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Abstract

A set § of vertices in a graph G is a total dominating set of G
if every vertex of G is adjacent to some vertex in S. The minimum
cardinality of a total dominating set of G is the total domination
number of G. We study graphs having the same total domination
number as their complements. In particular, we characterize the cu-
bic graphs having this property. Also we characterize such graphs
with total domination numbers equal to two or three, and we deter-
mine properties of the ones with larger total domination numbers.

1 Introduction

Let G = (V, E) be a graph with order |V(G)| = n. The open neighborhood
of v € V(G) is Ng(v) = {u € V|uv € E}, and the closed neighborhood of
v is Ng[v] = {v} U Ng(v). If the graph G is clear from the context, then
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we simply write N(v) and N[v] rather than Ng(v) and Ng[v], respectively.
For a set S C V, its open neighborhood is the set N(S) = J,es N(v), and
its closed neighborhood is N[S] = N(S)U S. For a vertex v, the subgraph
induced by N(v) is called the link of v. We denote the subgraph of G
induced by S as G[S)].

For two vertices u and v in a connected graph G, the distance dg(u,v)
between u and v is the length of a shortest u—v path in G. The maximum
distance between any pair of vertices of G is the diameter of G, denoted
diam(G). We say that G is a diameter-k graph if diam(G) = k. Let Cy,
denote the cycle on n vertices. The girth g(G) is defined for graphs with
cycles and is the shortest length of a cycle of G. We say that a graph is
F-free if it has no induced subgraph F. In particular, a graph is claw-free
if it has no induced K 3, is triangle-free if it has no induced K3, and is
quadrilateral-free if it has no induced C4. The minimum and maximum
degrees of a graph G are denoted by §(G) and A(G), respectively.

A set S C V(G) is a dominating set of G, denoted DS, if every vertex not
in S is adjacent to a vertex in S, that is, if N[S] = V(G). A total dominating
set, abbreviated TDS, of a graph G is a set S of vertices of G such that
every vertex in G is adjacent to a vertex in S, that is, N(S) = V(G).
Every isolate-free graph G has a TDS, since V(G) is such a set. The
domination number v(G) is the minimum cardinality of a DS of G, and the
total domination number v:(G) is the minimum cardinality of a TDS of G.
A TDS of G of cardinality y:(G) is called a v;(G)-set. Total domination was
introduced by Cockayne, Dawes, and Hedetniemi [4] and is now well studied
in graph theory. The literature on the subject of domination parameters
in graphs has been surveyed and detailed in the two books {5, 6]. A recent
survey of total domination in graphs can be found in [7].

In this paper, we investigate graphs having the same total domination
number as their complements. Graphs having this property for the dom-
ination number were studied in [2]. If %:(G) = 7:(G), then clearly G and
G are isolate-free graphs. Thus no vertex dominates G (respectively, G).
Hence we make the following observation.

Observation 1 If G is a graph with 7.(G) = 1:(G), then

(i) diem(G) > 2 and diam(G) > 2, and
(i) 1<6(C)<AG)<n—2and 1< 6(G) < AG)<n-2.
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2 Graphs G with %(G) = 1(G) =2

Since any pair of vertices at a distance three or more apart in G total
dominates G, we have another useful observation.

Observation 2 If G is a graph with diam(G) > 3, then v(G) =2.

We note that if G is disconnected, then v;(G) > 4 and 7,(G) = 2 (since
two vertices in different components of G total dominate G). Hence if
7:(G) = %(G) = k, then G and G are connected, and the graphs G having
7%(G) = %(G) = 2 are precisely the graphs for which diam(G) > 3 and
diam(G) > 3.

Proposition 3 A graph G has v.(G) = v:(G) = 2 if and only if diam(G) >
3 and diam(G) > 3.

