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Abstract

A Roman dominating function on a graph G is a labeling f :
V(G) — {0,1, 2} such that every vertex with label 0 has a neighbor
with label 2. The weight of a Roman dominating function is the
value f(V(G)) = > uev(c) f(u). The minimum weight of a Roman
dominating function on a graph G is called the Roman domination
number, denoted by yr(G). The Roman bondage number of a graph
G is the cardinality of a smallest set of edges whose removal results
in a graph with Roman domination number greater than that of G.

In this paper we initiate the study of the Roman fractional bondage
number, and we present different bounds on Roman fractional bondage.
In addition, we determine the Roman fractional bondage number of
some classes of graphs.

Keywords: Roman domination number, Roman bondage number,
Roman fractional bondage number.
MSC 2000: 05C69

1 Introduction

In this paper, G is a simple graph with vertex set V = V(G) and edge set
E = E(G). The order |V| of G is denoted by n = n(G). For every vertex
v € V, the open neighborhood N(v) is the set {u € V(G) | ww € E(G)}

JCMCC 87 (2013), pp. 51-63



and the closed neighborhood of v is the set N[v] = N(v) U {v}. The degree
of a vertex v € V(G) is degg(v) = deg(v) = |N(v)]. The minimum and
mazimum degree of a graph G are denoted by § = §(G) and A = A(G),
respectively. The open neighborhood of a set S C V is the set N(S) =
UpesN(v), and the closed neighborhood of S is the set N[S] = N(S)U S.
The independent domination number (G), is the cardinality of the smallest
maximal independent set of G. Let S C V be a subset of vertices of G and
x a vertex of S. A vertex y is a private neighbor of z with respect of S, or
S-private neighbor, if y = z in the case z is isolated in G[S],ory e V'\ S
and z is the unique neighbor of y in S. The private neighbors of the second
kind are called external private neighbors.

We write K, for the complete graph of order n, P, for a path on n
vertices and C,, for a cycle of length n. Consult (7, 12] for the notation and
terminology which are not defined here.

A Roman dominating function on a graph G is a labelling f : V(G) —»
{0,1,2} such that every vertex with label 0 has a neighbor with label
2. The weight of a Roman dominating function is the value f(V(G)) =
Zuev(c) f(u). The minimum weight of a Roman dominating function on
a graph G is called the Roman domination number, denoted by yr(G). A
graph G of order n satisfies yr(G) = n if and only A(G) < 1, i.e., each of
its component is a K; or a Ko. A yr(G)-function is a Roman dominating
function on G with weight vyr(G). A Roman dominating function f :
V — {0,1,2} can be represented by the ordered partition (Vo,V1,V2) (or
(V},f,Vlf,sz) to refer to f) of V, where V; = {v € V | f(v) = i}. In this
representation, its weight is w(f) = |Vi| + 2|V2]. In [3], some properties
of yr(G)-functions are given. In particular every vertex of V; of a yr(G)-
function has at least two V;-private neighbors, one of them being possibly
internal and the other ones in V;. If an isolated vertex = of V2 has exactly
one private neighbor y in Vj, we can also put z and y in V;. To avoid this
ambiguity, we choose in this case to put = and y in V; and we call good
1r(G)-function of G a yr(G)-function such that |V3| is minimum. Then
every vertex of V2f has at least two external sz -private neighbors, obviously
all in V. When we delete an edge e of G, the Roman domination number
cannot decrease and Yr(G — e) > Yr(G) for every edge of G.

The definition of the Roman dominating function was given implicitly
by Stewart [11] and Revelle et al. [10]. Cockayne, Dreyer, Hedetniemi and
Hedetniemi (3] as well as Chambers, Kinnersley, Prince and West [1] have
given a lot of results on Roman domination.

Let G be a graph with maximum degree at least two. The Roman
bondage number br(G) of G is the minimum cardinality of all sets £’ C
E(G) for which vr(G — E') > vr(G). The Roman bondage number was
introduced by Jafari Rad and Volkmann in (8], and has been further studied
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for example in [4, 9]. Since the Roman domination number of the graph
K3 does not change when its only edge is deleted, in the study of Roman
bondage number we must assume that one of the components of the graph
has order at least 3 (equivalently, Yr(G) < n) or that G is connected of
order n > 3.

