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Abstract

We propose an original approach to the problem of rank-
unimodality for Dyck lattices. It is based on a well known recursive
construction of Dyck paths originally developed in the context of the
ECO methodology, which provides a partition of Dyck lattices into
saturated chains. Even if we are not able to prove that Dyck lattices
are rank-unimodal, we describe a family of polynomials (which con-
stitutes a polynomial analog of ballot numbers) and a succession rule
which appear to be useful in addressing such a problem. At the end
of the paper, we also propose and begin a systematic investigation
of the problem of unimodality of succession rules.

1 Introduction

In enumerative combinatorics it often happens to discover integer se-

quences which are unimodal. A finite sequence ag, ay,...a, is said to be
unimodal when there exists an index 0 < ¢ < n such that ap<a; <-
@i—1 £@; 2 @iy1 2 -+ 2> @n_1 > an. Proving that a sequence is ummodal
is often a very hard task A few papers illustrating some general techniques
to tackle this problem has been published, such as (3, 18] (which provide
a very rich account of several methods to prove unimodality). A related
property is log-concavity. A ﬁmte sequence of integers ag, ay,...ay, is said
to be log-concave whenever a? > a;_1a;4; forall 1 < i < n. It is not too
difficult to prove that a nonnegatwe log-concave sequence having no inter-
nal zeroes is unimodal. Since proving log-concavity is usually easier than
proving unimodality, the above result is often used.

In this paper we will consider unimodality in the context of a particu-
larly interesting and important combinatorial structure, i.e. lattice paths.
Another paper dealing with unimodality and lattice paths is [15], but it
seems not to be related to what we are studying here. For our purposes, a
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lattice path is a path in the discrete plane starting at the origin of a fixed
Cartesian coordinate system, ending somewhere on the z-axis, never going
below the z-axis and using only a prescribed set of steps. This definition
is extremely restrictive if compared to what is called a lattice path in the

literature, but it will be enough for our purposes.
Some very well studied classes of lattice paths are the following:

o Dyck paths, i.e. lattice paths using only steps of the type u = (1,1)
and d = (1,-1);

o Motzkin paths, i.e. lattice paths using only steps of the type u = (1,1),
h=(1,0)and d = (1,-1);

e Schréder paths, i.e. lattice paths using only steps of the type u =
(1,1), H=(2,0) and d = (1, -1);

Given a lattice path P, the area of P is defined to be the area of the
region included between the path P and the z-axis (see figure 1). So we
can consider, for instance, the distribution of the parameter “area” over all
Dyck paths of a given length. The following conjecture is not at all a new

one.

Figure 1: A Dyck path of semilength 8 and area 20. The triangles in the
figure have unit area.

Conjecture. The sequence (a.,(c")),c of the number of Dyck paths of
semilength n having area n 4 2k is unimodal, for all n.

The first few lines of the matrix of the a,(:") ’s are the following:

1 0 0O 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 O
1 1 0 o 0 [} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O
1 2 1 1 0 0 0 0o o0 o0 0 o 0 0 0 0 0 0 0 0 0 o
1 3 3 3 2 1 1 0 o0 0 0o o 0 0 o 0 0 0 0 0 0 o
1 4 6 7 7 5 5 3 2 1 1 0 0 0 o 0 0 0 0 0 O o
1 5 10 14 17 16 16 14 11 9 7 5 3 2 1 1 0 0 0 0 0 O
1 6 15 25 35 40 43 44 40 37 32 28 22 18 13 11 7 5 3 2 1 1
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Observe that, for n > 3, none of the sequences (afc"));c is log-concave.
This is trivially seen by observing that the last three nonzero terms of
each sequence are 2,1,1. However, for specific values of n, there are also
other terms that prevent (afc")),c from being log-concave (as it is readily
seen by inspecting the matrix displayed above). This fact makes even more
intriguing (and surely more difficult) the above mentioned conjecture.

This conjecture has first appeared in [19], where it is however stated
in a different language. Indeed, there is a bijection between Dyck paths of
semilength n and Young diagrams fitting inside the staircase shape (n —
1,n-2,...2,1) (see figure 2). Moreover, this bijection maps the area of a
Dyck path into the difference between the total area of the staircase shape
and the area of the Young diagram associated with the path. Thus the
above conjecture is formulated by Stanton in the following form.