Proof. For the necessity, assume that 1,(G) = 7(G) = 2. Let {z,y}
be a 7, (G)-set. In G, = and y are non-adjacent vertices with no common
neighbor so diam(G) > 3. By a symmetric argument, diam(G) > 3 as well.
The sufficiency follows from Observation 2. O

Since the only tree with diameter at most two is a star and the comple-
ment of a star has an isolated vertex, it follows that if v (T') = v,(T) for a
tree T, then diam(T) > 3 and so v,(T’) = 2. We characterize the trees T for
which 7(T) = %(T). A double star S, , is a tree with exactly two non-leaf
vertices, one of which is adjacent to r leaves and the other is adjacent to s
leaves.

Proposition 4 For a tree T, v:(T) = %(T) if and only if T is the double
star Sy,s wherel1 <r <.

Proof. Assume that v (T") = 7 (T). It follows from Observation 1 that T is
not a star and so diam(7T’) > 3. By Observation 2, v,(T) = 2 and so 7;(T) =
2. Let {z,y} be a v(T)-set. Then zy € E(T), N(z) U N(y) = V(T), and
since T is a tree N(z) N N(y) = 0. Moreover (N(z) U N(y)) \ {z, v} is an
independent set, for otherwise T has a cycle. Thus, T is a double star Sr.s
for1<r<s. fT=28,,for1<r<s, then %(T)=(T)=2. O

Our next result follows from Proposition 3.
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Proposition 5 Let G be a graph such that G and G are isolate-free graphs.
Then v(G) > 3 and v.(G) > 3 if and only if diam(G) = diam(G) = 2.

3 Graphs G with 1(G) = 3(G) > 3

Henceforth we consider graphs G having %(G) = 1:(G) = k > 3. Thus, by
Propositions 4 and 5, diam(G) = diam(G) = 2. We begin by showing that
such graphs exist for all ¥ > 3. In [2], the authors gave a construction for
a family of graphs G where v(G) = v(G) = k for any k > 3. We note that
these graphs also have 7:(G) = 7.(G) = k and list the construction here for
completeness.

Example of Existence [2]: Let V(G) = AU B UC where A consists of

( kk_zl) vertices labeled by the distinct subsets of cardinality & —1 taken from
the first k2 positive integers {1,2,...k%}. Let B = {b;|1 <! <k}, and let
C = {c¢;j|1 < j £ k?}. Add edges as follows to obtain G. Make G[AU B|
a complete subgraph. For 1 < j < k2, ¢; is adjacent to the 'j:_';) vertices
in A which contain j in their labels. Make vertex b;, 1 <! < k, adjacent to

vertex ¢,;, 1 < s < k2, if and only if s and ! are congruent modulo k.

It is shown in [2] that ¥(G) = ¥(G) = k, so 1:(G) > k and 7.(G) > k.
Note that B is a TDS of G and {c1,c2,...,Ck} C__C is a TDS of G, so
7:(G) < |B| = k and 7(G) < k. Hence 1(G) = 1(G) = k.

3.1 Properties
We list some known upper bounds on the total domination number and

show that these bounds can be improved for graphs having the same total
domination number as their complement.

Theorem 6 Let G be a graph with minimum degree 6(G). Then

5(G) 21 implies ¥:(G) 2nf/3 ifn >3 and G is connected  ([4]),

IA

5(G) =22 implies v(G) < 4n/T ifn>11 and G is connected ([7)),and

5(G) >3 implies 1(G) < nf2 ({1, 3 4).
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Note that for any vertex v of a diameter-2 graph G, the Nv] is a TDS
of G. Hence if G is a diameter-2 graph, we make the following observation.

Observation 7 For any diameter-2 graph G with minimum degree §(G),
1(G) < 6(G) +1.

By Proposition 5 and Observation 7, we have the following.
Corollary 8 If 3 < 1(G) = %(G) =k, then k < §(G) +

Note that the self-complementary 5-cycle attains the bound of Corol-
lary 8. Our next bound on the total domination number of graphs G hav-
ing %(G) = %.(G) is a significant improvement over known bounds. Let
6* = min{4(G), §(G)}.

Theorem 9 If G is a graph of order n with 3 < v,(G) = 1(G) = k, then
k< Vi +2.

