GENERATING THE COMPLEMENT OF A STAIRCASE
STARSHAPED ORTHOGONAL POLYGON FROM
STAIRCASE CONVEX CONES

MARILYN BREEN

ABSTRACT. Let S be an orthogonal polygon in the plane, bounded
by a simple closed curve, and let R be the smallest rectangular re-
gion containing S. Assume that S is starshaped via staircase paths.
For every point p in R%\(int S), there is a corresponding point q in
bdry § such that p lies in & maximal staircase convex cone C, at g
in R2\(ént S). Furthermore, point ¢ may be selected to satisfy these
requirements:

1) If peR?\(int R), then g is an endpoint of an extreme edge of

2) If pe(int R)\(int S), then g is a point of local nonconvexity
of § and Cj is unique. Moreover, there is a neighborhood N of ¢
such that, for s in (bdry S)N N and for C; any staircase cone at s in
R?\(int 5),C, C C;.

Thus we obtain a finite family of staircase convex cones whose
union is R?\(int §).

1. INTRODUCTION.

We begin with some definitions from [1]. Let S be a nonempty set in
the plane. Point £ in § is a point of local converity of S if and only if
there is a neighborhood N of z such that N N S is convex. If S fails to be
locally convex at g in S, then g is a point of local nonconvezity (In c point)
of S. Set S is called an orthogonal polygon if and only if S is a connected
union of finitely many convex polygons (possibly degenerate) whose edges
are parallel to the coordinate axes. An edge e of S is a dent edge if and only
if both endpoints of e are In c points of SN J, for J an appropriate closed
halfplane determined by the line of e. Let A be a simple polygonal path in
the plane whose edges [vi-1,vi],1 < ¢ < n, are parallel to the coordinate
axes. Such a path A is called a staircase path or a v, — v, staircase if and
only if no two of the vectors #;—19; have opposite direction. That is, for an
appropriate labeling, for ¢ odd the vectors 7;_1%; have the same horizontal
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direction, and for i even the vectors Zi—1%; have the same vertical direction.
Similarly, & staircase path followed by a ray having a compatible direction
is called a staircase ray, while a union of staircase rays originating at a
common point = will be a cone at z. An edge [v;—1, v;] or an associated ray
emanating from v;—; through v; will be called north, south, east, or west
according to the direction of vector Tis1v,. Also, we use the terms north,
south, east, west, northeast, northwest southeast, southwest to describe the
relative position of points.

For points = and y in set S, we say z sees y (z is visible from y) via
staircase paths if and only if there is a staircase path in S that contains both
z and y. Set S is called staircase conver provided, for every z,y in S,z
sees y Vvia staircase paths. Set S is starshaped via staircase paths (staircase
starshaped) if and only if, for some point p of S, p sees each point of S via
staircase paths, and the set of all such points p is the staircase kernel of S,
denoted Ker S.

Finally, if S is an orthogonal polygon and L is a horizontal or vertical
line supporting S, any edge of S in L will be called an eztreme edge of S.

Many results in convexity that involve the usual concept of visibility
via straight line segiments have interesting analogues that involve the idea
of visibility via staircase paths: (See [1]-[5].) For example, the familiar
Krasnosel’skii theorem [9] says that, for S a nonempty compact set in the
plane, S is starshaped via segments if and only if every three points of
S are visible (via segments in S) from a common point. In the staircase
analogue [2], for S a simply connected orthogonal polygon in the plane, S
is starshaped via staircase paths if and only if every two points of § are
visible (via staircase paths in S) from a common point. Notice that, in the
staircase version, the Helly number three is reduced to two.

In recent work by Guillermo Hansen and Horst Martini (8], the authors
obtain a family of convex cones to generate the complement of a closed
starshaped set in R, Here we provide an analogue for the complement of
an orthogonal polygon S in the plane, obtaining & finite family of staircase
convex cones whose union is R?\(int S). As in previous work (in [3] and in
(4], for example), points of local nonconvexity of S play an important role
in the result.

Throughout the paper, int S, bdry S, and cl S will denote the interior,
the boundary, and the closure, respectively, of set S. If A is a simple
path containing points z and y, then A\(z,y) will represent the subpath of
A from z to y (ordered from z to y), containing points z and y. When
z and y are distinct points, L(z, y) will represent their corresponding line.
Readers may refer to Valentine (13}, to Lay [10], to Danzer, Griinbaum, Klee
(6], to Eckhoff [7], and to numerous papers, including Martini and Soltan
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(11], Martini and Wenzel [12], and Hansen and Martini [§], for discussions
concerning visibility via straight line segments and starshaped sets.