Figure 2: The Young diagram corresponding to the Dyck path in figure 1.

(Equivalent) Conjecture. The sequence (a,(c")),c of the number of
Young diagrams fitting inside the staircase shape (n — 1,n — 2,...2,1)
having area k is unimodal, for all n.

The “path version” of the conjecture of Stanton is due to Bonin,
Shapiro and Simion, who stated it in [2], together with an analogous con-
jecture for Schréder paths.

There is still another way to express this unimodality conjecture, which
involves lattices.

Given a class of paths P, the set P, of all paths in P having length n
can be naturally endowed with a poset structure, by imposing that P < Q
whenever P lies weakly below @ (weakly meaning that P and Q are allowed
to have some points in common). See figure 3 for a “Dyck” example. It turns
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out that, for many interesting classes of paths, the resulting poset is indeed
a distributive lattice. This happens, for instance, for Dyck, Motzkin and
Schréder paths [12). In all cases, the rank of a path inside the distributive
lattice it lives in is related to its area. In particular, according to [12, 10],
the rank of a Dyck path of semilength n in his lattice is given by the area
enclosed between the path itself and the path (UD)™ divided by 2. This
leads us to the following formulation of the above conjecture.

Figure 3: A pair of Dyck paths P (thick) and Q (dashed), with P < Q.

(A third form of the same) Conjecture. The distributive lattice
D, of Dyck paths of semilength 7 is rank-unimodal, for all n.

This formulation can be found, for instance, in [10], where the conjec-
ture has been extended also to the Motzkin case (there is computational
evidence supporting this extension). We wish to point out that there is
a case in which rank-unimodality has been proved, namely that of Grand
Dyck paths (which are like Dyck paths, except for the fact that they are
allowed to go below the z-axis). Indeed, this is a special case of the uni-
modality of Gaussian coefficients (counting integer partitions fitting inside
a rectangle with respect to their size), which has been proved in several
sources using several different methods [13, 14, 17]. A similar problem con-
cerning compositions inside a rectangle has been considered in [16}.

In the present paper we have not been able to solve the above men-
tioned unimodality conjectures; instead we propose a possible approach
which we haven't been able to find elsewhere, nevertheless we are strongly
convinced that it could prove useful in tackling these problems.

We start by recalling a particular construction of Dyck paths, falling
into the framework of the so-called ECO methodology. We then show how
such a construction suggests a possible way of decomposing Dyck lattices
into saturated chains. This decomposition gives in turn some hints on what
to do to prove rank-unimodality.
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2 An ECO construction of Dyck paths

Let P be a Dyck path of length 2n, and suppose that the length of
its last descent (i.e., of its last sequence of fall steps) is k (the length of
the last descent being simply the number of fall steps belonging to such
a descent). Then we construct k + 1 Dyck paths of length 2n + 2 starting
from P (they will be called the sons of P) simply by inserting a peak (that
is a rise step followed by a fall step) in every point of its last descent. In
figure 4 it is shown how this construction works.

/\/\\
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Figure 4: The ECO construction of Dyck paths.
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If one performs such a construction on all Dyck paths of length 2n,
then it is not difficult to show that every Dyck path of length 2n + 2 is

obtained exactly once.

The above described construction of Dyck paths is well known, and
falls into the framework of the so-called ECO method (a detailed description
of which can be found, for instance, in [1]).

3 A decomposition of Dyck lattices into sat-
urated chains

The above described construction provides a partition of the class D,
of Dyck paths of semilength n, for all n. From an order-theoretic point
of view, it is a partition of D,, into saturated chains. We would like to
employ this decomposition to tackle the problem of unimodality in Dyck
lattices. Such a decomposition of the Dyck lattice D,, will be called the
ECO decomposition of D,,.

Before starting, we observe that the ECO decomposition of a Dyck
lattice does not possess any of the nice properties usually needed in proving
unimodality: it is not a symmetric chain decomposition, and it is not even
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nested (for the notion of a nested chain decomposition, see for example
[7, 8)).

