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Abstract

In 1991 Gnanajothi conjectured: Each tree is odd-graceful. In
this paper, we define the edge-ordered odd-graceful labelling of trees
and show the odd-gracefulness of all symmetric trees.
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1 Introduction and concepts

Graph labelling is a classic problem in mathematics and computing. The
problems of transforming a graph labelling into another one have appli-
cations in areas such as bioinformatics, (scale-free, small-world) networks,
VLSI, and so on. An example, studied first by Graham and Sloane in [5],
is the harmonious graphs of modular versions of additive bases problems
stemming from error-correcting codes. The overview of concepts and result-
s of current graph labellings can be found in the survey paper [3] in which
the author collects more than 1000 papers on various graph labellings. For
graph labellings including |f(u) — f(v)| or f(u) + f(v) (uv € E(G)) there
are the following famous conjectures.

Conjecture. Evert tree has at least two vertices.

1. (1966 (7)) Every tree is graceful.

2. (1980 [5]) Every tree is harmonious.

3. (1991 [4]) Every tree is odd-graceful.

These conjectures are the hot topics of graph labellings with an exten-
sive and continuously growing literature [3]. In this article, we will study
the odd-gracefulness of symmetric trees. First of all, we will show a method
for efficiently connecting a graceful tree with an edge-ordered odd-graceful
tree. Standard notation and terminology of graph theory are used here.
The undefined terminologies will follow [2] and [3). All graphs mentioned
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in this article are simple, undirected and finite. For the sake of simplicity,
the shorthand symbol [m,n| stands for an integer set {m,m +1,...,n},
where m and n are integers with 0 < m < n; the notation (s, £]° indicates an
odd-set {s,s+2,...,t}, where s and t both are odd integers with1 < s < t;
and the notation [k, £]¢ is an even-set {k,k+2,...,£}, where k and £ both
are even integers with 0 < k < £.

Definition 1. [3] A labelling f of a tree T on n vertices is a mapping
f : V(T) = [0, N] such that vertex labels f(u) and f(v) are different for
distinct u,v € V(T), where N > n — 1 is a natural number. The label
of each edge uv of T, denoted as f(uv), is defined as |f(u) — f(v)|. The
notations f(V(T)) and f(E(T)) denote the set of vertex labels and the set
of edge labels, respectively. If f(V(T)) = [0,n—1] and f(E(T)) = [1,n—1],
we say that f is a graceful labelling, and T is graceful. If T admits a labelling
h with h(V(T)) C [0,2n — 3] and h(E(T)) = [1,2n — 3]°, then h is called
an odd-graceful labelling, and T is odd-graceful [4].

Definition 2. Let (V}, V2) be the bipartition of a tree T. If T admits an
odd-graceful labelling f such that each edge uv with u € V; and v € V3
holds f(u) < f(v), we refer to f as an edge-ordered odd-graceful labelling
of T, and T as an edge-ordered odd-graceful tree.

In a rooted tree T with the root w, if distances dr(u,w) and dr(v,w)
are the same for distinct vertices u,v € V(T'), then we call « and v both
to be at the same level. The set of neighbours of a vertex v in a graph
G is denoted by Ng(v). The degree dg(v) of a vertex v in a graph G is
defined as dg(v) = |Ng(v)]. A leaf is a vertex of degree one. Our results
are related with three particular classes of trees as follows.

1. A symmetric tree is a rooted tree in which the vertices in every level
have the same degree. A complete k-ary tree is a symmetric tree in which
the degree of the root is k, the rest non-leaf vertices have degree k+1. It is
known that each symmetric tree is graceful, and each complete k-ary tree
is graceful [1).

2. A connected graph H is k-vertez-symmetric if H has a set X of k
vertices such that H — X has components Hy, Ha, ..., H, with H; = H;.
We describe a class of 1-vertex-symmetric trees T (n) as follows. Let T'(n)
be a tree on n vertices and let T;(n) be a copy of T'(n) for ¢ € [1,m]. For a
vertex w € V(T(n)), the vertex w; € V(Ti(n)) is isomorphic to the vertex
w, 1 € [1,m]. The tree obtained by adding a new vertex wo and then joining
wy with every w; € V(Ti(n)), i € [1,m)], is denoted as T;*(n) [6].

