a supper (ko, 1)-magical labelling. O

Example 6. Acharya [1] proved that every connected graph can be
embedded as an induced subgraph of a connected graceful graph. Acharya,
Rao, and Arumugam (2] proved: every planar graph can be embedded as
an induced subgraph of a planar graceful graph. In [14], it has been shown
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that a graceful tree is a subgraph of a tree T having a graceful labelling
f such that max(f(X)) < min(f(Y)), where (X,Y) is the bipartition of
T. From the above facts and Theorem 7, we conclude that every tree is a
subgraph of a tree having super (k,A)-mtls.

Felicitous labelling. A (p, g)-graph G is felicitous if it admits a map-
ping f : V(G) — [0,q] with f(z) # f(y) for distinct z,y € V(G) such
that the edge label set f(E(G)) = {f(wv) = f(u) + f(v) (mod q) : wv €
E(G)} = [0,g— 1], and we call f a felicitous labelling of G. Furthermore,
[ is super if f(V(G)) =[0,p—1].

Theorem 8. A connected (p,q)-graph admits a super (k,\)-mtl, where
A=1forl—-p<k<p+qandA=-1 forp+q+2<k, if and only if it
admits a super felicitous labelling.

Proof. To see the proof of ‘if’, we may assume that f is a super (k,\)-
mil of a connected (p,q)-graph G with A =1for1 —p <k < p+ ¢ and
A=-lforp+qg+2<k ForthecaseA=1forl—p<k<p+g,
we define a new labelling h(z) = f(z) — 1 for z € V(G). Hence, for
edges oy € E(G), h(z) + h(y) = f(z) + f(y) =2 = k + f(zy) -2 >
1-p+ f(zy) -2 = f(zy) — (p+1) > 0. Since f is super, we have a
set {k+ f(zy) —2:2y € E(G)} ={k+p~1,k+p,-- ,k+p—2+gq}.
Clearly, {k + f(zy) — 2 (mod q) : zy € E(G)} = [0,¢ — 1]. Consider
the case A = —1 for p+ ¢+ 2 < k. To the above labelling h, we have
h(z) + h(y) = F(z) + F(y) =2 = k— f(zy)—2 > p+q+2— flzy) —2 > 0.
Under modulo ¢, {k - f(zy)—2 (mod g¢) : zy € E(G)} = [0,¢—1]. Thereby,
h is a super felicitous labelling.

We present the proof of ‘only if’. For a super felicitous labelling o of
G, we have {a(z) + a(y) : zy € E(G)} = {a+1i:1i € [1,q]} for some
positive integer a. If a < p, we define a desired labelling 8 in the way that
B(z) = a(z) + 1 for z € V(G), and B(wv) = a(u) + a(v) + p — a for each
edge uv € E(G). Hence, for zy € E(G), B(z) + By) = ofz) + ofy) + 2 =
B(uv) +a — p+2. Notice that a — p+ 2 is a constant. It has shown that 3
really is a super (@ — p + 2,1)-mtl of G.

If a > p, we can define a labelling v(z) = a(z) + 1 for z € V(G), and
Y(wv) = a+p+g+1-[a(u)+a(v)] for each edge uv € E(G). Consequently,
() +7@Y) =alz) +aly) +2=a+p+q+1—y(uv) + 2 for zy € E(G).
So, 7 is a super (a +p + g+ 3, —1)-mtl ]

Two examples for illustrating Theorem 8 are shown in Figure 5(d) and
Figure 6 (b).

Antimagic total labelling. A (b, d)-edge antimagic total labelling of
a connected (p, g)-graph G is a bijection f: V(G) U E(G) — [1,p+ g] such
that {f(u) + f(v) + f(wv) : wv € E(G)} = {b,b+d,b+2d,...,b+(g—1)d}
for some certain integers b and d. And f is super if f(V(G)) = [1,p).
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Theorem 9. A connected (p, q)-graph G admits a super (k,—1)-mtl if and
only if it admits a super (k + 1 — ¢,2)-edge antimagic total labelling.

Proof. Let G be a connected (p, g)-graph with E(G) = {u;v; : i € [1,4]}.
We show a constructive proof of ‘if’. Let f be a super (k,—1)-mtl of
G such that f(u;v;) = p+1i for i € [1,g]. Successively, we extend the
labelling f to another labelling g of G as: g(z) = f(z) for z € V(G),
and g(uivi) = f(Uptq-it1Vptg—i+1) = 2p + g+ 1 — f(usw;) for i € [1,4].
Therefore, g(u:) + g(v:) + g(wivi) = f(ui) + f(vi) + f(uivi) + (2p+ g +
1) — 2f(uw;) = k+q+1—2i for i € {1,q], which distributes the set
{k—q+1,k—q+1+2,k—q+1+4,...,k—q+1+2(g—1)}. Hence, g
really is a super (k — g + 1,2)-edge antimagic total labelling.