Proof. Let G be any graph satisfying the hypothesis. For a vertex v of
minimum degree in G, let A = Ng(v), and let B = V(G)\ Ng[v). If a subset
S of at most k—2 vertices of A dominates B, then SU{v} is a TDS of G with
cardinality less than %, a contradiction. We partition A into a = [ Tclé!i-l sets
Ay, Ay, ..., Ag such that |A;] < k—2for1<i<a. Thusno 4;,1<i<aq,
dominates B in G implying that in G, for each A; there exists a vertex
b; € B where b; dominates A;. Then {b; | 1 <i <a} U {v}isa TDS of G.
Since 7 (G) = k, it follows that a > k — 1. Thus, |[B| > k — 1, and we have
[ %:15] > k—1, which implies that 4L > k—2 and 6(G) = |4| > (k—2)2. A
similar argument holds for G, so §* > (k —2)2 or equivalently, k < v/3* +2.
(]

Corollary 10 IfG is a graph of order n with 3 < 7,(G) = v(G) = k, then
k< /%5t +2.

Since graphs G with 7(G) = 7(G) > 3 have diam(G) = diam(G) = 2, it
follows that the girth g(G) < 5. Proposition 4 implies that G has a cycle,
so we make another observation.

Observation 11 IfG is a graph with 7,(G) = v,(G) > 3, then 3 < g(G) <
5.
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In general the total domination number of a graph can be arbitrarily
larger than its domination number. For example, if G is formed from a
star Sy » by subdividing each edge of the star exactly twice, then v(G) =
2r while v(G) = r + 1. However, our next result shows that the total
domination number of a graph G having 7(G) = v.(G) > 3 differs from its
domination number by at most one.

Theorem 12 If 7(G) = %(G) = k > 3, thenk—1 < ¥(G) =+(G) < k.

Proof. Clearly, ¥(G) < 1:(G) for any isolate-free graph G. For the lower
bound, assume to the contrary that v¢(G) = k and that y(G) < k — 2.
Let X be a v(G)-set. Since ¥:(G) = k, X is not a TDS of G implying
that G[X] has an isolated vertex. Thus in G, G[X] has no isolates. But
since |X| < 1(G) = ’Yg(G) X does not dominate G. Thus there exists
a vertex, say v, in V(G) \ X that has no neighbor in X, implying that
X C Ng(v). Hence X' = XU {v} is a TDS of G with |[X'| < k-1 < %(G),
a contradiction. Thus, ¥(G) > k — 1. A similar argument shows that
¥(G)>k-1.0

A graph G is j-verter-connected (or simply, j-connected) if n > j+1 and
deletion of any j — 1 or fewer vertices leaves a connected graph.

Proposition 13 If 1(G) = v(G) = k > 3, then G and G are (k — 1)-
connected.

Proof. Since 7(G) = %(G) = k > 3, diam(G) = diam(G) = 2. Suppose S
is a cutset of G with cardinality at most k — 2. Since diam(G) = 2, every
vertex in G — S is adjacent to a vertex in S, so y(G) < |S| < k¥ —2. But
since 7;(G) = k, Theorem 12 implies that v(G) > k -1, a contradiction. O

3.2 %G = ’Yt(a) =3

We use the bounds on the domination number of Theorem 12 to determine
the total domination number of claw-free graphs having the same total
domination numbers as their complements.

Theorem 14 If G is a claw-free graph with v,(G) = 1:(G) = k > 3, then
k=3.
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Proof. Let G be a claw-free graph, and assume that (G) = %(G) =

3. Note that every triangle of G total dominates G, otherwise, the vertlces
of the triangle along with an undominated vertex in G induce a claw in
G. Thus, if G has a triangle, 7:(G) < 3 and so k = 3. Assume that G is
triangle-free. This implies that the largest independent set of vertices of G
has cardinality two. But every maximal independent set is a dominating
set, 50 7(G) < 2. By Theorem 12, k-1 < ¥(G) <2,s0 k=3. O

Lemma 15 If G is a diameter-2 graph and G has a vertex with an isolate
in its link, then v(G) < 3.