3. A connected graph G is k-edge-symmetric if there exists a set S of
k edges of G such that the graph G — S has components G1,Gz,...,Gn
(m > 2) with G; & G;.
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2 Results

Lemma 1. Let T be a tree on n vertices.

(2) [8] Suppose that T admits a graceful labelling f such that f(z) = n—1
for a certain vertez z € V(T). Then T admits a graceful labelling h defined
as h(z) =n ~ 1 — f(zx) for each vertex x € V(T) such that h(z) = 0;

(49) (1] Every symmetric tree T with the root w admits a graceful la-
belling f such that f(w) = 0.

(iii) Suppose that T admits an (edge-ordered) odd-graceful labelling f
such that f(y) = 2n — 3 for a certain vertex y € V(T). Then T admits an
(edge-ordered) odd-graceful labelling h defined as h(z) =2n -3 — f (z) for
each vertex © € V(T) such that h(y) = 0.

Very often, we call the labelling h in Lemma 1 the complementary
labelling of f.

Theorem 2. Let T be a graceful tree and let T’ be a copy of T. Joining
any vertex x € V(T) with its isomorphic vertez ' € V(T') by an edge
yields an edge-ordered odd-graceful tree.

Proof. Let f be a graceful labelling of a tree T on n vertices. Hence,
fV(T) =[0,n-1], f(E(T)) = [1,n - 1]. Let (X,Y) be the bipartition
of V(T), where X = {z; : i € [I,s]} and Y = {y; : 7 € [1,¢t]} with
s+t = |T| = n. Correspondingly, the bipartition of vertices of a copy T’
of Tis (X',Y'), where X' = {z}:i € [}, Y' = {y} :j € 1,1}
! is isomorphic to z; for i € [1, s]; y; is isomorphic to y; for j € [1,¢];
ziy; € E(T') is isomorphic to z;y; € E(T) for i € [1,s], j € [1,t]. A new
tree G is obtained by joining a vertex = € V(T') with its isomorphic vertex
z’ € V(T') together. Clearly, (XUY’,X'UY) is the bipartition of V(G)
and E(G) = E(T)UE(T') U {zz'}, |V(G)| = 2n. We define a labelling ¢
of G as follows:

(i) p(z:) = 2f(z), p(zi) = 2f(z:s) + 2n— 1, i € [L, s);

(ii) w(yj) = 2f(yJ) +2n -1, <p(y§~) = 2f(yj): JjE€E [11t]'

Clearly, ¢ is a labelling from V(G) to [0,4n — 3] since p(u) # p(v) for
distinct u,v € V(G), p(XUY ') = [0,2n—2]¢, (X 'VUY) = [2n—1,4n-3]°.
Therefore, ¢(u) < ¢(v) for each edge uv € E(G) withu € XUY' and
veE X'UY.

According to the definition of the labelling ¢, we have p(z;y;) = 2n—1+
2(f(y;) - f(z:)) and p(ajy ) = 2n —1-2(f(y;) — f(z:)). Hence, whenever
f(zi) < f(y;) or f(x:) > f(y;), the labels of edges z;y; € E(T) C E(G)
and ziy; € E(T') C E(G) form the set {p(zy;) plziy})} ={2n -1+
2f(ziy;),2n — 1 — 2f(ziy;)} for i € [1,s] and j € [1,¢]. Since f(E(T)) =
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{f(ziy;) ;i€ (1,s], 7 € [1,¢]} = [1,n — 1], then

P(E(G)\{zz'}) = {o(zw;), p(z:'y; ") : i € [1,8],5 € [1, 4]}
={2n —1+2f(ziy;),2n — 1 — 2f(ziy;) 4 € [1,8),5 € [1,1]}
=[1,2n-3]°U(2n + 1,4n - 3]°.

