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Abstract

Using the definition of the representation number of a graph modulo
integers given by Erdés and Evans we establish the representation
number of a complete graph minus a set of disjoint stars. The repre-
sentation number of a graph G is the smallest positive integer n for
which there is a labeling of every vertex of G with a distinct element
of {0,1,2,...,n—1} such that two vertices are adjacent if and only if
the difference of their labels is relatively prime to n. We apply known
results to a complete graph minus a set of stars to establish a lower
bound for the representation number; then show a systematic label-
ing of the vertices producing a representation that attains that lower
bound. Thus showing that for complete graphs minus a set of dis-
joint stars the established lower bound of the representation number
modulo 7 is indeed the representation number of the graph. Since
the representation modulo an integer for a complete graph minus dis-
joint stars is attained using the fewest number of primes allowed by
the lower bound, it follows that the corresponding Prague dimension
will be determined by the largest star removed from the complete

graph.

JCMCC 87 (2013), pp. 33-41



1 Introduction

Erdds and Evans [6] showed that every finite graph has a positive integer
representation in the following way:

A graph G = (V, E) with vertex set V = {v;}]_, and edge set E =
{775} (i.j e Bcv x v is said to have a representation modulo a positive integer
n if there exist distinct integers aj,as,...,a, such that 0 < a; < n, and
ged(a; — aj,n) =1 if and only if v; and v; are adjacent (7775 € E). We say
that {a1,a2,...,ar} is a representation of G modulo n.

We define the representation number of a graph G (denoted rep (G)) as
the smallest value of such a representation of G. The reader will undoubt-
edly realize that a complete graph K, requires rep(K;) to be at least as
large as its chromatic number, and with a little more effort that rep (K, )
will have to be a prime number. The converse statement, that a prime
number is the the representation number of G only if representation G is
a complete graph on a finite number of vertices, is also true. This is per-
haps the single most useful result behind general results establishing lower
bounds for the representation number.

The impetus behind the creation of such a representation in [6] was to
give a simpler proof of a result of Lindner, Mendelsohn, Mendelsohn, and
Wolk [12] that any finite graph can be realized as an orthogonal Latin
square graph. A proof that was later simplified further by Narayan [14].
However in recent years, as the title of Narayan’s article [14] reveals, the
problem of determining the exact representation number of a graph or at
least finding bounds for its value has surpassed in importance any possible
application. In a reversal of roles between the question about Latin squares
and the question of the representation number modulo n, Evans, Isaak, and
Narayan [9] showed that the determination of representation numbers for
disjoint unions of complete graphs is dependent upon the existence of sets
of mutually orthogonal Latin squares.

It is not surprising that the representation number is studied for its own
sake given the conceptual link that exists between the representation num-
ber and another integral value attached to graphs, known as the Prague
dimension of the graph and denoted dimp(G). Computing dimp(G) has
been shown to be NP-Complete [11]. In some cases like the one we here
consider, the determination of dimp(G) can be made directly from rep (G).
Determining the representation number of a graph seems destined not to
yield to an all-encompassing approach. Instead it seems finding rep(G)
must proceed by identifying classes of graphs that share narrowly defined
properties. Representation numbers for several families of graphs including
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complete graphs, and graphs of the form K, — P, K,, — Ci, Km — K1
(each along with a set of isolated vertices) were determined in [8] and [9].
Evans (7] used linked matrices and difference-covering matrices to obtain
new results involving representation numbers for the disjoint union of com-
plete graphs. Narayan and Urick [15] investigated representation numbers
for split graphs, their complements, stars, and hypercubes. Evans, Isaak,
and Narayan determined the representation number of a complete graph
minus a path [9]. Agarwal, Lopez and Narayan determined the represen-
tation number of a complete graph minus a disjoint union of two paths [1)
and later extended this result to the representation number and the Prague
dimension of a complete graph minus a disjoint union of arbitrarily many
paths (see [2]). Akhtar, Evans and Pritikin [3] obtained results involving
representation numbers of stars. The purpose of this paper is to establish
the representation number of the complement of a (finite) disjoint union of
stars in a complete graph.