In (2], Chvétal and Cook gave a characterization of the bondage number
of a graph as the entire optimal solution of a linear program and called frac-
tional bondage number the solution of the relaxation to R of this program.
They also defined the discipline number as the entire optimal solution of
the dual problem. Our purpose is to introduce and study in a similar way
the fractional Roman bondage number and the Roman discipline number
of a graph. We keep the same terminology as in [2)].

Definition 1. A whip associated to a good yg(G)-function f is a spanning
forest of G with |V{| + |Vi/| components whose K;-components are the
vertices of V/ and the other components are stars of center in v/ and
leaves in V. The set of all the whips of G is denoted W(G).

Several whips can be associated to the same good yg(G)-function f but
for all of them, all the V/-private neighbors of a vertex u of Vy are leaves of
the star centered at u. Therefore each star has order at least 3. Let us call
star-forest of G a spanning forest whose components are n; K;'s and ny
stars of order at least 3. Then a star-forest of G satisfies ny +2ny > yr(G)
and is a whip if and only if n; + 2np = yg(G).

Proposition 2. Let E' = {ej,ez, -+ ,e,} be a set of edges of G. Then
Yr(G — E’) > vygr(G) if and only if each whip of G contains at least one
edge of E'.

Proof. Suppose each whip of G contains at least one edge of E’. Let W be
a whip of yr(G — E’) and let Vy, V}, V2 be respectively the set of isolated
vertices, leaves and centers of stars of W. Then 2|Vz| + |Vi| = yr(G ~ E').
As W is a star-forest but not a whip of G, 2[{V,| + V3| > vr(G). Hence
Yr(G — E') > 1r(G).

Suppose some whip W of G contains no edge of £’ and let Vg, Vi, Vz be
respectively the set of isolated vertices, leaves and centers of stars of W.
Then W is a star-spanning forest of G— E' and yg(G —E') < 2|Ve|+|W| =
Y(G). As 7r(G — E') 2 r(G), we get 7a(G — E') = 1(G). O

From Proposition 2, bg(G) is the optimal solution of the problem

minimize  }_.c gy Te

subject to 3 .cp(ryZe 21 forall Fin W(G), (1)
ze >0 for all e in E(G),
Z. = integer for all e in E(G).
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By the Roman fractional bondage number b%(G) we shall mean the optimal
value of the linear programming relaxation of (1),

minimize Y. p(q) Te
subject to Y .cp(pyZe 21 forall Fin W(G), (2)
z, >0 for all e in E(G).

By the duality theorem of linear programming, b3(G) equals the optimal
value of the dual of (2),

subject to Y cpmyr <1 forall ein E(G), (3)
yr >0 for all F'in W(G).

Equation (3) can be seen as the linear programming relaxation of

maximize Y. Few(G) YF

subject to Y .cp(r)¥r <1 forallein E(G), (a)
yr 20 for all F'in W(G),
yr = integer for all F in W(G).

Problems (1) and (4) are in a sense dual. We refer to the optimal value
of (4) as the Roman discipline number disp(G) of G and to the optimal
value of (3) as the fractional Roman discipline number disk(G) of G. A
particular feasible solution of (4) is obtained by taking yr, = 1 for one
whip Fy of W and yp = 0 for F # Fy. Then for all graphs G we have

1 < disg(G) < disk(G) = b(G) < br(G). (5)

Apart from establishing upper bounds on bg(G), Rad and Volkmann
computed the Roman bondage number of cycles, paths, and complete bi-
partite graphs and studied the Roman bondage number of trees. Our pur-
pose in this paper is to provide ties with analogous results for the Roman
fractional number and for discipline number.

To end this section, we present a lower bound on the size of a graph
G with given order and Roman bondage number. We make use of the
following results.