2. THE RESULTS.

Some preliminary observations from [1] will be helpful.

Preliminary Observations. Let S be an orthogonal polygon in the plane,
bounded by a simple closed curve. Let T be the union of all points of S,
together with all segments joining pairs of horizontal or vertical points in S.
Then by (1, Lemma 1], T is a staircase convex polygon and is the minimal
staircase convex set containing S.

Certainly every point of T lies on a horizontal or vertical segment whose
endpoints are in bdry S. Moreover, if T # S, then T\S consists of finitely
many components A;,...,Am,m > 1. Each set A; has as its boundary a
simple closed curve A(z,y) U d(y, z), where 6(z, y) is a connected subset of
bdry S and where A(z,y) is a staircase path in bdry T meeting S only in
z and y. Each point of A; necessarily lies on a segment joining points of
d(z,y), and thus each point of A(z,y) lies on a segment joining = or y to
another point of 6(z,y). Hence the staircase A(z,y) consists of either one
or two segments. (See Figure 1.)

Clearly bdry T is & simple closed curve. Order bdry T in a clockwise
direction and classify each edge of bdryT as north, south, east, or west
relative to this ordering. Here are the possible classifications for edges of
A(z,y): If M=z,y) is a segment, its direction (from z to y) may be east,
south, west, or north. If A(z,y) consists of two segments, their directions
(from z to y) may be east followed by north, south followed by east, west
followed by south, or north followed by west.

If we order bdry S in a clockwise direction, then each direction listed
above for A(z,y) is associated with a dent edge of S having the same direc-
tion and contained in §(z, y): If [z, 7] is the first edge of A(z,y) and is east,
let line L be parallel to L(z,r) and supporting A;, with L strictly south of
L(z,7). Then each component of L Ncl A; is a dent edge of S and is east.
If 7 # y, a parallel argument holds for the north edge [r,y] of A(z, y).

Finally, let R represent the smallest rectangular region determined by
S (and by T'). Let L;,1 < i < 4, denote the lines determined by the four
edges of R. Certainly each line L; contains at least one edge of bdry S, and
such an edge is an extreme edge of S. Observe that there are at most four
components of R\T, one at each vertex of R. Moreover, if B is a component
of R\T, then bdry B is a simple closed curve A(z, y) Ud(y, z), where §(z, y)
is & staircase path in bdry T and A(z, y) is a staircase path of two segments
in bdry R meeting T only in z and y.
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Figure 1.

We begin with the following lemima.

Lemma 1. Let S be an orthogonal polygon in the plane, bounded by
a simple closed curve, and let g be a point of local nonconvezity of S. If
there ezists a staircase ray at ¢ in R?\(int S), then there ezists a mazimal
staircase convez cone C, at g in R?\(intS). Moreover, the cone C, is
unique and contains all such staircase rays at g.

Proof. Define the set Cy to be the union of all the staircase rays at g
in R?\(int S). Cerfamly C, # 0,C, defines a closed cone at ¢, and C,
contains every staircase convex cone at ¢ in R2\(int S). We will show that
C, is staircase convex.

Let a,be C, to find a staircase path from a to bin ;. The points a and b
lieon corrcspondmg staircase rays a and 5, respectively, at g in R?\(int S).
Without loss of generality, assume that g is the origin. If a and 8 lie in
nonconsecutive quadrants, then U contains an a — b staircase path in Cy,
the desired result. Therefore, we may restrict our attention to the case in
which a and B lie either in consecutive quadrants or in the same quadrant.
For convenience, assume that « and 8 lie in the closed halfplane cl H; on
and above the z axis. Let D denote the connected subset of ¢l H; whose
boundary is a U B. (See Figure 2.)

We assert that D is a subset of R?\(int S). Suppose, on the contrary,
that D contains a point s of int.S to reach a contradiction. Then s lies
on a segment [a’, '], where o’ e and ¥’ ¢ 8. This forces the connected set
intS to lie in region D, in turn forcing the edges of bdryS at q to lie
in cl H,. However, then g cannot be an Inc point of S, contradicting our
hypothesis. Our supposition must be false, and D C R?\(int S) establishing
the assertion.