Whenever z € X (or z € Y), we always have p(zz’) = |p(z) — p(z’)| =
2n — 1. Thereby, we obtain

O(E(G))=[1,2n-3]°U[2n +1,4n - 3]°U {2n — 1} =[1,4n — 3]°.

Therehy, ¢ is an edge-ordered odd-graceful labelling of G. The proof of the
theorem is complete. O

Theorem 3. (i) Let a tree T(n) on n vertices admit a graceful labelling f
such that f(w) = 0 for some vertez w € V(T'(n)). Then, for even integers
m > 2, the 1-vertez-symmetric tree To'(n) admils an odd-graceful labelling
such that wq is labelled with O.

(i1) Let a tree T(n) on n vertices admit a graceful labelling f and an odd-
graceful labelling h such that f(w) = h(w) =0, where w € V(T'(n)). Then,
for even integers m > 0, the 1-vertez-symmetric tree Tt (n) admits an
odd-graceful labelling such that wo is labelled with 0.

Proof. Let (S,U) be the bipartition of V(T (n)), where S = {z; : j € [1, 5]},
U = {yr : k € [1,t]} with s+t = n, and let f be a graceful labelling of
T(n) such that f(w) = 0 for a certain vertex w € V(T(n)).

(i) The bipartition of vertex set of each copy Ti(n) of T(n) is denoted
as (§°,U"), where §* = {z} : j € [1,s]} and U’ = {y; : k € [1,¢]} for
i € [1,m]. Here, 2} € §* C V(Ti(n)) is isomorphic to z; for i € [1,m] and
j €1,s]; yi € Ut C V(Ti(n)) is isomorphic to yx for i € [1,m], k € [1,t];
ziyl € E(Ti(n)) is isomorphic to z;yy for i € [1,m], j € [1,s] and k € 1,¢].
Clearly, we can compute the cardinalities

VTR ) = (U CEQRITRY [Lt]})) U fup)| = mn+1,
i=1
|E(TaH ()| = (O{T;y,‘c :je(l, 8], ke [l,t]}) U {wow; : i € [1,m]}] = mn.

We, without loss of generality, may assume that w € S, f(z;) < f(zj41)
for j € [1,s — 1] and f(yx) < f(yk+1) for k € [1,t = 1]. Clearly, f(z,) =0
and f(y:) =n -1, w; € S for ¢ € [1,m]. Based on the labelling f we
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define a labelling 7 of T\7*(n) as follows:

m(wo) = 2mn — 1;

ﬂ'(l;) = 2f(z;) +2(i — )n, i€ [l,m],j€l,s];
m(y) =2f(yk) +2(m —i)n—1, i€ (1,2],ke(1,t;
m(yi) =2f(w) +2(m —i)n+1, i€ [T +1,m),ke(l,4.

Since f is a graceful labelling of T'(n), f(V(T(n))) = {f(z;): 7 € [L,s]}U
{f(yx) : k € [1,¢]} = [0,n — 1]. According to the definition of the labelling
m, each vertex z} has its even label 7r(x§) for i € [1,m] and j € [1, 5], and
furthermore 0 = 7(z]) < w(x3) < 7(z}) < ... < w(z}) < 7(2?) < 7(xd) <
w(xf) < ... < wa?) <wa}) < mad) < w3 <... <A <... <
m(z]') < m(z3') < w(2F) < ... < w(zT') < 2mn — 1. Analogously, each
vertex yj has its odd label n(y}) for i € [1,m] and k € [1,t]. Notice that
2mn -3 =m(y}) > m(yl_y) > ... > w(y3) > 7(y}) > w(v?) > 7w ,) >
> w(yd) > m(yd) > w(yd) > wyi) > .. > @) > i) > ... >
m(y) > m(yRy) > ... > w(@F) > w(y*) > 0. Therefore, 7 is a labelling
from V(T7}(n)) to [0,2mn — 1].