Besides defining the representation number of a graph G we should also
address what the Prague dimension of a graph G is. The Prague dimension
(also known as the product dimension) was introduced by Nesetfil and Pultr
[16] and has been extensively studied [13], [4], and [5]. We say a graph G
has a product representation of length d if each vertex v of G can be assigned
a ordered d—tuple so that the vertices v and w are adjacent if and only if
their vectors differ in every coordinate. The Prague dimension of the graph
G, dimp G, is the minimum possible length d of such a representation.

Our use of the Chinese Remainder Theorem (CRT') will make it quite clear
how rep(G) and dimp G are related. Suppose G has a representation mod-
ulo a positive, square-free integer n. Let n = pypq---py, where p;’s for
1 < i £ d are distinct primes. We obtain a product representation of G
(of length d) as follows: Suppose the vertex v has label a, then the vec-

tor for v is (v1,vz,...,v4), where v; = @ (mod p;) and 0 < v; < p; for
1 < i < d. If vertex v with label a has vector representation (vy,va, ..., vq)
and vertex w with label b has vector representation (wj,ws,...,waq), then

ged(a — b,n) = 1 implies that v and w are adjacent if and only if v; # w;
for all 1 <4 < d, making this assignment a product representation. On the
other hand given a product representation choose distinct primes for the
coordinates, each prime larger than the largest value used in that coordi-
nate. The numbers assigned to the vertices can then be computed using
the Chinese Remainder Theorem.
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2 Some known results

In this section, we restate some previously known results from [8] involving
the representations modulo an integer and the representation numbers of
graphs. These results together with the Chinese Remainder Theorem is all
that we require. The reader should consult [10] for an in-depth treatment
of representation number computation techniques.

Theorem 1. A graph has a representation modulo a prime if and only if
it is a complete graph.

The disjoint union of graphs G and H will be denoted G + H. That is,
V(G+ H)=V(G)UV(H) and E(G+ H) = E(G) U E(H).

Theorem 2. A graph has a representation modulo a product of some pair
of distinct primes if and only if it does not contain an induced subgraph
isomorphic to Ko + 2K, K3 + K, or the complement of a chordless cycle
of length at least five.

The following results deal with the size of the prime divisors of the repre-
sentation numbers.

Theorem 3. If G has a representation modulo n, and p is the smallest
prime divisor of n then p > x(G).

We have the following corollary where w(G) is the size of the largest com-
plete subgraph in G.

Corollary 3.1. If G has a representation modulo n, and p is a prime
divisor of n then p > w(G).

We restate Lemma 2.10 and Corollary 2.12 from Evans, Isaak, and Narayan
(9).

Lemma 4. If G contains a K, + Ky as an induced subgraph and G is
representable modulo n, then n contains at least m distinct prime factors.

Corollary 4.1. If G contains a K+ K and p; is the smallest prime satis-
fying pi > x(G) then rep(G) = piPi+1- - Pitm—1, WheTe Piy1,Pit2s - - Pitm—1
are the next m — 1 primes larger than p;.
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3 Complete Graphs minus disjoint set of stars

3.1 Lower bound for the representation number

A star K, ., is a graph with center vertex vy connected to m vertices

{v1, va, ..., vy} and having no other edges. When we consider a complete
graph minus one or more disjoint stars, we only remove from the com-
plete graph the edges that correspond to the stars. The set of vertices is
not diminished. In other words, if we let G, = K, — PP i<s K),m; then
V(G.) = V(K;) and E(G.) = E(K,)\ UISJ‘Ss E(K),m;)- Indexing the
stars removed from large to small facilitates computing the lower bound for
the representation number. That is, we work with K, =3, .., K1,m, such
that my > mg > --- > m, > 2 and satisfying V(Ky,m,) N V(K1,m,) = 0 for
1<l#5j<r.