For any fixed n, denote with Py, the (1 + (*;)) x (n—1) matrix whose
entry (j,k) is the number of saturated chains of cardinality & + 2 starting
at rank j in the ECO decomposition of Dy. So, for small values of n, we
have the following matrices:

1 00O

2100

10 110 1200

=0, A=(; ) A=|g 10| m=|1110
00 1 0110

0010

0 001

In the sequel we will denote with *) the columns of P,, for k =

0,...,n—2.

In a completely analogous way, we also define the (1+ (3)) x (n —
1) matrices A, whose entry (j,k) is the number of saturated chains of
cardinality k + 2 ending at rank j in the ECO decomposition of D,. Also
in this case, A% will denote the columns of Ay, for k=0,...,n — 2.

Now let P (z) and Af,k)(a:) be the polynomials associated with the

vectors P¥) and A&k), respectively; moreover, set

n—2 n—2
Pu(z) =Y P®(z), Anx)=) AP(a).
k=0 k=0

So the coefficient of z* in P,(z) is the total number of saturated chains
starting at rank i, whereas the coefficient of z* in A, (z) is the total number
of saturated chains ending at rank .

Now, in order to link the polynomials P,(z) and A,(z) to our uni-
modality conjecture, we need to introduce a few more notations.

Let %) denote the number of elements having rank k in D,. The
polynomial r,(z) = Y, )2k is called the rank polynomial of D,. We
now introduce the polynomials s, (z) as follows:

sp(x) = ng‘)zk = Z(r&k'l) — gk,
k k

where, by definition, Y = 0, for all n. Obviously, the unimodality con-
jecture is equivalent to the following:
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(Again the same) Conjecture. For every n, there exists & such that
s4) <0 for all k <k and 5% > 0 for all & > F.

In view of this fact, a possible approach to our problem (which actu-
ally holds in general) consists then of the investigation of the sign of the
coefficients of s,(z). In this respect, the following result seems to be of
some interest.

Proposition 3.1 For alln € N, sp(z) = zA,(z) — Pa(z).

Proof. 'The set of elements having ranks k — 1 and k in D, can be
partitioned into three sets (some of which could be empty): the set of those
elements belonging to some saturated chain crossing both ranks, the set of
the top elements of all chains ending at rank & —1 and the set of the bottom
elements starting at rank k. The coefficient of z* in s,(z) is clearly given
by the difference between the cardinalities of the second and the third sets
described above, whence the proposition immediately follows. ]

There is also a link between the polynomials P{* (z) and AP (z) which
is easy to show and is recorded in the next proposition.

Proposition 3.2 For all n,k € N, A (z) = 2¥+1 P{¥)(z).

Proof. The coefficient of z* in mk+1P,$k)(z) is the number of saturated
chains of cardinality k& + 2 starting at rank i — k — 1. This is clearly the
same as the number of saturated chains of cardinality k + 2 ending at rank

i, which is the coefficient of z* in A (z). a

As a consequence of the above propositions, we have the following
expression for s, (z).

Corollary 3.1 Foralln e N,

n—-2

sn(z) = ) _(zF*2 — 1)P{)(z).
k=0

Everything has been said until this point is valid for any partition
into saturated chains of D, (and in fact of any ranked poset). So corollary

3.1, together with a deep knowledge of the polynomials P,Sk)(x), could be
helpful in dealing with unimodality.

From now on, we will suppose to work with the ECO decomposition
of D,, described in the previous section.
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We can prove an interesting recurrence for the polynomials Pt )(:z:)
which allows us to interpret the P{ )(a:) s as a polynomial analog of ballot
numbers.

Proposition 3.3 For alln,k € N,
P®(z) = 2% (P¥ 1 (2) + -+ + P70 (z)).

Proof. Recall that, for any i, the coefficient of z* in P,(,k)(z:) is the
number of saturated chains having cardinality k& + 2 and starting at rank
i in D,,. Each of these saturated chains can be uniquely represented by its
minimum, which is a Dyck path P of semilength n ending with the sequence
of steps UD¥+1U D (that is, a peak at level 0 preceded by a sequence of k+1
consecutive down steps, which is in turn preceded by an up step). Moreover,
as it is shown in [12], the area a(P) of P is given by a(P) = 2i + n. If we
remove the last peak, we obtain a bijection with the set of Dyck paths of
semilength n—1 ending with a sequence of precisely k+1 D steps and having
area 2i +n — 1. Each of these paths belongs to a different saturated chains
(since they all have the same rank). For any such path @, the minimum of
the saturated chain Q belongs to can be obtained by simply replacing the
last k + 2 steps of Q (i.e. the sequence of steps UD*+!) with the sequence
of steps D*UD. Observe that, performing such an operation, we are left
with a path R in D,_; of area a(R) = a(Q) — 2k = 2¢ + n — 1 — 2k. This
implies that the rank of R in D,_, is given by