Proof. Assume that diam(G) = 2 and that in G a vertex v has an isolate,
say u, in its link G[N(v)]. Then {u,v} is a DS of G. Moreover, since
diam(G) = 2, u and v have a common neighbor, say z, in G. Hence
{u,v,z} is a TDS of G, and so 1:(G) < 3. O

The next corollary follows directly from Lemma 15 and Proposition 5.

Corollary 16 Let G be a graph with 7(G) = %(G) > 3. If G or G has a
vertez with an isolate in its link, then v:(G) = v+(G) =3

By Theorem 12, if %(G) = %(G) = 3, then v(G) (respectively, 7(2:‘)) is
either 2 or 3. Next we characterize the graphs having 1(G) = %(G) = 3
and 7(G) = ¥(G) =

Theorem 17 A graph G has %(G) = 7(G) = 3 and v(G) = v(G) = 2 if
and only if diam(G) = diam(G) = 2 and each of G and G has a verter with
an isolate in its link.

Proof. Let diam(G) = diam(G) = 2, and let each of G and G have a vertex
with an isolate in its link. By Proposition 5 and Lemma 15, it follows that
7(G) = 1(G) = 3. By Theorem 12, ¥(G) € {2, 3} and +(G) € {2, 3} Let
u be a vertex in G with an isolate, say v, in its link. Then {u,v} is a DS
for G and so v(G) < 2 implying that 7(G’) = 2. A similar argument shows
that v(G) = 2.

For the necessity, assume that 4,(G) = %(G) = 3 and v(G) = 'y(G) =2,
By Proposition 5, diam(G) = dlam(G) =2. Let S ={a,b} be a 'y(G)-set
Since 'yt(G) =3, Sisnot a TDS of G, that is, ab ¢ E(G). Thus a and b are
adjacent in G, and Ng(a) N Ng(b) = 0. Hence in G, b is an isolate in the
link of a. A similar argument shows that G has a vertex with an isolate in
its link. O
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We note that y(G) = 7(G) = 2 is a necessary condition for Theorem 17.
For example, the following family G of graphs G has 7,(G) = 7,(G) = 3,
¥(G) = 3, and no vertex in G has an isolate in its link. Let G denote
the family of graphs that can be obtained from a 5-cycle vjvauzvgvsvy by
replacing each vertex v;, 1 <1 < 5, with a clique A; and adding all edges
between A; and A;;;, where addition is taken modulo 5. A graph in the
family G is illustrated in Figure 1.

Z\
]

X
A

®

AN

Figure 1: A graph G in G.

We characterize the graphs having v:(G) = %(G) = 3.

Theorem 18 A graph G has 1(G) = 7(G) = 3 if and only if diam(G) =
diam(G) = 2 and in each of G and G, there ezist three vertices whose closed
neighborhood intersection is empty.

Proof. Let diam(G) = diam(G) = 2, and let u, z, and y be vertices of G
satisfying the theorem condition. Since diam(G) =2, {u, z,y} is a TDS of
G and so 1(G) < 3. Since diam(G) = 2, %:(G) > 3 and hence 1(G) = 3.
A similar argument shows that v.(G) = 3.

For the necessity, assume that 7;(G) = 7.(G) = 3. By Proposition 5,
diam(G) = diam(G) = 2. Let S = {u,z,y} be a 7,(G)-set. Then G[S] €
{Ps, K3}. We may assume, relabeling the vertices if necessary, that u is
adjacent to both z and y. Hence in G, dg(u,z) = dg(u,y) = 2 and
Nz(u)NNg(z)NNz(y) = 0. Therefore Ng[ulN\Ng[z]NNgly] = 0. A similar
argument shows that there exist three vertices of G with this property. O
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Recall that for a graph G with v;(G) = 7:(G) > 3, we have 3 < g(G) < 5.
We characterize the graphs G with this property having girth 5 and show
that in this case %(G) = 7,(G) = 3. We begin with a lemma.

Lemma 19 IfG and G are diameter-2 graphs and g(G) = 5, then v,(G) =
3.

Proof. By Proposition 5, 7:(G) > 3. Since g(G) = 5, it follows that G
is triangle-free. Thus N(u) is an independent set for all u € V(G), and so
u € V(G) has an 1solate in its link. Lemma 15 implies that 7,(G) < 3, and
hence 7 (G) =

Theorem 20 A triangle-free, quadrilateral-free graph G has v(G) = %(G) >
3 if and only if G = Cs.