1t is easy to find a staircase path from a to b in D: Let M be any closed
rectangular region of the plane containing @,b, and g. The boundary of
M n D is alg,a”) U B(g,b") U [a”, "), where [a”,b"”] is an appropriately
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chosen horizontal segment with ¢” ea and ¥”¢f. Since the boundary of
M N D is a union of three staircase paths, we may apply (5, Lemma 2] to
conclude that M N D is staircase convex. Hence M N D (and therefore D)
contains an a — b staircase. Let u(a,d) represent such a staircase path.

It remains to show that u(a,b) C C,. Choose point ¢ on x(a, b). Since ¢
and t belong to the staircase convex set M N.D, M N D contains a staircase
path from g to ¢, say v(q,t). In case the north ray n at ¢ lies in D, then
(g, %) followed by n produces a staircase ray in D C R?\(int S), so te C,.
In case the north ray at ¢ does not lie in D, then rays @, 8 must lie in
the same quadrant in c! Hy. (Again see Figure 2.) Furthermore, , 8, and
(g, t) necessarily use compatible directions. The north ray at ¢ meets
aU B at a first point u. Without loss of generality, assume that uep.
Then (g, t) U [t,u], followed by B\B(g,u), determines a staircase ray in
D ¢ R?\(int S), and again teC,. We conclude that u(a,b) C Cy, so C,
is staircase convex. Finally, since C, contains every staircase ray at ¢ in
R?\(int §), certainly C, is maximal and is unique, finishing the proof of
the lemma. a

Figure 2.

It is interesting to observe that the result in Lemma 1 fails without the
requirement that bdry S be a simple closed curve. Consider the following
example.

Example 1. Let S be the simply connected orthogonal polygon in Figure
3, with g the only Inc point of S. Then there are three maximal staircase
convex cones at g in R?\(int S): Cone 1 (illustrated) contains all points
northeast of ¢ but no points southwest of ¢, cone 2 contains all points
southwest of g but no points northeast of g, and cone 3 consists of all
points northeast of g and all points southwest of g.

Of course, int S is not connected in this example.
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S cone 1

Figure 3.

‘We are ready for the main result.

Theorem 1. Let S be an orthogonal polygon in the plane, bounded by a
simple closed curve, and let R be the smallest rectangular region containing
S. Assume that S is starshaped via staircase paths. For every point p in
R?\(int S), there is a corresponding point q in bdry S such that p lies in a
mazimal staircase convez cone C, at q in R?\(intS). Furthermore, point
g may be selected to satisfy these requirements:

1) If peR?\(int R), then q is an endpoint of an extreme edge of S.

2) If pe (int R)\(int S), then ¢ is an Inc point of S and C, is unique.
Moreover, there is a neighborhood N of q such that, for s in (bdry S)N N
and for Cy any staircase cone at s in R*\(int S),C, C Cy.

Proof. As in our preliminary remarks, let T denote the minimal orthogo-
nally convex set containing S. Certainly SCT C R.

There are three cases to consider.

Case 1. Assume that peR?\(int R). Then p lies beyond (or on) at least
one and at most two of the four lines supporting R along its edges. Without
loss of generality, assume that p lies beyond (or on) the line L supporting the
northern edge of R, and let ¢ be an endpoint of a component of LNS. Then
q is an endpoint of an extreme edge of S. Any g — p staircase, followed by a
north ray at p, yields a staircase convex cone at p in R?\(int S). Certainly
we may extend this cone to a maximal staircase cone C, at g in R?\(int S)
to satisfy the theorem.

Case 2. Assume that pe (int R)\(intT'). There are at most four compo-
nents of (int R)\(intT), one at each vertex of R, and p belongs to one of
these components. Without loss of generality, assume that p belongs to the
component at the northwest vertex of R. Using a clockwise orientation for
bdry S, point p lies directly north of an east edge e of bdry S and directly
west of a north edge n of bdry S. (See Figure 4a.) From point p, consider
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the maximal length segment in R?\(int S) south to edge e, then follow max-
imal length segments east and south in bdry S as far as possible. We arrive
at an In c point g of S. Reverse the path from g to p to obtain a northwest
staircase from g to p in R?\(int S). Follow this by the north (or west) ray
at p to obtain a staircase ray at g containing p. Using Lemma 1, extend
this to the unique maximal staircase convex cone C, at g in R?\(int S).