Theorem A. (Chambers et al. [1] 2009) If G is a connected n-vertex
graph, then yg(G) < 552, with equality if and only if G is Cj or is the union
of 2Ps with a connected subgraph whose vertex set is the set of centers of
the components of £ Ps.

Theorem B. (Rad, Volkmann [8]) If G is a graph of order » > 3 and
uvw a path of length 2 in G, then

br(G) < deg(u) + deg(v) + deg(w) — |N(v) N N(v)| - 3.
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If v and w are adjacent, then
br(G) < deg(u) + deg(v) + deg(w) — |N(u) N N(v)| — 4.

For any connected graph G, let deg,(G) represent the value of the expres-
sion 3, cv(g) deg(v)/|V(G)-

Theorem C. (Hartnell, Rall [6] 1999) For any connected graph G,
there exists a pair of vertices, say u and v, that are either adjacent or
at distance 2 from each other, with the property that deg(u) + deg(v) <
2deg, (G).

Theorem 3. Let G be a connected graph of order n > 3, average degree
deg,(G) and bondage number br(G). Then

br(G) < 2deg,(G) + A(G) - 3 and |E(G)| 2 (n/4)(br(G) — A(G) +3).

Proof. Let G be a graph satisfying the hypothesis. By Theorem C we know
there is at least one pair of vertices, say u and v, that are either adjacent
or at distance 2 from each other, with the property that deg(u) + deg(v) <
2deg,(G). Since G is connected and n > 3, there is a path such as uvw or
uwv. In either case by Theorem B we have

br(G) < deg(u) + deg(v) + deg(w) — 3 < 2deg,(G) + A(G) — 3.

Since 2|E(G)| = ndeg,(G), we have 4|E(G)| = 2ndeg,(G) = n(br(G) —
A + 3). Hence
|E(G)| 2 (n/4)(br(G) — A +3).

O

We observe that the two bounds are sharp for the cycle C, when n =
2 (mod 3) [5, 8].

2 The Roman fractional bondage number

In this section, we first give some bounds on the Roman fractional bondage
number and then we determine the Roman fractional bondage number of

some classes of graphs.

Theorem 4. Let G be a connected graph of order n > 3 and size m such
that each whip has at least k edges. Then b%(G) < m/k.

Proof. 1t is easy to verify that the constraints of (2) are fulfilled by . = 1/k
for all e. O
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Theorem 5. For any connected graph G of order n > 3 and size m such
that yr(G) < n,
m

bp(G) € ——————— .

RO S @
Proof. Let F' = {F\,...,F;} be a whip of G. Let Fy,...,F; be the stars
of order at least 3 and F.,i,...,F; the trivial components of F'if ¢t > r.
Then yr(G) = 2r + (t —r) =7+t >t + 1 and the number of edges in the
forest F with ¢t components is equal to n — t. The constraints of (2) are
fulfilled by z. = 1/(n — yr(G) + 1) for all e. This completes the proof. [J

Theorem 6. For any connected graph G of order n > 3 such that i(G) <
n/2,
A(G)(n —i(G))

°R(O) < < %) +1

Proof. Let S be a minimum maximal independent set of G. Clearly every
vertex outside S has at least one neighbor in S and hence f = (V(G) —
5,0,8) is a Roman dominating function of G. Thus Yr(G) < 2i(G). On
the other hand, the number of edges in G is at most the sum of the degrees
of all the vertices in V(G) — S. Thus, |E(G)| £ A(G)(n —i(G)). It follows
from Theorem 5 that

A(G)(n - i(G))

%G S S TuE 1

O

When A(G) = n — 1, Ebadi and PushpaLatha [5], Rad and Volkmann
(8] proved that if G has & > 1 vertices of degree n — 1, then bg(G) = [£].

Theorem 7. Let G be a connected graph of order n > 3. If G has exactly
k > 1 vertices of degree n — 1, then bR(G) =1 if k =1 and b}(G) = k/2 if
k>2.