Next, we will show that the set 7(T)*(n)) of edge labels of T™(n) equals
to [1,2mn—1]°. For each edge z}y; € E(T(n)), wherei € [1,m], j € [1, 5]
and k € [1,t], we can compute edge labels

n(zhyi) = 12f(z;) + 2(i — 1)n — [2f (k) + 2(m — d)n — 1]|
= 2(m ~ 2 + D — 1+ 2(fwe) - fe;)l, i€ [L5);

m(ziyk) = [2f(x;) + 2(i — L)n — [2f (&) + 2(m — i)n + 1|
= [2(m ~ 2 + Dn +1+2(f(ve) - f&)], i€ [T +1,m].

Since f(z;yx) € [1,n — 1] and m is even, whenever f(z;) < f(yx) or
f(z;) > f(yx), the set {m(z%y;) : ¢ € [1,m]} of edge labels of m edges
ziy; € E(T7(n)) (¢ € [1,m]) in which each edge is isomorphic to =y, €
E(T(n)) equals to

{m(zjwi) i € [1,m)} ={(2 +4r)n — 1+ 2f(z5yx),

(2 +4dr)n — 1 — 2f(z;ux) :re[ m_2—_2_]} (1)

313



Based on f(E(T(n))) = [1,n — 1] and the form (1), we have

n( BT (m)\ wow; : i € [L,m]}) = | J{m(aiah) : 5 € 1) k € [1,6]}
i=1

- (U U {(2+4r)n — 1+2f(xjyk)}) U

r=0 je[l1,s],kE€[L,t]

U ( U U {2+4r)n-1- 2f(a:jyk)})

r=0 j€(l,s],k€(1,t)
=[1,2mn - 1°\{2n - 1,4n —1,...,2(m — 1)n — 1,2mn — 1}.

By 7(w;) = 2f(w)+2(i—1)n = 2(i—1)n for i € [1,m], we obtain m(wow;) =
|2mn — 1 — 2(i — 1)n| and

r({wow;:i € 1,m]}) ={2n - 1,4n-1,...,2(m - 1)n — 1,2mn — 1}.

Furthermore,

w(Ease) =(Utnaiu) s el ke ) U
i=1
Uﬂ'({wow,- 1 € [1,m]}) = [1,2mn - 1]°.

Thereby, 7 really is an odd-graceful labelling of T} (n) with m(wg) = 2mn—
1. By Lemma 1, the complementary labelling 8 of 7 is an odd-graceful
labelling of T™(n) with 8(wg) = 0.

(ii) Here, we apply the bipartition (S*,U*) of each copy T;(n) of T'(n)
for i € [1,m] defined in the proof of the assertion (i). For m = 0, we can
extend the odd-graceful labelling h to a labelling 7/ of T**1(n) as follows:
7'(wo) = 0; w'(z) = 2n — 1 — h(z) for each vertex = € V(T*+1(n))\{wo}.
It is easy to verify that 7’ is an odd-graceful labelling of T7*+!(n) with
7/ (wp) = 0.

For even integers m > 2, by the definition of T'?*1(n), we can extend
the labelling 7 of T7*(n) and the labelling h of Tin41(n) to a labelling 7'
of T™+1(n) as follows:

( 7' (wp) = w(wo) + 2n;
w'(z}) = m(z}), i€ [, 2,5 €(l,s);
m'(zl) =w(zi) +2n, i€[F+1,m]|j€[ls];
m'(ui) =w(yl) +2n, i€[1,Bke(1,1;
m'(yl) = T(yL), i€ [ +1,mlke(lt;
| 7'(z) = h(z) + mn, 1€ V(Tn41(n)).
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Notice that h is an odd-graceful labelling of T},,1(n). Each vertex label

m'(z}) is even for i € [1,m + 1], j € [1,s]; and 0 < 7'(z}) < mn for

i€, Z),j€l, s (m+2)n < w'(zh) <2(m+1)n— lforzE["'-i-l m],
je[ls] and

mi(z]) <7'(z3) < - <w(zh) < 7'(2d) < 7r’(aé)
<7I',(.’L‘§)<°"<7I',(.’El%)<7f,(12%=)< < n'(zd), and
m'(z %+l)<7r'(:r;f+l) <- <1r’(z7+1)<7r (x7+2)<---

