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Abstract. For integers s,¢ > 1, the Ramsey number R(s,t)
is defined to be the least positive integer n such that every
graph on n vertices contains either a clique of order s or an
independent set of order ¢. In this note, the lower bound for the
Ramsey number R(7,9) is improved from 241 to 242. The new
bound is obtained by searching the maximum common induced
subgraph between two graphs with a depth variable local search
technique.

1 Introduction

In this note, only undirected graphs without multiple edges or loops are
considered. If G is a graph, then the set of vertices of G is denoted by V(G),
the set of edges of G by E(G), the cardinality of V(G) by |V(G)|, and the
complementary graph of G by G. The subgraph of G induced by S C V(G)
is denoted by G[S]. A cycle of order n is denoted by C,. Given a positive
integer n, Z, = {0,1,2,---,n -1}, and S C {1,2,---,|n/2]}, let G be a
graph with the vertex set V(G) = Z, and the edge set E(G) = {(z,y) :
min{jz — y|,n — |z — y|} € S}, then G is called a cyclic graph of order
n, denoted by G,(S). For integers s,t > 1, the Ramsey number R(s,t)
is defined to be the least positive integer n such that every graph on n
vertices contains either a clique of order s or an independent set of order
t. G is called a (p,q)-graph if G contains neither a complete graph on p
vertices nor an independent set of order q. A (p,g)-graph on n vertices
is called a (p,q;n)-graph. A recent summary of the state of the art for
Ramsey numbers can be found in the Dynamic Survey [1].
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In the area of the Ramsey numbers, constructive and probabilistic meth-
ods play an important role in the literature. However, a number of lower
bounds have been also found by computer search techniques. For example,
the lower bounds for R(4,6), R(3,10), and R(5,5), which are the smallest
unsettled cases for two color classical Ramsey numbers, were improved by
Exoo. The lower bounds for R(6,8), R(7,9), and R(8,17) were improved
in [6, 7].

In [7], the following configuration is set to compute lower bounds for
Ramsey numbers: Let G be a (k, s; p)-graph, H be a (k,t; ¢)-graph. If M
is a common induced subgraph of G and H, and a partition of the vertex
set Vs into W, U W, so that neither of M[W;] nor M[W5] contains a clique
of order k — 2. Then a (k,s+t—1,p+q + |M|)-graph can be constructed
and therefore, R(k,s +t—1) >p+q+|M]|.

In order to improve the lower bounds by using this approach, we first
need to search for a common induced subgraph M (between two graphs
G and H) with the order as large as possible, then we use a procedure
to partition the vertex set Vjs into Wi U Wy so that neither of M[W;]
nor M[W,] contains a clique of order k — 2. However, for large graphs G
and H, an exhaustive search usually can not obtain satisfactory solutions.
Therefore, heuristic search may be considered. We use a depth variable
local search heuristic to construct a (7,9; 241)-graph successfully, and have
the following result:

Theorem 1 R(7,9) > 242.

2 The approach

Local search is a common tool for finding approximation solutions in rea-
sonable time for combinatorial optimization problems. Usually the current
solution z is repeatedly replaced by a better solution from the neighborhood
of z until no better solution can be obtained. When no better solution from
the neighborhood of = can be found, the current solution is called locally op-
timal. In many cases, local search can be applied into heuristic algorithms
such as simulated annealing, ant colony, and particle swarm optimizations.
In many cases, it is hard to obtain the best solution, or even an approx-
imate solution with high quality, for a certain combinatorial optimization
problems. Therefore, various local search methods, such as phased local
search (8] and variable depth local search , were proposed. The variable
depth local search was initially used to solve graph partitioning problem
(GPP) [9] and the traveling salesman problem (TSP) {10]. Then it was
applied to other heuristic algorithms [11, 12, 16, 14, 15]. In [16}, it was
applied to solve the maximum clique problem and successfully obtained
good solutions.
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We introduce the basic variable depth local search algorithm (Algorithm
2) for finding a common induced subgraph between two graphs with the
order as large as possible. The main framework of this algorithm is taken
from KLS in [16].

We will use the following notations to describe the algorithms.

S: the current vertex set of common induced subgraph.

PA: the possible vertex set of addition, i.e., PA = {v € §: H contains an
induced subgraph of G[{v} U S]}.

The variable depth local search consists of two phases: addition and
drop. Let G and H be two graphs , § C V(G). We denote by S the
subset V(G) \ S. We take one vertex S C V(G) as an initial common
induced subgraph. Now we consider if there exists a vertex v € S such
that H contains an induced subgraph of G[{v} U S]. If so, then PA # 0.
Otherwise PA = 0.

e addition phase: _
If PA # 0, we choose a vertex v € S to make S <+ SU{v}. The vertex
v is selected such that the resulting PA is maximum. If multiple

vertices are found, choose one randomly.

o drop phase:
If PA = 0, we choose a vertex v € S to make S <+ S\ {v}. The vertex
v is selected such that the resulting PA is maximum. If multiple

vertices are found, choose one randomly.
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Procedure 1 VDS(G, H, S, PA)

Require:

1:

RANE

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

S: the current common induced subgraph between G, H;
PA: the possible vertex set of addition,;

repeat
Sprev + S; D Sprev; P+ {1,2,' : ':n}; 9+ 0; gmaz <0
repeat
if PANP # { then
find a vertex v from PA N P that maximizes the resulting PA.

if multiple vertices are found, select one randomly.
S« Su{v};g+<g+1; P« P\{v}
if g > gmax then
Gmaz < 9y Sbest — S;
end if
else
if SN P # 0 then
find a vertex v from SN P that maximizes the resulting PA.
if multiple vertices are found, select one randomly.
S« S\{v};9¢+9g-1; P« P\{v}
if v is contained in Sp,., then
D « D\ {v};
end if
if gmaz > 0 then
S < Sbest;
else
S ¢ Sprev;
end if
end if
end if
until D =9
until gne: <0

We fist use a procedure whose pseudocode is shown in Procedure 1.

The variable Spes: records the vertex set of common subgraph with the
maximurmn cardinality found so far. The variable gmq, records the difference
of the current solution and the initial solution. So gma.r > 0 means a larger
common subgraph is found.

Procedure 1 starts with an initial S, then changes the set S by repeat-

edly adding or removing vertices in G. If we only consider addition and
drop operation, the procedure may be trapped. Therefore a forbidden table
P is used. If a vertex v is added to S, at the next recent iterations, v can
not be removed immediately; a vertex v is removed from S, at the next
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recent iterations, v can not be added immediately.

We can see that the input of Procedure 1 is a small common induced
subgraph and the output is a maximum common induced subgraph found
so far, which is actually obtained by adding or removing several vertices
from the initial common induced subgraph. We start with S being only
one vertex, then call Procedure 1 many times and record the best solution
during the search process to obtain the common induced subgraph.
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