To see that g satisfies the theorem, observe that for s near g in bdry S,
s is either directly north of g or directly west of g, and s lies on a staircase
ray at g lying in C,. Thus staircase rays at s exist in R?\(int S). Let C; be
the union of all these rays. Using an argument from the proof of Lemma
1, for s sufficiently close to g, C, is staircase convex.

We will show that for s sufficiently near ¢,C, C C,. Certainly geT.
There are two possibilities to consider: If gebdry T, then C, contains stair-
case rays at ¢ in each of the directions northeast, northwest, and southwest.
(See Figure 4b.) Moreover, for s near ¢ in bdry S,C, = C,. If g ¢ bdryT,
then ¢ € intT, and all staircase rays at q in C, have direction northwest.
(Again see Figure 4a.) For s near g in bdry S, all staircase rays at s in
C, are northwest as well. Moreover, every such ray at s in C; lies in a
corresponding ray at ¢ in Cg, and C; C C,. We conclude that g satisfies
the theorem, finishing Case 2.

S Ker S

Figure 4a.
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S Ker S
Figure 4b.

Case 3. Assume that pe (int T)\(int S). Then p belongs to cl A; for some
component A; of T\S. For convenience of notation, let A; = A. By our
preliminary observations, bdry A is a simple closed curve A(z,y) U 6(y, z),
where 6(z,y) is a connected subset of bdry S (ordered in a clockwise direc-
tion along bdry S) and where A(z,y) is a staircase of one or two segments
in bdry T (ordered in a clockwise direction along bdry T'), meeting S only
in z and y. By our earlier comments, there are eight possible classifications
for A(z,y). Without loss of generality, assume that A(z,y) either consists
of exactly one edge whose direction is east or consists of exactly two edges,
one that is east followed by one that is north. In the first case, for every
point z of A(z,y), there are points of ¢l A directly south of 2. In the second
case, for every point z on the east edge of A(z,y), there are points of cl A
strictly south of z, while for every z on the north edge of A(z,y), there are
points of ¢l A strictly east of z.

Let [z,7] be the east edge of A(z,y), and let line L be parallel to L(z, 1)
and supporting c! A, with L strictly south of L(z,r). By our preliminary
comments, L contains an east dent edge of S. Moreover, the existence of
this dent edge forces Ker S to lie in the closed halfplane determined by L
and south of L. There are two possibilities to consider.

First suppose that A\(z,y) consists of just one edge [z,y] = [z,7]. (See
Figure 5.) There can be no west dent edge of S in ¢l A, for otherwise Ker S
would lie north of the associated line, impossible since Ker S is south of
line L. Thus all points of ¢/ A must lie on or strictly south of the line
L(z,y). Similarly, since Ker S # 0,cl A cannot contain both north and
south dent edges of S. Without loss generality, assume that cl A contains
no south dent edge of S. Using our orientation along é(x,y) from z to y, we
conclude that, for any dent edge d of S in cl A, either d is an east edge of
8(z,y) (with points of ¢! A north of d) or d is a north edge of §(z,y) (with
points of ¢l A west of d). Furthermore, all points of cl A are southeast of
point x.
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For p in ¢l A, we will find a northwest staircase in cl A from p to A(z, y):
From p, travel north in cl A as far as possible, say to p;. If p1€(z,y], then
[p, ;1] is an appropriate staircase. If p; ¢ [z,y], travel west of p; in cl A as
far as possible, say to pa. Observe that there is a nondegenerate segment
in cl A at pz and north of ps. If not, this would imply the existence of a
forbidden dent edge in S. Continue the procedure until we reach A(z,y)
via a northwest staircase. As in Case 2, follow a southeast path from p
in R?\(int S) (and in cl A) to arrive at an Inc point q of S. Reverse the
path to obtain a northwest staircase from g to p in ¢/ A. Follow this by
the northwest staircase in ¢l A from p to A(z,y) found earlier, then take a
north (or west) ray to obtain a northwest staircase ray at g. Finally, using
Lemma 1, extend this to the maximal staircase cone C, at g in R?\(int S).