<r'@ft) < <al@E?) <m@P) < e <@,

Analogously, each vertex label 7 /(y}) is odd for i € [1, m+1] and k € [1,¢);
and (m+2n+1<7'(yf) <2(m+1)n—1forie[1,2 >, 7 € [1,s];
3<m'(z}) <mn—1fori€ [ +1,m] je(l,s] Since

() > 7' (yi_y) > > 7'(yy) > n'(yE) >""I(yt 1)>>

W) > >yt salyt) > > niyl),
@i > @i > s wET s 1wt >
TyE ) > > ) > 7T,

and mn < 7'(z) < (m + 2)n — 3 for each vertex z € V(Tns1(n)) and
m'(wo) = 2(m+1)n—1, we conclude that 7/ is a labelling from V (T+1(n))
to [0,2(m + 1)n —1].

We, next, show that the set 7 /(E(TT+1(n))) of edge labels of T;,""‘l(n)
equals to [1,2(m + 1)n — 1]°. According to the definitions of 7 and 7’
we have m(z}) < 7(y;) for i € [1,%], j € [1,s] and k € [1,8], m(x}) >

(yk) fori € [ +1,m], jel[ls]andkell t]. Then for each edge
Ty € E(T’““z(n)), there are 7'(ziy}l) = ﬂ(w,yk) + 2n for i € [1,m],

T'(ziy;) = h(ziy}) for i = m + 1. By A(E(Tim41(n))) = [1,2n — 3]° and
W(E(Tm(n))\{wow, i€ [1,m]}) =(1,2mn—1]°\{2n—1,4n—-1,...,2(m—
1)n —1,2mn — 1}, we get

7 (E(Ty* (n))\{wow; : i € [1,m + 1]}

= (O{ﬁ’(x;'-yi.) cjel,s) ke [1,t]}) Uit,2n -3

=[L,2(m+1)n-1]°\{2n - 1,4n - 1,...,2mn - 1,2(m + 1)n — 1}.

Since 7 ’(wo) = m(wo) +2n = 2(m+1)n—1, m'(w;) = w(w;) = 2(i—1)n for
i€ (1, %), n'(wi) = w(w;) + 2n = 2ni for i € [P + 1,m] and 7' (Wmy1) =
h(Wm41) + mn = mn, thus

m'({wowi 1i € l,m+1]}) ={2n-1,4n~1,...,2mn - 1,2(m + 1)n — 1},
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and furthermore

m+1
7' (E(Tgt!(n)) = (U {”(x_;y;c) :je(l,s ke [l»t]}) U
i=1
Un ' (Qwow: : i € [1,m +1]}) = [1,2(m + 1)n - 1]°.

Thereby, 7/ is an odd-graceful labelling of T/**!(n) with = /(wo) =
2(m + 1)n — 1. By Lemma 1, the complementary labelling of 7, also, is
an odd-graceful labelling of T/7*!(n) such that wp is labelled with 0. The
proof of the theorem is finished. O

Theorem 4. Suppose that a tree T(n) admits an edge-ordered odd-graceful
labelling f such that f(w) = 0 for some vertex w € V(T (n)). Then, for
odd integers m, the 1-vertex-symmetric tree To'(n) admits an edge-ordered
odd-graceful labelling such that wq is labelled with 0.

