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Abstract

We show that the principal results of the article “The metric
dimension of graph with pendant edges” [Journal of Combinatorial
Mathematics and Combinatorial Computing, 65 (2008) 139-145] do
not hold. In this paper we correct the results and we solve two open
problems described in the above mentioned paper.

1 Introduction

Let G = (V,E) be a simple graph of order n = |V|. Let u,v € V be
two different vertices of G, the distance d(u,v) between vertices u and v is
the length of the shortest path between u and v. Given a set of vertices
S = {v1,v2,...,vx} of G, the meiric representation of a vertex v € V with
respect to S is the vector r(v|S) = (d(v,v;),d(v, v3),...,d(v,vk)). We say
that S is a resolving set for G if for every pair of different vertices u,v € V,
7(u|S) # 7(v|S). The metric dimension of G is the minimum cardinality
of any resolving set for G and it is denoted by dim(G). The concept of
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metric dimension was introduced first independently by Harary and Melter
[3] and Slater [5], respectively.

Let G and H be two graphs of order n and m, respectively. The corona
product G ® H is defined as the graph obtained from G and H by taking
one copy of G and n copies of H and then joining by edges all the vertices
from the it*-copy of H with the i**-vertex of G.

Given the graphs G and H with set of vertices V; = {v1,vs,...,un} and
Vo = {u1,u2, ..., um}, respectively, the Cartesian product of G and H is the
graph G x H formed by the vertices V = {(v;,4;) : 1<i<n,1<j<m}
and two vertices (vi,u;) and (vk, ) are adjacent in G x H if and only if
(vi = v and u; ~ ) or (v; ~ vk and u; = ;). The metric dimension of
Cartesian product graph is studied in [2].

The following results related to the metric dimension of the graph
(Pn x Pp) ® Ky and (K, x Pn) ® K; were published in [4]. We include
parts of the proofs appearing in such a paper.

Theorem 1. [4] Forn >1 and 1 <m < 2, dim((P, X P,) © K1) =2.

Proof. Let vi; = (vi,v;) be the vertices of P, X Pn C (Pr x Pn) ® Kj,
where v; € Py, vj € P, 1 <i <7, and 1 < j < m. Let u;; be the pendant
vertex of v;;.

................................................................................................

Case 2. m = 2. Again, by Theorem A! (i), we only need to show that
dim((P. x P2) ® K1) < 2. Choose a resolving set B = {u11,u12} in (P, x
P,) ® K;. The representation of vertices v € (P, X P2) © K; by B are

r(vi1|B) = (i,5+ 1) and 7(vi2|B) = (i +1,i) for 1 <i < n,

r(uiy|B) = (d(vi1, u11) + 1,d(vi1, v12) +1)

and 'r(uing) = (d(v.-g,un) + l,d(v,-g,ulz) -+ 1), for2<i<n.

All of those representations are distinct. Therefore, dim((P, x
PO K)=2 a

Counterexample: Let G = (P; x P;) ® K (See Figure 1), from the above
result dim(G) = 2 and the set S = {uy),u12} is a resolving set for G. Now,
for the vertices ugse and vz we have that

T(u22IS) = (4, 3) = T(UagIS).

Thus, the sentence in bold of the above proof is not true.

1Theorem A state that for any connected graph G, dim(G) = 1 if and only if G = P,.
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Figure 1: {u;;,u;2} is not a resolving set.

Theorem 2. [4] Forn > 3,

dim((Kn x Pr) © K1) = { nob m=>%

Again we have a counterexample, which shows that the above result
is also not true. Let the graph G = (K4 x P;) ® K;. Thus, from the
above theorem we get dim(G) = 4. Nevertheless, Figure 2 shows that
dim(G) = 3.
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Figure 2: Counterexample for m = 2 and n = 4. The label of each vertex
is its metric representation with respect to the set {v11,v21,v32}.

In this paper we correct the cases m = 2 and n > 3 of the above
results. We also solve the general case m > 2.
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2 Results
Theorem 3. Ifn >3 and m > 2, then dim((P, X Pn) © K1) = 3.

Proof. Let {v1,v2,...,v5} and {uy,us,...,um} be the set of vertices of the
graphs P, and P,,, respectively. The vertices of P,, x P, will be denoted
by vi; = (vi,u;) and the pendant vertex of v;; in (P X Pp) © K, will be
denoted by u;;. We will show that S = {v11,%1m,Vnm} is & resolving set
for (P, X Pr) ©® K1. The representations of vertices of (P, x Prn) ® Ky with
respect to S are given by the following expressions,

T(U,’j'S) = (d('Uij, '011), d('Uij, 'Ulm)y d(vijy vn"l))
=(@+j-2,m+i—j—1l,m+n—i-j),

(ui|S) = (d(uij, v11), d(ij, Vim)s A(Uij, Unm))
=(G+j—1l,m+i—jm+n—i—j+1).