r(R) = a(R) - (n+1) - 2i+n—-1-n+1-2k ik
2 2

Thus we can conclude that the total number of saturated chains having
cardinality k42 and starting at rank 7 in D,, equals the number of saturated
chains having cardinality at least k + 1 (since its minimum has at least k
D steps before the final peak) and starting at rank i — & in D,,_;, whence
the thesis follows. [ ]

As an immediate corollary, we also have the following recursion.
Corollary 3.2 For alln,k € N, with k # 0,
P¥(z) =z (PF(z) - 2* PP ().

Proof. A direct application of the above proposition yields:

n—-3
P®() - zP¥ D) = z¢- S PO (z) -2 Z P (z)
i=k-1 i=k—2
= —z*P* 7N (a). =
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The polynomials P,(,k)(x)’s are not new. They have been first studied by
Carlitz and others [4, 5], and subsequently considered also by Krattenthaler
(9]. They also found recursions which look similar to the ones shown in
the two above propositions, however our combinatorial setting is slightly
different. In fact, in the above cited works the combinatorial meaning of the
P (z)’s is somehow related to the distribution of Dyck paths of semilength
n with respect to the area. It is however easy to relate the two approaches.
Indeed, referring to the proof of proposition 3.3, there is a bijection mapping
a saturated chain of the ECO decomposition of D, starting at rank j into
a path of D,_; at rank j. This enables us to interpret the polynomials

P (z)’s as describing the distribution of Dyck paths in D,_, with respect
to rank (i.e. area) and length of the final descent (i.e. sequence of down

steps).

We propose here something new concerning these polynomials, namely
we describe the recursion given by proposition 3.3 using a succession rule
with two labels, in the spirit of the ECO methodology.

In the vector space of polynomials in two indeterminates over the re-
als, to be denoted Rz, ], define the linear operator L as follows on the

canonical basis (z%t%)4, geN:

L:R[z,t]| — Riz,1]
B+1
s xotP — 2. Z:z:"t".
i=0
We start by noticing an algebraic property of L that will be useful in
what follows.

Lemma 3.1 L is a homomorphism of the R[x]-module of polynomials
R[z][t].

Proof. This is immediate, since

B+l
L(z°tP) = 2> - Z o'ttt = z=L(t).
i=0

|
Now define P,(z,t) = L™~2(1) (here L* denotes the composition of L

with itself A times). The following proposition justifies the introduction of
the operator L in our context.
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Proposition 3.4 For alln > 2,
n—2
Pa(z,t) =Y P¥)(z)t*. (1)
=0

Proof. From the definition of P,(z,t) it obviously follows that
L(Pn(z,t)) = Pnsi(z,t). Also, observe that the degree of P,(z,t) with
respect to t is n — 2. Set P,(z,t) = S r_2 Q¥ (z)tk, also thanks to the
above lemma, we then obtain:

n-—-1 n—-2
> Q@i =1L (E QW (m)t")
k=0 k=0
n-2
=Y QP (z)L(t*)
k_o
k+1
= Z Q¥ (x) (Z :c't')
k=0 i=0
n—-2 n-1 n—2
-Fope S (5 o)
i=0 k=1 \i=k~1
Thus the polynomial sequence (Q,l )(a:))n satisfies the recursmn of
proposition 3.3, and of course Q )(:z:) 0) (z) = 1, whence Q ( ) =
P,Ek)(a:) which gives the thesis. |

So the operator L encodes the ballot-like recursive generation of

P¥)(z). In the language of the ECO method, L is a rule operator [11].
The succession rule described by L (which turns out to be a two-labelled
one) is easily seen to be the following:

. (0o)
@ { (ag) ~ (a0)((@+1)1) - ((e+ B)g)((a+ B+ 1)p+1) @)

The first levels of the generating tree of this rule are depicted in figure

5.
The infinite matrix describing the distribution of the labels at the var-

jous levels of the generating tree is called the ECO matriz of the succession
rule in [6]. In our case, for the rule in (2), the first lines of such a matrix

are the following:
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Figure 5: The generating tree associated with .