Proof. Let (S,U) be the bipartition of V(T (n)), where § = {z; : j € [1,s]}
and U = {yx : k € [L,¢]} with s+t = n; and let f be an edge-ordered odd-
graceful labelling of T'(n) with f(w) = 0, where w € S. Clearly, f(z;) is
even and f(z;) <2n—4 for j € [1,s], and f(yx) is odd and f(yx) < 2n—3
for k € [1,t]. Write the bipartition of each copy Ti(n) of T(n) as (S*, U‘),
where §* = {z} : j € [1,s]} and U* = {y} : k € [1,¢]} for i € [1,m]; ]

is isomorphic to z; for i € [1, m] J € 1,s]); yi € V(Ti(n) is lsomorphlc
to yx for i € [1,m], k € [1,t]; ziy; € E(Ti(n)) is isomorphic to z;yx for
i€ (l,m], j€[l,s], ke [1,1]. Let (X,Y) be the bipartition of V(T}(n)),
where X = UIL, %, Y = (Ui%; U*) U{wo}. Hence, we have

(O (e st UJtwh i ke [Lt]})) Utwo)

i=1

V(T3 ()l = = mn+1,

=mn.

|E(Tg (n)] = l(U{z Y€ (Ll ke [Lt]}) \Hwow: : i € [1,m]}
We then extend the labelling f to a labelling 7w of T/"*(n) in the way that

m(wo) = 2mn — 1;
m(xi) =m- fz;) +2i -2, i€ l,m],j€(l,s);
w(yl) =m- f(yx) +4i—-3-m, i€ (l,m],ke[Lt].
Clearly, f(z;) < f(yx) for each edge z;yx € E(T(n)), since f is an edge-

ordered odd-graceful labelling of T'(n). Notice that m(wo) —m(w;) = 2mn—
1-2(i—1)>0and n(y;) — 7(z;) =m- (fye) — f(z;) —1)+2i - 1>0.
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Therefore, for each edge xy € E(T7*(n)) with z € X and y € Y, we obtain
m(z) < ®(y), i.e., 7 is edge-ordered.

Step 1. We show that 7 is a labelling from V(T*(n)) to [0,2mn — 1].
Notice that m is odd. For m = 1, it is trivial, thus we consider m > 3.
Without loss of generality, we may assume that f(z;) < f(zj41) for j €
(1,5 — 1] and f(yk) < f(yr41) for k € [1,t — 1]. Notice that f(z;) is even
with f(z;) < 2n—4 for j € [1,s]; f(yx) is odd with f(yx) < 2n — 3 for
k € [1,t]. Therefore, m(z}) is even with 7m(z}) < 2mn—2m —2 for j € [1, 5]
and i € [1, m]; 7(y}) is odd with w(y,;;) <2mn-3fork € [1,t]and i € (1, m];
m(zi) < m(z;*!) and 7(yL) < m(ypt!) for j € [1,9), k € [1,8), i € [1,m —1];
m(z) = m(xj4q) = m - (f(z5) — (i) +2m -2 < 0for j € [1,s —1).
Hence, we obtain 0 = w(z}) < n(22) < n(z}) < ... < w(aP) < 7(zd) <
m(z3) < m(x3) < ... < w(zF) < w(z}) < w(2d) < w(z]) < ... < 7(=P) <
o< m(zl) < w(@?) < m(2d) <... < 7(zT) < 2mn — 1.

Suppose that m(yl) = m(yi.) for distinct vertices yi,yi, € Y, 4,i’ €
[1,m], k, k' € [1,¢], where only one of i =i’ and k = k' holds true. Hence,

) =m- flye) +4i—3—m=m- flyx) + 4’ —3—m =n(yi.),

that is, m|f(ye) — f(ye+)| = 4|i—i’|. If k = k', thus, i = i'; a contradiction.
If k # k', since ged(m, 4) = 1 and | f(yx) — f(yk)| # 0, thus, Lji—i’|isan
integer. However, |i —i’| < m — 1, which means ¢ =i’ and f(yx) = f(yk-).
Immediately, & = k'; this is absurd. Therefore, we have w(u) # n(v) for
each pair of vertices u,v € V(T[*(n)).

