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Abstract Pooling designs are standard experimental tools in many biotech-
nical applications. In this paper, we construct a family of error-correcting
pooling designs with the incidence matrix of two types of subspaces of sin-
gular linear space over finite fields, and exhibit their disjunct properties.
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1. Introduction

Given a set of n items with some defectives, the group testing problem
is asking to identify all defectives with the minimum number of tests each
of which is on a subset of items, called a pool, and the test-outcome is
negative if the pool does not contain any defective and positive if the pool
contains a defective. A pooling design is a group testing algorithm of spe-
cial type, also called nonadaptive group testing, in which all pools are given
at the beginning of the algorithm so that no test-outcome of one pool can
effect the determination of another pool. Objectives of group testing vary
from minimizing the number of tests, limiting number of pools, limiting
pool sizes to tolerating a few errors. It is conceivable that these objectives
are often contradicting, thus testing strategies are application dependent.

A pooling design can be represented by a binary matrix whose columns
are indexed with items and rows are indexed with pools; an entry at cell
(4,7) is 1 if the i-th pool contains the j-th item, and 0, otherwise. Such
a binary matrix is said to be d-disjunct. With d-disjunct pooling design,
decoding is very simple. Remove all items in negative pools. The re-
maining items are all defectives. In practice, test-outcomes may contain
errors. To make pooling design error tolerant, one introduces the concept
of d°-disjunct matrix (see Macula [1]). A binary matrix M is said to be
d*-disjunct if given any d + 1 columns of M with one designated, there are
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e + 1 rows with a 1 in the designated column and 0 in each of the other
d columns. The d°-disjunctness is actually the d-disjunctness. D'yachkov
et al. (see [2]) proposed the concept of fully d®-disjunct matrices. An d°-
disjunct matrix is fully d®-disjunct if it is neither (d + 1)¢- disjunct nor
det1.disjunct.

The Pooling designs have many applications in molecular biology, such
as DNA library screening, nonunique probe selection, gene detection, etc.
(Du and Hwang [3]; Du et al. [4]; D yachkov et al. [5]). There are sev-
eral constructions of dé-disjunct matrices in the literature (Guo et al. [6];
Balding and Torney [7]; Erdds et al. [8]; Guo [9]; Huang and Weng (10];
Li et al. [11]; Macula (12]; Nan and Guo [13]; Ngo and Du [14]; Zhang et
al. [15],(16]). In this paper we present a new construction associated with

subspaces in ]F.(,"“), and exhibit their disjunct properties.

2.Singular linear spaces

In this section we shall introduce the concepts of subspaces of type (m, k)

in singular linear space.(see Wang et al. [17])
Let F, be a finite field with ¢ elements, where g is a prime power. For
two non-negative integers n and [, IFS"“) denotes the (n + !)-dimensional
row vector space over F,. The set of all (n+1) x (n+!) nonsingular matrices

over IFy of the form
T T
0 T )’

where Ty; and Ty, are nonsingular n x n and ! x ! matrices, respectively,
forms a group under matrix multiplication, called the singular general linear
group of degree n + ! over F, and denoted by GLpyin(Fg). If I = O(resp.
n = 0), GLy n(Fq) = GLn(Fg) (resp. GLio(Fy) = GLi(Fy)) is the gen-
eral linear group of degree n (resp. ). (See Wan [18]) Let P be an m-
dimensional subspace of ]Ff,"H) , denote also by P an m x (n +!) matrix of
rank m whose rows span the subspace P and call the matrix P a matrix
representation of the subspace P. There is an action of GLn+in (Fg) on

F{™+Y defined as follows

F:(z"“) X GLpyin(Fq) — IF‘(I""")

((xly oy Ty Tn4ly- - ym‘n-H)a T) Land (xlr ey Tny Tyl .- ,$n+[)T

The above action induces an action on the set of subspaces of lF‘f,"“), ie.,a
subspace P is carried by T € GLn1,n(FFg) to the subspace PT. The vector
space Ff,"+l) together with the above group action, is called the (n + !)-

dimensional singular linear space over F,. For 1 < i < n 41, let e; be
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the row vector in IFS,""'I) whose i-th coordinate is 1 and all other coordi-
nates are 0. Denote by E the [-dimensional subspace of IF.(,"'H) generated
by en+1,€nt2s..-,€nti. An m-dimensional subspace P of ]an“) is called
a subspace of type (m, k) if dim(P N E) = k. The collection of all the
subspaces of types (m,0) in IF((,"“) , Where 0 < m < n, is the attenuated
space.(see A.E. Brouwer et al. [19])

Let M(m, k;n +{,n) denote the set of all the subspaces of type (m, k)
of IFS"“) - By Wang et al. (20], M(m, k;n +1,n) forms an orbit under the
action of GLp41,n(F).