Proof. Let G be a triangle-free, quadrilateral-free graph with v.(G) =

7:(G) > 3. Proposition 4 implies that G is not a tree and so g(G) > 5. By
Proposition 5, diam(G) = diam(G) = 2 implying that g(G) = 5. It follows
by Lemma 19 that v,(G) = 3, and so 1(G) = 3. Let S = {s1, 52,53} be
a 7:(G)-set, and let S; = N(s;)\ S for all s; € S. Since G is triangle-free
and quadrilateral-free, it follows that S; is an independent set for 1 < i < 3
and that $; N S; =0 for i # j. Also G[S] induces a P3. By the minimality
of S, 81 # 0 and S3 # 0. If S; # 0, then our diameter-constraint implies
that the vertex in S; has a neighbor in S; and a Cy is formed with these
two vertices and {s1,s2}. Hence Sp = 0. To show that G = Cs, it suffices
to show that |S;| = |S3] = 1. Without loss of generality, assume to the
contrary, that = and y are vertices in S;. Since diam(G) = 2, for every
vertex z € 53, zz,yz € E(G). But then {sy,z, z,y} induces a C4 in G,
contradicting that g(G) = 5. It follows that G = Cs. For the sufficiency, it
is easy to see that the self-complementary 5-cycle satisfies the theorem. O

33 (G =%G) >4

We can improve the upper bound of Corollary 8 for graphs G having
7(G) = 1(C) > 4.

Theorem 21 If a graph G has v(G) = %(G) = k > 4, then k < §(G).
Proof. Let G be a graph with v¢(G) = 1:(G) = k > 4. By Proposition 5,

diam(G) = diam(G) = 2. Let v be a vertex of minimum degree. Lemma 15
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implies that there is no isolate in the link of v, and since diam(G) = 2,
N(v) is a TDS of G. Hence 1:(G) < §(G). O

By Theorem 21 for graphs with v:(G) = 7:(G) > 4, we have §(G) > 4
and 6(G) > 4. Proposition 5, Observation 11, and Lemma 19 imply that
for such graphs G, 3 < g(G) < 4 (respectively, 3 < g(G) < 4). But we also
know that no vertex of G (respectively, G) has an isolate in its link, for
otherwise, v,(G) = 3. Since §(G) > 4 and no vertex has an isolate in its
link, we make the following observations.

Observation 22 If a graph G has 7:(G) = v.(G) > 4, then g(G) = g(G) =
3.

Observation 23 If a graph G has v(G) = 'yg('@_)_ > 4, then every vertex
of G lies on a triangle in G and on a triangle in G.

Proposition 24 If G is a graph with 7(G) = %(G) > 4 and v € V(G),
then the link of v has diameter at most 2 in G and in G.

Proof. For a vertex v € V(G), let A = Ng(v) and let B = V(G) \
Ng[v). Suppose diam(G[A]) > 3 or G[A] is not connected. In either case,
7.(G[A]) < 2. Since v dominates B in G, it follows that 1,(G) < 4, a
contradiction. A similar argument holds for G. O

Proposition 25 If G is a graph with v(G) = %(G) = k > 4, then for
every pair of non-adjacent vertices u and v in G (respectively, G), |Na(u)n
Ne(v)| 2 k-2.

Proof. Let v(G) = %(G) = k > 4. By Proposition 5, diam(G) =
diam(G) = 2. Let u and v be non-adjacent vertices in G, and let X =
Ng(w) N Ne(v) and Y = V(G)\ (X U {w,v}). In G, {u,v} total domi-
nates V(G) \ X. Since diam(G) = 2, each vertex in X has a neighbor in
Y C Ng(u) U Ng(v). Form a set X’ by selecting for each vertex in X one
of its neighbors in Y in G. Then X’ U {u,v} is a TDS of G, implying that
k = 7(G) € |X'U {u,v}| < |X|+2. A similar argument holds for any
non-adjacent pair of vertices in G. 0

4 Cubic Graphs

We note that the only 2-regular graph having the same total domination
number as its complement is the 5-cycle. In this section we characterize
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F 1 E 2
Figure 2: Cubic Graphs in F.

cubic graphs having this property.