Step 2. We will show that the set of edge labels of T/7*(n) equals to
[1,2mn — 1)°. According to the definition of the labelling m, for each edge
ziyi € E(T(n)) with i € [1,m], j € [1,5] and k € [1,¢], we then have

r(wiyh) = I Flyi) +4i 3 = m = m- f(z;) +2i — 2]
= |m(f(ye) — f(z;) —1) +2i - 1]
=m(f(zjye) — 1)+ 21— 1.
Since f(E(T(n))) = {f(z;y):j € [1,s],k € [1,¢]} = [1,2n — 3]°, then

m

(BT (m)\{wow, : i € [L,m]}) = | {n(zjui) : 5 € [L, 8],k € [1,4]}

i=]

= (J{m(f(zjue) - 1) + 20— 1: 5 € [, 8],k € [1,1]}

i=1

= [1,2mn - 1]°\{2mn — 2m + 1,2mn - 2m + 3,...,2mn — 1}.

According to
{m(wow;) :i € [1,m]} ={2mn—-1-2(: —1):4i € [1,m]}
={2mn - 2m +1,2mn - 2m +3,...,2mn — 1},
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we obtain
n(E(Ty(n) = (U{W(-’f}yi) :j€ll s ke [Lt]}) U
i=1

U'/r({wowi 11 € [1,m]}) = [1,2mn — 1]°.

The above two steps show that « is odd-graceful. Therefore,  is an edge-
ordered odd-graceful labelling of T7*(n) with w(wp) = 2mn — 1. By Lem-
ma 1, the complementary labelling of m is an edge-ordered odd-graceful
labelling of T*(n) such that wg is labelled with 0. The theorem is cov-
ered. O

Theorem 5. (i) Let T be a symmetric tree with the root w. Then T admits
an odd-graceful labelling such that w is labelled with 0.

(i1) If each of non-leaf vertices (not including the root) of a symmetric
tree T with the root w of odd degree has even degree, then T admits an
edge-ordered odd-graceful labelling such that w is labelled with 0.

Proof. By induction on orders of symmetric trees. For diameter diam(T") =
1 or 2, T is a star, thus, the assertions (i) and (ii) both hold true. Let
diameter diam(T) > 3 in the following.

Let w be the root of symmetric trees T and Np(w) = {wy,wa,..., W},
where m = dr(w). Then T — w has m components T1,T3,..., T, where
m > 1, T; = T}, and each T} is a symmetric tree with the root w;, i € [1,m].
By Lemma 1, T} admits a graceful labelling f with f(w;) = 0.

If degree d(w) = m is even, the assertion () follows from Theorem 3.
Next, we consider the case of odd degree m = dr(w). Notice that T; is a
symmetric tree with the root w; and |V(T1)| < |V(T)|. By the induction
hypothesis, T} has an odd-graceful labelling h such that h(w;) = 0. By
Lemma 1 and Theorem 3, we conclude that T has an odd-graceful labelling
such that its root w is labelled with 0.

We show the assertion (ii). Notice that T is a symmetric tree with the
root w of odd degree, every one of the remaining non-leaf vertices has even
degree. If T} is a star, we are done. Suppose that T} is a symmetric tree
with the root w; of odd degree, its rest non-leaf vertices have even degrees,
and |V(Ty)| < |V(T)|. By the induction hypothesis, T} has an edge-ordered
odd-graceful labelling f such that f(w;) = 0. Thereby, from Theorem 4,
we conclude that T has an edge-ordered odd-graceful labelling such that
its root w is labelled with 0.

The theorem follows from the principle of induction. O

Based on Theorem 5 we can prove the following results:
(1) Each symmetric trees T with the root w admits an odd-graceful
labelling such that w is labelled with 0.
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(¢i) Each complete k-ary tree admits an odd-graceful labelling such that
its root is labelled with 0. Furthermore, each complete (2m — 1)-ary tree
is edge-ordered odd-graceful.

It may be interesting to consider this problem: Show the gracefulness
and odd-gracefulness of k-vertex- and k-edge-symmetric trees for k > 2.
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