Proof. We may assume that k > 2, for otherwise the result follows from
br(G) = 1 and (5). Let S be the set of vertices of degree n — 1. The
whips are the spanning stars centered at a vertex of S and ygr(G) = 2.
Setting z. = 1/(k —1) if both endpoints of e have degree n —1, and z, = 0
otherwise, we obtain a feasible solution of (2) and hence b%(G) < k/2. On
the other hand, there are exactly k whips. Setting yr = -é- for each whip
F, we obtain a feasible solution of (3) of value k/2. Hence by (5), k/2 <
disk(G) = by(G) and the proof is complete. ]

Corollary 8. For n > 3, bg(Kn) = n/2.
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In dealing with complete multipartite graphs, we can now suppose that
each part contains at least two vertices and we distinguish two cases depend-
ing on the size of the smallest part. Ebadi and PushpaLatha [5] proved that
for the complete bipartite graph Kn, n, with 2 < n; < ny, bp(K33) =5
and br(Kn,,n,) = n1 in the other cases. The particular case bp(Ka n,) = 2
was also proved by Rad and Volkmann [8].

Theorem 9. Let G = K,,,, .., be the complete t-partite graph with 2 =
np < ... £ n; and exactly k partite sets of size 2. Then b}(G) =2ifk =1
and by (G) =k when &k > 2.

Proof. Let n.= Y_;_, n;. It is proved in [3] that Yr(G) =3. First let k =1
and let {v1,v;} be the partite set of size 2. There are two whips, each of
them consists of a star with n — 2 leaves centered at v; and one isolated
vertex v;,1 < i # j < 2. Setting z. = 1/(n — 2) if one of the endpoints
of e is vy or vy, and z, = 0 otherwise, we obtain a feasible solution of (2).
Hence b%(G) < 2. On the other hand, each edge is contained in at most
one whip. Setting yr = 1 for each whip gives a feasible solution of (3).
Hence b3(G) > 2 and so bR(G) = 2.

Let now k > 2. Let {vf,vf}, 1 < £ < k, be the k partite sets of size 2.
There are exactly 2k whips. Each of them consists of a star with n—2 leaves
centered at vf and one isolated vertex vf,1 < i # j <2, for 1 < €< k.
Each whip contains 2(k — 1) edges, both endpoints of which have degree
n — 2, and there are 2k(2k — 1) such edges. Setting z. = 1/(2k — 2) if
both endpoints of e have degree n — 2, and z. = 0 otherwise, we obtain a
feasible solution of (2). Hence b%(G) < k. On the other hand, each edge
is contained in at most 2 whips. Setting yr = 1 for each whip F gives a
feasible solution of (3). Hence b%(G) 2 k and the proof is complete. O

Theorem 10. Let G = Ky, ... n, be the complete t-partite graph with 3 <
n1 < ... < ny. Then bj(G) = 25 where n = 3! n; and |E(G)| = m.

Proof. Let S;, 1 < i < t, be the partite sets with |S;| = n; > 3. By [3],
Yr(G) = 4. For each yr(G)-function, V5 is a set of two adjacent vertices
and V; = @. Each whip consists in two stars of order at least 3 with
centers in different partite sets and has exactly n — 2 edges. By Theorem
4, b3(C) < 5.

Now we exhibit an appropriate feasible solution of (3). The whip is of
type (i, j) if its two centers belong to S; and S;. Denote by W (u;, u;) the set
of whips of centers u; € S; and u; € S;. For each whip in W (ui, uj), all the
vertices of S; \ {u;} are leaves of the star centered at u; and all the vertices
of S; \ {u;} are leaves of the star centered at u;. There are 2n—(ni+n;)
ways to distribute the remaining vertices between the two stars. Hence
W (us, uj)| = on—(ni+n;) - Ag there are n; choices for u; in S; and n; choices
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for u; in Sj;, there are precisely n,-n,-Z"‘(""*'"f) whips of type (z,j). Also,
each edge with one endpoint u; in S; and the other endpoint u; in S; belongs
to exactly (n;+n; —2)2"‘("‘+"i) whips of type (4, j) (one star is centered at
u; or u; and there are n; +n; —2 choices for the second center), to precisely
ng2"~ (mi+n)=1 whips of type (i, k) with k # 4, j (ni choices for the center
of the star centered in Sk, and 27~ ("i+7%)=1 ways to distribute between the
two stars the vertices of V'\ (S;US,U{u;}), and to precisely n,2"~ (i +ns)-1
whips of type (k,j) with k #£ 4,j. Let 2y = ﬂ—-2"'+"f ~" for each whip
H of type (i,5) and yr = Y_{2m | H is a whip such that E(H) = E(F)}.