Now, let us suppose there exist two different vertices z,y of (P, X Pn) ® K
such that 7(z|S) = r(y|S). If £ = v;; and y = vgy, then i £ k or j # ! and
we obtain that

(i+j-2,m+i-j-1,m+n—i—j) = (k+l-2,m+k=l-1,m+n-k-1).

Which leads to 7 = k and j = [, a contradiction. Analogously we obtain a
contradiction if £ = u;; and y = ug. On the other hand, if z = v;; and
y = ux, then we have

(G+j-2,m+i—j—1l,m+n—i—j)=(k+l=-1,m+k-l,m+n—-k-1+1),

which leads to 1 = —1, a contradiction. So, for every different vertices z, y of
(Pax Pr)®K1, we have (z|S) # r(y|S). Therefore, dim((Pnx Prn)®K)) <
3.

On the other hand, since (P, x Py) ® K} is not a path, dim((P, x
P,) ® K1) = 2. Now let us suppose S’ = {a,b} is a resolving set for
(Pn % P) ® K;. If there exist two different paths of length d(a, b) between
o and b, then there exist two different vertices ¢, d of (P, x Pp,) ® K; such
that d(c,a) = d(d,a) and d(c, b) = d(d,b), a contradiction. Let us suppose
there is only one path Q, of length d(a,b), between a and b. Thus, all the
vertices of Q, except possibly a or b which could be pendant vertices, belong
either to a copy of P, or to a copy of P,,. We consider the following cases.

Case 1: If every vertex belonging to the path Q has degree at most
three, then m = 2 and S’ C {u11,v11,u21,v21} or S’ C {Uin,V1n, U2n,V2n}.



Let us suppose S’ C {u11,v11,%21,v21}. Now, for the vertices uy;,v1,i41,
2 < i <n-1 we have that
d(ui,a) = d(us1,v11) + d(vi1,a)
= d(vit1,1,v11) + d(v11,0)
= d(viy1,1,0),

d(ui1, b) = d(us1,v11) + d(v11, b)
= d(vi41,1,v11) + d(v11, b)
= d(v,~+1,1, b)
Thus, 7(ui1]|S") = r(vi41,1|5"), a contradiction. On the contrary, if §' C
{t1n, Vin, U2n, v2n}, then for the vertices uiy,v;i—1,1, 2 <4 < n—1 we have
d(ui1, @) = d(us1,v1a) + d(vin, a)
= d(vi—1,1, V1n) + d(V1n, @)
= d(vi—l,lx a')r

d(ui1,d) = d(ui1,v1n) + d(vin, d)
= d(vi-1,1,V1n) + d(v1n, b)
= d(v,-_l,l, b)
Thus, 7(u;1|8’) = 7(v;~1,1|5’), a contradiction.
Case 2: There exists a vertex v of degree four belonging to the path
Q. So, v has two neighbors ¢, d not belonging to Q, such that d(c,a) = 1+
d(v,a) = d(d,a) and d(c,b) = 1+ d(v,b) = d(d,b). Thus, r(c|S’) = r(d|S’),
a contradiction. Hence, dim((P, X Pn) ® K;) > 3. Therefore, the result
follows. ]
The following lemmas are useful to obtain the next result.
Lemma 4. [2] Ifn > 3 then dim(K, x P,) =n — 1.

Lemma 5. [1] If Gy is a graph obtained by adding a pendant edge to a
nontrivial connected graph G, then

dim(G) < dim(G1) < dim(G) + 1.
Theorem 6. If m > 2, then

n-1, forn>4,

dim((K, x Pn) © Kj) = { 3, forn=3.
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Proof. Similarly to the above proof, let v;; = (v, u;) be the set of vertices
of K, x P,,, where v;, 1 < ¢ < n and uj, 1 £ j < m are vertices of the
graphs K, and Py, respectively. Let us denote by u;; the pendant vertex
of v;;. Assume that n = 3. We will show that S = {v11,v21,v3m} is a
resolving set for (K3 x P,,) © K1. Let us consider two different vertices z,y
of (K3 X Pn) ® K1. We have the following cases.

Case 1: £ = v;; and y = vy If j =, then i # k and either 7 # 3 or
k # 3, say i # 3. So, for v;; € S we have d(z,vi) =J — 1 < j = d(y,va).
On the contrary, say j < I. If i # 3 or k # 3, for instance, ¢ # 3, then for
vi1 € S we have d(z,vi1) =j—1<1-1<d(y,vaa). Now, ifi = k = 3,
then d(z,v3m) =m —j > m —1 = d(y,vam)-

Case 2: = = u;; and y = ups. Is analogous to the above case.