We begin with some useful propositions.
Let M(m, k;n +,n) denote the set of all subspaces of type (m, k) in

FO*Y | and let N(m, k;n + I, n) denote the size of M(m, k;n + L, n).

Proposition 2.1 (Wang et al. [17] Lemma 2.1). M(m,k;n + ,n) is
non-empty if and only if 0 < k¥ <! and 0 < m — k < n. Moreover, if
M(m, k;n + [, n) is non-empty, then it forms an orbit of subspaces under
GLny1,0(Fg) and
) _  (m—k)l-k) | T l
N(m,k;n +1,n) = gm-RU-k) [m_ k] [k] .
qL7q

For a fixed subspace P of type (m, k) in ]Ff,"“) , let M(my, ky;m, k;n+
!,n) denote the set of all the subspaces of type (m;,k;) contained in P ,
and let N(my, k1;m, k;n+1, n) =l M(ml’ ky;m,kin+1, n) |

By the transitivity of GLn4i,n(Fq) on the set of subspaces of the same
tYPe: N(ml’ kl; m,
k;n+1,n) is independent of the particular choice of the subspace P of type
(m, k).

Proposition 2.2.(Wang et al. [17] Lemma 2.2) M(m,, ki;m,kin + 1, n)
is non-empty if and only if 0 < k; < k<land 0<m; —k; <m—k <n.
Moreover, if M(my,k1;m, k;n + [,n) is non-empty, then

o — omi—k)k—ky) [ M=k ] [k
N(my, ky;mk;n+ln) =4 ' [’ml—kl]q [kl]q.

For a fixed subspace P of type (m;, k) in IFS,"“) , let M'(my, k1;m, k;n+
l,n) denote the set of all the subspaces of type (m, k) containing P , and let
N'(my, ki;m, kyn+1,n) =| M'(my, k1;m, k;n+1,n) | . By the transitivity
of GLp 41,0 (Fq) on the set of subspaces of the same type, N'(m;, ky; m, k; n+
l,n) is independent of the particular choice of the subspace P of type
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(m1,k1).

Proposition 2.3.(Wang et al. [17] Lemma 2.3) M'(my, ky;m,k;n + 1, n)
is non-empty if and only if 0 < k; <k <land0<my -k <m-k <n.
Moreover, if M'(my, k1; m, k;n + 1, n) is non-empty, then

) _— = RN m—komitk) [ 72— (M1 — k1) L=k
N'(mq, kyym  k;ndl,n) =¢ 1o (m—k)—(ml—h)q k—qu'

Proposition 2.4.(Wan (18] Corollaryl.9) Let 0 < k¥ < m < n. Then the
number N'(k,m,n) of m-dimensional vector subspaces containing a given
n—k

k-dimensional vector subspace FS™ is equal to m—kl -
q

Theorem 2.5. Given integers 0 < k <! and 0 £ m — k < n, the se-
quence N(m, k;n + [,n) is unimodal and gets its peak at m = | 2£3% |,
Proof By Proposition 2.1, if m; < mq then we have

(mi—k)i-k) | T ] [‘]
N(ml,k;n+l,n)_q [ml_kq kq

N(me,k;n+1,n) glma=R)i—ky | ™ !
my —k . k q

1 (g F —1)(gme k1 —1)... (qm—FH — 1)
= ma—m) (=) (gn-mi+k _ J)(gn-mi+k-1 _1)... (gn-matk+1 _1)

N C o ! C it VSR C i )
(qn+l—m1 _ ql—k)(qn+l—m1-1 — ql—k) .. (qn+l—mg+1 _ ql—k)

qu—-k+l -1 qm1—k+2 -1 qmz-k -1

- gnH-m — gl—k ) gnti-mi=1 _ gl-k qn+l—mz+l — gk’

ml—k+1_1 qml—k+2_1 mg—k__l
where Tt < femToeE <0 < ;,—:F-Tz:qrr'k
ma=—r__
If my < [E%.ﬂc'], then mg —k<n+l—-mg+1, F,:Fzg_—,,?.n_—{zy:r <1
N Jein+l,
Hence, when 0 < m; < mp < |2HEE |, we have W{'—,:;—':r:_,—:% <l
my—k+1

If m > [ﬂéﬁj,thenml—k+l>n+l-m1, aﬁp—_m;_ﬁ:; > 1.
Hence, when I_E*'-zl-'*ij <mj < mg < n+1, we have %{':—;2—251]‘:% >1.0
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3. The construction

In this section, we construct a family of inclusion matrices associated
with subspaces of F\**"| and exhibit its disjunct property.