We will use a straightforward lower bound on v;(G).

Observation 26 If G is an isolate-free graph of order n, then 71,(G) >
n/A(G).

We also need the following definitions and lemma.

An S-external private neighbor of a vertex v € S is a vertex u € V' \ §
which is adjacent to v but to no other vertex of 3.

Definition 1 Let F be the set containing the two cubic graphs on eight
vertices shown in Figure 2 and constructed in the following manner. Begin
with a cycle Cs = v1vav3vavsvy and a path Py = abe. Add the edge bvs. To
form Fy, add edges av;, avy, cvs and cvs. To form Fy, add edges av,, avs, cvs
and cvy.

Lemma 27 If G is a cubic graph with v(G) = v,(G) = k, then k > 3.

Proof. Let G be any cubic graph of order n satisfying the hypothesis.
Assume for the purpose of a contradiction that ¥ = 2. Since G is cubic
and v (G) = 2, two adjacent vertices dominate G implying that 4 <n < 6.
Since G is cubic, n is even and so n € {4,6}. If n = 4, then G = K, and G
has an isolate, a contradiction. If n = 6, then G is 2-regular and so G = Cs
or G = C3 U Cj. In either case, +, (G) =4 and 1(G) = 2, a contradiction.
a

We now give our characterization.
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Theorem 28 For any cubic graph G, v:(G) = %(G) if and only if G € F.

Proof. Let G be any cubic graph of order n such that v,(G) = v.(G) = k.
By Lemma 27, k > 3. By Proposition 5, diam(G) = diam(G) = 2. Then
from Observation 7, we have v:(G) < 4, and from Observation 26, v.(G) >
n/A(G) = n/3. Combining inequalities yields n < 12. Since G is cubic, it
is necessary that n > 4 and n is even. Thus n € {4, 6, 8,10, 12}. From the
proof of Lemma 27, we have n ¢ {4, 6}.

It follows by Observations 7 and 26 that [z(%-y] < 1(G) < 4. Note that
G is r-regular with r =n —3 — 1, so for 8 < n <12, we have r > 4. Let
v € V(G) and Ng(v) = {a,b,c}. Then in G, it follows by the pigeonhole
principle that two vertices of {a, b, c}, say a and b, have a common neighbor
z € Nz(v). The set {v,z,y}, where y € Ng(v) N Ng(c), is a TDS for G.
Hence 7.(G) < 3, and so 7. (G) = 3. Now Observation 26 implies that
n=_§.

Let S = {a,b,c} be any v;(G)-set. Then G[S] = P; or G[S] = K3. If
G[S) = Ks, then since G is cubic, n < 6, a contradiction. Thus G[S] =
P; = abc. By the minimality of S, each of a and ¢ has an S-external
private neighbor. Let V(G)\ S = {v1,v2, v3, vs,v5}. Since G is cubic and
each vertex of V(G) \ S is adjacent to at least one vertex of S, it follows
that b has exactly one S-external private neighbor, and both a and ¢ have
two S-external private neighbors. Since G is cubic, G[V(G)\ 8] is 2-regular,
that is G[V(G) \ 5] induces a 5-cycle. Relabeling the vertices if necessary,
let the 5-cycle be vy v2v3zvavsv;. We may assume that bvz € E(G). Now, G
can be (up to isomorphism) one of three possibilities. If avy, ave, cvy, cvs €
E(G), then diam(G) = 3, a contradiction. If avy,av,cvs,cvs € E(G),
then G = Fy € F. If avy,avs, cv2,cvq € E(G), then G = F, € F. Hence
G € F. This proves the necessity. For each graph in F, {a,b,c} is a TDS.
Consequently, 7:(G) < 3. By Observation 26, :(G) > 3, and so 7(G) = 3.
It is an easy exercise to show that for every G € F, %(G) = 3 as well. O
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