Case 3: £ = v;; and y = upy. If j =1 and i = k = 3, then we have
d(z,v3m) =m—j <m—j+1=d(y,vam). Also,if j=1and (i # 3 or
k # 3), say i # 3, then for v;; € S we have d(z,v1) = j —1 < j < d(y,va1).
On the other hand, if 7 # I, we consider the following subcases.

Subcase 3.1: ¢ = kand i # 3. If j = !+ 1, then we have that
d(z,v3m) =m—j+1=m—1l <m—1+2=d(y,vsm). On the other hand,
if j # 1+ 1, then for v;; € S we have d(z,vi1) = — 1 # | = d(y,va1)-

Subcase 3.2: i =k =3. If j =1 — 1, then there exists vr; € S, r # 3
such that d(z,vr1) =j =1—1<1+1=d(y,vr1). On the other hand, if
§ #1—1, then we have that d(z,vsm) =m —j #m -1+ 1 = d(y,vam).

Subcase 3.3: i # k. Hence, we have either 7 # 3 or k # 3, for instance
i # 3. If d(z,vi1) = j — 1 = d(y,vi1), then there exist v,y € S — {vi1},
r # 3, such that d(z,vm) =7 > j — 12 d(y,vn1).

Therefore, dim((K3 x Pn) ® K1) < 3.

On the other hand, let S’ = {a, b} be a resolving set for (K3 xP,)0K;.
If there exist two different paths of length d(a, b) between a and b, then there
exist two different vertices c,d of (K3 X Pm) ® K such that d(c, a) = d(d, a)
and d(c, b) = d(d,b). Hence, 7(c|S’) = r(d|S’), a contradiction. Moreover,
if there is only one path Q, of length d(a,b), between a and b, then there
exists a vertex v of degree four belonging to the path Q. So, v has two
neighbors ¢, d not belonging to Q, such that d(c,a) = 1+ d(v,a) = d(d, a)
and d(c, b) = 1 + d(v,b) = d(d, b). Thus, r(c|S’) = r(d|S’), a contradiction.
Thus, dim((K3 X P,) ® Ki) > 3. Therefore, for n = 3, the result follows.

Now, let n > 4. We will show that S = {v1m,v31,%41,...,Un1} is 2

resolving set for (Ky, x P,) ® K. Let us consider two different vertices z,y
of (Kn X Ppn) © K;. We have the following cases.



Case 1: £ =v;; and y = viy. If j =, then i # k. Let us suppose ¢ = 1
and k = 2. Hence for v;,», € S we have d(z,vy) =m —j<m—j+1=
d(y,vim). Now, if < ¢ {1,2} or k ¢ {1,2}, then we have v;; € S or vy € S,
say vi1 € S. Thus, we have d(z,vi1) =j—1 < j =1 =d(y,vi).

On the other hand, if j # I, say j < l, then there exists v;; € S,
t € {3,...,n}, t # k, such that
d(zv vtl) = d(z1 vil) + d(vihvtl)
<J—=1+d(vk1,ve)
<l-1+ d(vkl,vu)
= d(y, vk1) + d(vk1,ve1)
= d(y,vu).

Case 2: z = u;; and y = ug. Since d(uij,v) = d(vij,v) + 1 for
every v € S, we proceed analogously to the above case and we obtain that
(ui5]S) # r(uwlS).

Case 3: z = v;; and y = uy. If j <, then for every v;; € S we have

d(z,v1) = d(z,vi1) + d(vi1, ve1)
=j -1 +d(v¢1,vt1)
<l-1+4+ d(vﬂ,vu)
< U4 d(vk1,va)
= d(y, vk1) + d(vk1,ve1)
= d(y,va1).

Now, if j > I, then we have

d(z,v1m) = d(Z, Vim) + d(Vim, Vim)

=m—J + d(Vim, 'Ulm)

<m =1+ d(vim, vim)

<m—1+1+4dWkm,vim)

= d(y, vkm) + d(Vkm, V1m)

= d(y, Vim)-
Therefore, for every two different vertices z,y of (K, x Pn) ® K1 we have,
7(z|S) # r(y|S) and, as a consequence, S is a resolving set for (K, x P,) ®
K, of cardinality n — 1.

On the other hand, by Lemma 4 and Lemma 5 we have dim((K, x
P,) ® K1) 2 n - 1. Hence, for n > 4, the result follows. a
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