Definition 3.1 Given integers 0 < k < 1,0 < m—k <n0<r<m-k-2.
Let M(r;m,k;n + l,n) be the binary matrix whose rows (resp. columns)
are indexed by M(r,0;n + I,n) (resp. M(m,k;n + l,n). We also order
elements of these sets lexicographically. M(r;m, k;n +1, n) has a 1 in row
¢ and column j if and only if the i-th subspace of M(r,0;n+n) is a
subspace of the j-th subspace of M(m, k;n +1,n).

By Propositions 2.1, 2.2 and 2.3, M(r;m,k;n + I,n) is a N(r,0;n +
l,n) x N(m,k;n + [, n) matrix, whose constant row (resp. column) weight
is N'(r,0;m,k;n +1,n) (resp. N(r,0;m,k;n + [,n)). Theorem 2.5 tells us
how to choose m so that the test to item is minimized.

Theorem 3.2 Given 2 <k <,0<m—-k<n,0<r<m-—k—2and let
t = N(r,0;m, k;n+l,n), u = N(r,0;m—1, k; n+1, n)),v= N(r,0;m—1, k—
Ln+ln),z=N(r,0;m—2,kn+ln),y=N(r0m~—2k—1;n+l,n),
z=N(r,0;m -2,k —2;n+!,n) and w = max{u — z,u — y,u — z,v —
zow—yv—2z}ifl <d< [muf:‘—"};lj + 1 then M(r;m,k;n + [, n)
is d°-disjunct, where e = ¢t — max{u,v} — (d — 1)w — 1. In particular, if
1 <d < minf{|f=mexund=l) 1 g1 1}, then M(r;m, k;n + I, n) is fully
deé-disjunct.

Proof Let P, P, P,,--- , P; be d+1 distinct columns of M(r;m,k;n+l,n).
To obtain the maximum numbers of subspaces of M(r,0;n + I,n) in

d d
PnlJP=J(PnP),
i=1 i=]
we may assume that dim(PN P;) = m —1 and dim(PN P, N P;) =
dim((P N P;) n (PN P;)) = m - 2, for any two distinct i and j , where
1<4,j <d. Since P € M(m,k;n+1,n), PNP, (resp. PNP,NP;)is a
subspace of type (m — 1, k) or type (m — 1,k — 1)(resp. type (m — 2, k) or
type (m —2,k—1) or type (m —2,k —2)) of IF((,"'H) by Proposition 2.1. By
Proposition 2.2, > 0, y > 0 and z > 0. By Proposition 2.2, the number
of subspaces of P not covered by Py, P, -+, P; is at least
¢t — max{u, v} — (d — 1)[max{u, v} — min{z, y, z}]
=t — dmax{u,v} + (d — 1) x min{z, y, z}
=t — max{u,v} — (d — 1)w.
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Hence, we may take e = t — max{u, v} — (d — 1)w — 1 under the assumption
that d. Since e > 0, we obtain

t — max{u,v} —1

d<| -

J+1.

Now we show that the maximal dimension of PNJ_, P, is achieved by
an explicit construction. For PNP,, by Proposition 2.2, N(r,0;m—2, k;n+
l,n)>1,N(r,0;m-2,k—1;n+l,n) > 1and N(r,0;m—2,k—2;n+1,n) >
1. Hence there exists an (m — 2)-dimensional subspace contained in PN P,
denoted by @Q, such that the number of subspace of type (r,0) contained
in Q is equal to min{z,y, z}. By Proposition 2.4, the number of (m — 1)-
dimensional subspaces containing Q and contained in P is equal to ¢ + 1,
and each of these subspaces is a subspace of type (m — 1, k) or type (m —
1,k—1). For 1 < d < min{ [E:E&t{vu};lj +1,g+ 1}, we choose d distinct
(m — 1)-dimensional subspaces between Q and P, say Q;,(1 £ i < d).
Since N'(m—1,k;m,k;n+1l,n) >2and N'(m—1,k—1;m,k;n+1l,n) > 2
by Proposition 2.3, for each Q;, we can choose a subspace of type (m, k)
denoted by P;, such that P N P; = Q;. Hence, each pair of P, and P;
overlaps at the same subspace Q.

Now we have showed that M(r;m, k;n+1,n) is d®-disjunct. Moreover,
by the assumption of e, we have that M(r;m, k;n +1,n) is d°-disjunct but
not dé*+!-disjunct. On the other hand we assume that M(r;m,k;n +1,n)
is (d + 1)‘3'-disjunct. By the maximality of e, we infer that ¢’ < e =
y—z—(d+1—-1)z -1t —max{u,v} — (d+1-1)w—1 <t —max{u,v} -
(d—1)w—1=e. Hence M(r;m,k;n+1l,n)is not (d+1)°-disjunct. There-
fore, M (r;m, k;n + [, n) is fully d*-disjunct. This completes the proof. O
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