Let e be an edge of G. We can suppose without loss of generality e = u;u;
with u; € S; and u; € S;. By considering all the whips F' containing e we
get

n.+n - n
ZeeE(F) Yr = 2 (nt +n; —2)2" (nitny) 4

2n +nk—n —(n; -
zk#z,g( nE2™ (ni+ng) 1+

2nj:ﬂ;—nnk2n_(n,~+nk)—l)

= shnitn; - 24, )

= 1
Hence we get in this way a feasible solution of (3). For this solution,

2mtni—n g
(nit+n;) _ ity
> {ur | Fis of type (i,5)} = min; 2" (4™ 0 = =L

and

Z _ Licigist™l _ m
yF n—2 n—2

Few
This completes the proof. a

Recall that a graph G is edge-transitive if for every pair e;, ez of edges,
some automorphism of G sends e; to e.

Theorem 11. If G is a connected edge-transitive graph on n > 3 vertices
with m edges and each whip has precisely k edges, then

b%(G) = m/k.

Proof. Since G is edge-transitive, (2) has an optimal solution in which all
the values of z. are equal. Hence b}, is the optimal value of the problem

minimize mz subject to kz > 1, z > 0,

from which the result follows. O

58



For cycles, it was shown in [3] that y(C,) = [2n/3]. In addition, we
know by [5, 8] that for n > 3, bp(Cr) = 3 if n = 2 (mod 3) and br(C,,) = 2
otherwise. As the cycle is edge-transitive, we can apply Theorem 11.

Theorem 12. For k > 1, by(Cax) = 3/2,b%(Caks1) = (3k + 1)/2k and
bg(Cak+2) = (3k + 2)/(2k).

Proof. First let n = 0 (mod 3). Then n = 3k for some positive integer and
Yr(Cax) = 2k. For each yr(Csk)-function, V; is an independent set of size
k and V) = 0. Each whip consists in k stars of order 3 and has exactly 2k
edges. It follows from Theorem 11 that bg(G) = 3/2.

Now let n = 3k+1 for some positive integer k. Then yr(Car+1) = 2k+1.
For each vr(G)-function, V; is an independent set of size k and |V}| = 1.
Each whip consists in k stars of order 3 and one isolated vertices, and has
exactly 2k edges. It follows from Theorem 11 that b%(G) = (3k + 1)/2k.

Finally, let n = 3k + 2 for some positive integer k. Then Yg(Cag42) =
2k + 2. For each good yr(G)-function, V is an independent set of size
k and |V}| = 2 (the two vertices of V; may or not be adjacent). Each
whip has exactly 2k edges and it follows from Theorem 11 that by(G) =

]

(3k + 2)/(2k).

The determination of b}, for paths is more difficult because they are not
edge-transitive. If P, is the path of order n, then it was shown in [3] that
Yr(Pn) = [2n/3]. In addition, we find in (5, 8] that for n > 3, br(P,) = 2
if n =2 (mod 3) and br(P,) = 1 otherwise.

Theorem 13. If n > 3, then byp(Ps) = 2, bp(P,) = 3 if n = 3k + 2 for
some integer k > 2, and b%(P,) = 1 otherwise.