Now suppose that A(z, ¥) is a union of two edges, east edge [z, r] followed
by north edge [r,y]. Then every point of cl A is either south of L(z,y) or
east of L(r,y) or both. Moreover, for any dent edge d of S in cl A, either
d is an east edge of §(z,y) or d is a north edge of §(z,y). If p is south
of L(z,r), then an argument similar to the one above produces a maximal
staircase cone Cy lying in R?\(int S) and containing p. If p is east of L(r,y),
an analogous argument yields a parallel result.

Finally, observe that geintT. The associated argument from Case 2

may be used to show that, for s near g in bdry S, the corresponding staircase
convex cone C, lies in C,. Thus the point g satisfies the theorem, finishing

Case 3 and completing the proof. a

Py I_..-EJ.....

Figure 5.

Corollary. Let S be an orthogonal polygon in the plane, and assume
that S is starshaped via staircase paths. There is a finite collection of stair-
case convez cones whose union is R?\(int S).
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Proof. If S is bounded by a simple closed curve, we may apply Theorem 1
to select our cones. Using the notation in that theorem, certainly an appro-
priate choice of two cones satisfying requirement 1) will cover R?\(int R).
We choose the remaining cones to satisfy requirement 2). Each of these
will be uniquely determined by an Inc point of S, yielding a finite family
of cones that cover (int R)\(int S) and a finite family in all.

If S fails to be bounded by a simple closed curve, then appropriate mod-
ifications in the proof of Theorem 1 yield the result. Although a maximal
staircase convex cone C, determined by an Inc point ¢ of S need not be
unique (as Example 1 has demonstrated), still at most finitely many (in
fact, at most three) such cones can exist at ¢. Again we obtain a finite
family of cones whose union is R?\ (int S). (]

We close with a series of observations and examples.

Using the setting and terminology in Theorem 1, it is easy to see that
a minimal family of cones C; C R?\(int S) covering R?\(int S) need not
be unique. More interesting is the observation that a minimal family of
these cones covering (int R)\(int S) need not be unique either. Consider
the following example.

Example 2. Let S.be the staircase starshaped orthogonal polygon in
Figure 6, with R the smallest rectangular region containing S. For labeled
Inc points g;,1 < i < 5, let C; denote the corresponding maximal cone at
¢ in R?\(int §), defined in Lemma 1. The family of cones {C},Cs,Ca} is
a minimal covering family for (int R)\(int S). (That is, no proper subfam-
ily will cover (int R)\(int S.) Similarly, {C3,Cs,Ca} is a minimal covering
family, as is {C3,C4,Cs}. Notice that Cs C C) C C.

Figure 6.

However, in Theorem 1, if we select the C; cones that are maximal
(in the sense that no cone selected is a proper subset of any other such
cone), then we obtain a minimal covering family for (int R)\(int S). To see
this, consider various cases possible for p in (intR)\(int S). Because the
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arguments for the cases are similar, we restrict out attention to the case in
which p belongs to some component A of T\S. Assume that A is bounded
by A(z,y) Ud(z,y), where 6(z,y) is a connected subset of bdry S and where
A(z,y) is an east segment in bdryT. Assume also that every dent edge
of S in cl A is either east or north. Using an argument in Theorem 1, an
appropriate cone C, selected for p is determined by an Inc point g of S
in 6(x,y). Furthermore, ¢ lies at the intersection of an east edge and a
north edge of d(x,y). Any such cone C, that fails to be maximal will be a
proper subset of a cone C, determined by some In ¢ point r, where r lies
at the intersection of a south edge and an east edge of 6(z,y). There is at
most one such r for which Cr is maximal (in the sense above). Then C,. (if
it exists), together with the maximal C, cones already chosen, will cover
cl A, and no proper subcollection covers ¢l A. Finally, these are the only
maximal cones determined by In c points of S in (z, y).

Of course, it is the cones that are unique for A and not the in c points
generating them, since distinct {nc points may generate the same cone.
Consider Example 3 below.

Example 3. Let S be the orthogonal polygon in Figure 7. Then for inc
points ¢ and g, their associated cones C; and C- contain the same points,

Figure 7.

Finally, it is interesting to note that Theorem 1 fails without the require-
ment that the orthogonal polygon S be staircase starshaped, as Example 4
demonstrates.

Example 4. Let S be he orthogonal polygon in Figure 8, with g1 and ¢;
two of the In c points of S. Observe that Ker S = (. Moreover, for every
point p of R?\(int S) near edge [q1, g2], there is no staircase convex cone in
R2\(int S) that contains point p.
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Figure 8.
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