The proof of ‘only if’. Let o be a super (m — g,2)-edge antimagic total
labelling of G. By the definition of a (b, d)-edge antimagic total labelling,
a(u;) + o) + a(uw;) = m — g+ 2(i — 1) for i € [1,q], where uv; €
E(G) = {uwv; : i € [1,q]}. It is straightforward to define a labelling 8 of G
as: B(z) = o(z) for z € V(G), and B(uivi) = a(ug—it19g-i+1) fori € [1,4].
Therefore, we have 8(u;)+8(vi)+8(uivi) = a(u;)+a(vi) +o(Ugmit1vg—i+1)
and B(ug—i+1) + B(vg—i+1) + B(ug-it1Vg—i+1) = 0tg—is1) + 0(Vg—is1) +
o(u;v;), and furthermore

[B(ws) + B(ws) + B(wivi)] + [B(ug—is1) + B(Vg—it1) + Blug-i419g-i41)]
=m-q+2(i—-1)+m—-qg+2g~-i+1-1)
=2(m—1)
for i € [1,| 2 }], which means that § is a super (m — 1, —1)-mil. O

Figure 6(a) and (c) show two labelled Petersen graphs for illustrating
Theorem 9.

14@)
©

Figure 6: Petersen graph has: (a) a super (29, —1)-mtl; (b) a felicitous labelling
from f; (c) a super (15, 2)-edge antimagic total labelling from f.
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4 Problems for further works

It has been known that there are many methods for constructing graceful
trees that admit such graceful labellings described in Theorem 7 ([3], [6],
(14]). Hence, we do not deal with more constructions of trees having super
(k, A)-mtls, except Theorem 6. Notice that a (k,—1)-mtl is just an edge-
magic total labelling. Based on Theorems 7, 8 and 9, we propose:

Conjecture 10. Every tree admits a super (k,\)-magically total labelling
for some integers k and X\ # 0.

Conjecture 11. Every path on n vertices admits all (k, \)-magically total
labellings for each k =2, 3, ..., 2(n — 1) and some non-zero integers .

We have verified Conjecture 11 for all paths on n < 10 vertices. We
show an example that holds Conjecture 11. A path on n vertices is denoted
as P, = wjequgey - - un_jen_1u,. We label each vertex u; of P, with
and each edge e; of P, with a number, respectively. For the path Py, Ay =1
and each integer k € [2,12] we have

k=2 O20)100130)128)116)7(),
®302@10@13@12@)11(6),
M12®13@)6(@1(3)4()11(),
®O59)11(M120913®)6(3)2(0),
®20)7(®)121913@)+DsD),
(®619120)¢()8@7(D)s5@D),
©817(®)5111()2(D6(3),
©7199(®12@)5(1)31D4(2),
k=10 (2504(D318(6)7(1)100),
k=11 @50203011(9)6@)7(0,
k=12 (©31)12@9®@)2(®)1(7)500.
Problem 12. Characterize trees having (k,))-magically total labellings
with one of the following

(2) even |A|.

(72) |A] is unique.

(it3) the labels of vertices have the same parity.

(v) k=a,a+1,a+2,...,a+b for integers a and b > 1.

o

il

It

?rara-a-a-ara-
I
omﬂmmpw

To consider special kinds of connected graphs having (k,A)-magically
total labellings, we do not discover graphs with large cliques. Furthermore
we wish to study the following
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Problem 13. Let Gy (G) be the set of all subgraphs having (k, A)-magically
total labellings in a graph G, and let K(G) be the number of vertices of a
largest clique of G. Find a graph G* € Gmu(Ky) such that G* holds one
of the following

(1) |E(G*)| = |E(H)| for every H € Gmu(Kz).

(2) K(G*) > K(H) for every H € Gmu(Kn).

(3) x(G*) = x(H) for every H € Gmu(Ky), where x(G) is the chro-
matic number of G.

It has been noticed that one of two graphs shown in Figure 4 (c) and
(d) having (—2,1)-magically total labelling and (17, —2)-magically total
labelling is not isomorphic to the rest. It would be interesting to consider
the following problem.

Problem 14. Let G; be a connected (p;, q;)-graph having a super (ki, A;)-
magically total labelling f; for i = 1,2, we have V; = {fi(u) : u € V(Gi)}
and E; = {fi(w) : uwv € E(G;)} fori=1,2. If Vi = V; and E; = Ey,
show conditions for G; & G,.

Now, we rewrite the problem of (k,A)-magically total labellings on
graphs in the manner of integer sets based on the reasons: (1) it may
be interesting to the readers who are not familia with knowledge of graph
theory; (2) it may be convenient to study the problem by computer.

Problem 15. (Problem of (k,A)-matchable sets) Let U = {1,2,...,
%p(p + 1)} be the universal set for integers p > 2. For a p-set V C U, we
wish to find a g-set E C U\ V with respect to p— 1 < q and two integers
k and X (# 0) such that

(@) VUE={1,2,...,p+q}; and

(i1) for each ¢ € E there are distinct a,b € V such that

a+b=k+ A (M

We call V and E a pair of (k, A)-matchable sets. Furthermore, determine:
(a) the possible values of k and A # 0; (b) the mazimum of |g — p| =
| VI - |E|| spanning over all pairs of (k, \)-matchable sets V and E.

Here are three examples for illustrating the above problem of (k, A)-
matchable sets.

(1) For a 4-set Q = {1,2,5,8} ¢ U = (1,10}, we can foind a 4-set
S = {3,4,6,7} c U\ Q and (k,A) = (3,1) such that QU S = [L,8], and
the equation (7) holds true.

(2) There are two sets @ = {1,4,7,8} CU = (1,10} and § = {2,3, 5, 6,
9} c U\ Q, and (k,A) = (6,1). Clearly, QU S = [1,9], and the equation
(7) holds true.
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(3) For a 4-set @ = {1,2,3,4} C U = [1,10} and a 3-set S = {5,6,7} C
U\ Q, there are (k,\) = (—2,1) and (k’,\’) = (17, -2) for satisfying the
equation (7).
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