Proof. We denote V(P,) = {v1,vs,++ ,vn} and for1 <i<n-—1, vv;4; =
ei. If n # 2 (mod 3), then the result follows from (5) and bg(P,) = 1.
Let n = 3k + 2 for some positive integer k. Then yg(P,) = 2k + 2 and
for each good yg(G)-function, V3 is an independent set of k vertices and
V1 contains two adjacent or nonadjacent vertices. As A(G) = 2, each star
of each whip has order 3 and exactly one whip is associated to each good
Yr(G)-function. Each whip has 2k edges and is determined by the place of
the two isolated vertices. We denote by F(p,q) the whip corresponding to
Vi = {vp,v,}. Since the vertices of the stars form paths Ps, the vertices Up,
vg are such that p=3i+1and ¢ =35 +2 for 0 < i < j < k. The indices ¢
and j are equal when v, and v, are adjacent.

First let k = 1, i. e, G = Ps. The three whips have edge-sets
E(F(1,2)) = {83,64}, E(F(l,s)) = {62,83}, E(F(4, 5)) = {61,82}. The
values z(ez) = z(e3s) = 1 and z(e2) = z(e3) = 0 are a feasible solution
of (2). Hence b;(Ps) < 2. On the other hand, e, belongs to the unique
whip F(4,5), e4 belongs to the unique whip F(1,2), e, belongs to F(1,5)
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and F(4,5) and e3 belongs to F(1,2) and F(1,5). Therefore the values
y(F(1,2)) = y(F(4,5)) = 1 and y(F(1,5)) = 0 are a feasible solution of
(3), and bg(Ps) > 2. Hence by (Ps) = 2.

Now let k > 2. If the two vertices of V] are adjacent, then j = ¢ and

E(F(3i+1,3i+2)) = UOSsSi—l if i¢o{e3s+l,3s+2} U (6)
Ui+1_<_s$k if i#k{e33!e3a+1}'

If the two vertices of V; are not adjacent, then j > i and

E(F3i+1,3j+2)) = Uogsci1 if igol€as+1; €302} U
i535j_1{639+2ae3s+3} U (7)
j+1<s<k if j;ék{e33’ €3s+1}

The unique whip not containing ez is F'(1,2) and F(1,2) contains e4 and
eak. The unique whip not containing esx is F(3k + 1,3k + 2) and F(3k +
1,3k + 2) contains e; and e4. Therefore each whip contains at least two
edges among ey, e4, e3. Hence putting Ze, = Tey, = Tey, = -21- and ., =0
for s ¢ {2,4, 3k} gives a feasible solution of (2). Thus bj(Pak+2) < 3.

To construct a feasible solution of (3) we observe that by (6),

EFL)NEFGk+1,3k+2)= ) {esss1}

1<s<k—1
and by (7),

F(4,3k+2) = {61,62}U U {e3s+2, €343}
1<s<k-1

and
F@,3k—1)={en,ea}{J |J {eass2,asra}{Jlear, eaes1}.
1<s<k~2
Hence E(F(4,3k + 2)) N E(F(1,2)) N E(F(3k + 1,3k + 2))=E(F(4, 3k —
1)NE(F(1,2))NE(F(3k+1,3k+2))=0. Let us put y(F(1,2)) = y(F(3k+
1,3k + 2)) = 1/2, y(F(4,3k +2)) = y(F(4,3k - 1)) = 1/4 and y(F) = 0
for the other whips. Then, denoting the symmetrical difference of two sets
by A,
Y y(F)=1if ee E(F(1,2) N E(F(3k+1,3k +2)),
ecE(F)

Y y(F)<1if ee E(F(1,2)AE(F(3k + 1,3k +2)).
e€E(F)

Therefore y is a feasible solution of (3). Thus b%(Pak+2) < 3, which com-
pletes the proof when k > 2. Figure 1 gives a concrete illustration of the

proof for k = 2. a
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Figure 1: The whips of Py

As an application of Theorems A, 5 and 13 we obtain the following
result.

Corollary 14. For any graph T of order n > 3,

5(n —1)
* < -/
bR(T) < 2
Furthermore, the bound is sharp for Ps.
We conclude this section with an open problem.
Problem. Characterize the trees achieving the bound of corollary 14.

3 Roman discipline number

For any feasible solution of (4), yr = 0 or 1 for each whip F, and the whips
F' such that yp = 1 are edge-disjoint. Hence the optimal value of (4) is
the maximal value of edge-disjoint whips. We first determine the discipline
number of cycles and paths.