Set M, = 0 and denote by M;, = E:":_ll m; for 1 < ip < s+ 1. Re-index if
necessary the vertices of G. so that the set of centers of the stars excluded
from K, is C = {v14M,, V24+My» V34My» - -, Vsirr, } and the vertices of
any of the stars K1 m,, = {Vig+My» Vidio+Miys -+ - » Uiy +io+ M,y }. Observe
that the index for any vertex v, that is not part of any of the excluded stars
will have to be greater than s + M,1; that is (s + 1) + M,y < ¢ < r if

and only v, € V(G,)\V (215153 Kl,m,)~

Observe that the set of vertices V' (G.)\ C does induce a complete subgraph
in G.. because for every pair of vertices in V(G,)\ C there is an edge in the
graph G,. This induced complete subgraph has r — s > 0 vertices. More-
over, any complete subgraph induced by a vertex set that contains a ver-
tex vio+ M, € C must exclude the vertices {(Viyig+n,y, - -1 Umig+io+ Mg }-
Since m; > 2 for all 1 < j < s and the stars are disjoint then any vertex
set intersecting C' must induce a complete subgraph in G, whose order is
strictly less than » —s. Therefore the smallest prime factor in the prime fac-
torization of rep(G.) must be p; > 7 — s and rep(G.) = PiPit1 -+ * Pitm; -1
according to Corollary 4.1. Observe that if the Prague dimension of G,
were less than m, then, as discussed above, the corresponding vector repre-
sentation would yield a representation modulo an integer n with fewer than
my-many primes. That would contradict this result obtained from Corol-
lary 4.1. Therefore the Prague dimension of G, must be at least m;. A
direct result of the theorem we prove in the next section is that the Prague
dimension of G. is exactly m;.
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3.2 Representation of K.~} ., Kim; using the lower
bound T

Keeping the same set-up and notation as above, we now prove our main
Theorem.

Theorem 5. Let G = Ky — - <<, K1,m; be a complete graph (of size
) minus a disjoint union of (s—many) stars with my > mg > -+ > m,.
Then G has representation number n = PiPiy1 - Pitm,—1, Where p; is the
smallest prime such that p; > r —s.

Remarks: The strategy behind our proof is to assign mi-tuples in Z/p;Z x
Z/pit1ZX - - X L [Pi4m,—1Z to the vertices of K""EISsz K m,; as follows:

e Label v;o4 0, € C with the my-tuple (M, My, ..., M;,) ifvg € C;
and if v, € V(G)\V (EISJ'Ss Kl,mj)). attach to this vertex the
my-tuple (g—s—1,¢g—s—1,...,¢g—s—1).

o Label vj4i0+0;,, Where 1 < j < my, with the my-tuple (ai, ..., am,)
where each of the entries with index less than j are assigned the value
(j — 1) + M, the entry indexed by j is assigned the value M,, and
the last (m; — j)-many entries of the m;-tuple are assigned the value
i+ M

o Label v, +14M,, With the mi-tuple (ay, ..., @m,) where each of the
entries with index less than m;, is assigned the value M;,+m;, —1 =
Mi,+1 — 1 and the last (my — my, + 1)-many entries of the m;-tuple
are assigned the value M.

Usmg this labeling scheme and the standard isomorphism Z/p;ZXZ/p;41Zx

- +XZ/Piym, —1Z — Z/nZ we produce a representation of K, ~3_; < i< s K1,m;
modulo n. To help the reader visualize the workings of this labeling scheme
we organize the data in the following table:

38



vertices mod p; mod pi41 modpi4g [... | mod Pitmy=1 | .- | mod pise -1
VitM, 0= M| 0 1) e 0 0
Vi, +1 0 1=1+M, 1 1 1
VI4M 42 1 ] 2 2 2
V1+M 43 2 2 0 3 3
V1e My +my my —1 my — 1 my ~1 m;—1 0
V240 my = M M, My e M, s M,
V24+My+1 M, 1+ M,y 1+ M 1+ M, 1+ M,
V24042 1+ M, M, 2+ M, 2+ M, 2+ M,
V24 M43 24 M 2+ M, M, 3+ M, 3+ M,
Y24+ M;+my my—1+My | ma—1+My | ma-14My | ... M, M,
Vst M, M, M, M, aee M, ‘oo M,
Vot M, +1 M, 1+ M, 1+ M, 1+ M, 14+ M,
UpadMdm, | Ma—14+ My | m, -1+ M, M, M,
V(s41)+M,4; Ml+l M,41 M, ‘e M.+1 ‘et Mlil
Vot Me+1 | Mep1 +1 Mo +1 Moaa+1 | ... My +1 Mo +1
Yot 1) Ms 42 | Mosa +2 Myg1+2 Mo +2 .. Mys1 +2 ... My +2
x;, r—;-l r-—s—1 r—s—1 r—s—1 r—s—1

The last rows in the above table with indices greater than s + M4 exist
only if there are vertices not belonging to any of the stars in the complete
graph K. With the above table as an aide, we prove our labeling scheme
produces a representation for complete graphs minus a set of stars.

Proof. Observe that for every 1 < ! < m,, the I*h entry of every mi-
tuple has a value in the set {0,1,...,7 —s -1} c {0, 1, ooy Pigl-1}
Also, for two different vertices with corresponding labels (a, ..., a,,,) and
(a1 ..., am,), if @] = af then a}, +# af, . This follows from the labeling
scheme and the fact that m; > 2. Therefore invoking the Chinese remain-
der theorem one concludes that the corresponding labeling of the vertices
via the isomorphism Z/piZ X Z/pis1Z X - - - X Z/p; 4y, -1Z — Z/nZ assigns
distinct labels from {0, 1, 2, ..., n — 1} to the vertices of G..

It remains to show this labeling scheme for G, satisfies the adjacency con-
dition. Fix a value 1 <! < m; and consider the sequence {a; (1)}i=; where
a(i) is the I*! entry of the m,-tuple assigned to the ith vertex (this sequence
corresponds to the I* column in the above table). Then (by construction)
for i' <i", ai(¢') = a1(¥"") mod piyi-1 if and only if 7/ = ig + M;, for some
1 <ip < s and i" = min{i’ + |, M;, + m;,}. These “if-and-only-if” state-
ment can be restated as the following sequence of equivalent statements:

The difference between the values in labels from {0, 1, 2, ..., n — 1}
assigned to vectors vy and v;~ is divisible by Piti—1 for some 1 <! <m,
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=4
Vit = Vig+M;, for some 1 < ip < s and v;» = vyryy for some 1 <1 < my,
=4
Vir, vin € Ki,m,, for some 1 <ip<s

We have established a representation for G = K — 3, ¢;<, K1,m; modulo
n = PiPis1- - Pi+m,—1. Thus we can infer that rep(G) < n. Combining
this and the remarks made in subsection 3.1 completes the proof. [ ]

Corollary 5.1. The Prague dimension of K, — 2151'58 Ky m; is my.

Example 3.1. Consider the case of a complete graph Ky, plus an isolated
vertex. This can be represented as Ky,+1 — K1,m. If p; is a prime integer
greater than or equal to m then rep (Km41 — Ki1,m) = PiPi+1. . . Pi+m.

The reader might want to consider the complete graphs minus disjoint
stars(2). Here we denote star(2) a graph with a central vertex to which
paths with two edges are attached and such that there are no closed paths or
loops. It seems that this case should still have Prague dimension determined
by the largest star(2) removed. However, the largest complete subgraph
might not provide a large enough smallest prime factor of the representation
number modulo an integer for these type of graphs.

Acknowledgements: The authors would like to thank the referee for
their careful reading and valuable advice which resulted in the improved
version of Theorem 5 and a significant improvement of this article.
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