Proposition 15. For n > 3, disp(Cn) =1if n ¢ {4,5,8} and disg(Cy) =
diSR(Cs) = diSR(Cg) = 2.

Proof. If n ¢ {4,5, 8}, this is a consequence of (5) and Theorem 12.

If n = 4 or 5, each whip consists of one star of order 3 and one or
two isolated vertices, and has two edges. Each of Cy, Cs admits two edge-
disjoint whips. Then disg(Cy4) = disg(Cs) = 2.
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If n = 8, each whip consists of two stars of order 3 and two isolated ver-
tices, and contains four edges. Hence there can be at most two edge-disjoint
whips. As the two whips of edge-sets {e1, e2,e5,e5} and {es, e4,e7,e5} are
edge-disjoint, disg(Cs) = 2. [m]

Proposition 16. For n > 3, disp(P,) =1 if n # 5 and disg(Ps) = 2.

Proof. If n # 5, this is a consequence of (5) and Theorem 13. If n = 5,
each whip consists of one star of order 3 and two isolated vertices, and has
two edges. Hence there are at most two edge-disjoint whips. The whips of
edge-sets {e;, ez} and {e3, e4} show that disp(Ps) = 2. ]

Proposition 17. Let G be a connected graph of order n > 3. If yr(G) =2
then disg(G) = 1, and if ygr(G) = 3 then disp(G) < 2.

Proof. If yr(G) = 2, then A(G) = n — 1 and each whip is a spanning star
centered at a vertex of degree n — 1. Two such stars always share an edge.
Hence disp(G) = 1.

If yr(G) = 3, then each whip, say F, consists in a star centered at a
vertex u of degree n — 2 and an isolated vertex v. Every star of order n —2
centered at a vertex different from u, v, if any, shares an edge with Fy. If v
has degree n — 2, then v is the center of the star of a second whip, which
is edge-disjoint from Fj, and disg(G) = 2. Otherwise, disr(G) = 1. O

The previous proposition and Corollary 8 show that bk (G) can be much
larger than disg(G). However, we show below that as soon as 7r(G) = 4,
disp(G) can be arbitrary large and even equal to br(G).

Consider the complete multipartite graph with r partite sets of size
two, that is, H = Kj, 2. Let Sy = {u1,11},S2 = {uz,v2},...,5 =
{ur,v,} be the partite sets of H. Let G be the graph obtained from H by
adding the vertices up4j,Vrt; for 1 < j < s (s > 4) and adding the edges
Uiy, Vilpyj fOr 1 <1< 1 <j<s.

Theorem 18. If G is the graph above, then disg(G) = br(G) =r.

Proof. The graph G has order n = 2(r + s). The vertices u; and v; have
degree 2(r—1)+s when 1 < i <7 and r whenr+1 < ¢ < r+s. The number
of edges of G is thus m = 2—'("”"—'*'3;—2&-2—”3 =r(n —2). Since A(G) < n -2,
vr(G) > 3, and since {u1,v1} is a dominating set of G, 7r(G) = 4. For
1< i<, let F; be the subgraphs induced by the edge sets

E(F) = {wu;,v1v; |2<j<r+s}andfor2<i<r—1,
E(Fz) = {u,-vj,viuj l 1<j5< ‘t} U {u,-uj,v,-vj I i<ji<r+ S}.

Each F; consists of two disjoint stars K 4+s—1 centered at u; and v;. Thus
F, is a whip for 1 < i < r. Moreover the unique whip of this family
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containing e with e = w;u; or e = v;v; is Fingi,j) and the unique whip
of this family containing e = u;v; is Fmax{,-'j}. Hence the r whips F; are
edge-disjoint and disg(G) > r.

On the other hand, the whip F; contains the edge u;uq4; for 1 <i <r.
Therefore setting zyu,,, = 1if 1 < ¢ < r and z. = 0 otherwise gives a
feasible solution of (1). Hence br(G) < r and the result follows by (5).
This completes the proof. O
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