Inbola— CGo {1lo 112 21 [3 31 32| 40 41 42 | 50 51 52 | 6o
at lovel |
0 1
1 1 0 1
2 1 1 1 0 1 0 0 1
3 1 2 1 1 2 1 1 1 0 1 1 0 0 1 0
4 1 3 1 3 3 3 3 1 2 3 2 1 2 2 1
5 1 4 1 6 4 7 [] 1 7 7 3 5 7 4 5
6 1 5 1 10 5 14 10 1 17 14 4 16 17 7 16
7 1 6 1 15 6 25 15 1 3/ 25 5 40 35 43

.=
—

We can also find a recursion for the columns of the above ECO matrix.
Since it directly depends on the succession rule (2), the proof is left to the
reader.

Proposition 3.5 Denote with Cy,(z) the generating function of the column
associated with the label k;. Then the following recursion holds:

Cri(z) =z D Cimsy, ().

j2i-1

4 Conclusions and further work

We have addressed the problem of the rank-unimodality of Dyck lat-
tices and, as announced at the beginning, we have not been able to solve
it. Nevertheless, we hope to have provided some interesting insight to the
problem, as well as an original way to tackle it. We hope that someone
more skillful than us will be able to further develop these ideas to eventu-
ally find the desired unimodality proof (maybe by finding more structural
and enumerative properties of the ECO decomposition of Dyck lattices).
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We remark that a similar approach can be considered, in which we
make use of a different decomposition of Dyck lattices. More precisely, for
any Dyck lattice D,, one can consider the sublattices Dy, x consisting of all
paths starting with exactly k up steps (for 1 < k < n). This is not of course
a decomposition into chains. What is interesting about this decomposition
is that, for any k, D, x has a natural embedding into Dy, x—1 (see [12]), a
fact that could be useful in proving unimodality.

We also notice that, in order to prove unimodality for an integer se-
quence, an extremely useful information is the position of the maximum.
In our case, we even do not know where the maximums are located, and
how they depend on n. This is a related open problem that deserves to be
solved.

We close this paper by observing that the approach we have presented
here to study unimodality of Dyck lattices is suggested by the ECO con-
struction of Dyck paths, and that, in the end, to prove rank-unimodality
of Dyck lattices it would be enough to prove that, at each level of the as-
sociated generating tree, the distribution of the labels k of the succession
rule (2) is unimodal (where k = }_. k;). We are thus led to formulate a
unimodality problem for succession rules in general: given a succession rule,
is it possible to find some (necessary and/or sufficient) conditions on the
rule itself for the unimodality of the integer sequences describing the distri-
bution of the labels at the various levels of the associated generating tree?
This is a problem of independent interest, which seems not to have been
previously considered.

To give just the flavor of this kind of investigations, we prove a simple
result concerning finite succession rules. We will say that a succession rule
is unimodal when the integer sequences appearing in the rows of the asso-
ciated ECO matrix are all unimodal. Moreover, a succession rule deprived
of its axiom will be called a family of succession rules (since each choice of
the axiom determines a distinct succession rule).

Theorem 4.1 Fiz n € N and let
Q: (k) w ()% (2)%° - ()

be a family of succession rules. For any b € N, denote with Q® the suc-
cession rule of the family Q having aziom (b). If Q¥ is unimodal for all

b < n, then the sequences (agk),agk), ces ,as,k)) are unimodal for all k < n.
Vice versa, if, for all k < n, the sequences (agk), agk), cees aslk)) are unimodal

and all have the mazimum in the same position, then Q® is unimodal for
allb < n.
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Proof. Suppose that all the rules of the family Q are unimodal and,
for any given k < n, consider the succession rule Q(*): the sequence
(a(k),a(k) oo ) appears in the first row of its ECO matrix, so such
a sequence is unimodal (since Q) is unimodal by hypothesis). On the
other hand, suppose that, for all k < n, the sequences (a{®, agk), ,ad)
are unimodal and also that all have maximum at index i. Fixed b < mn,
let B1,PB2,...,B8n be the I-th row of the ECO matrix of €. The recursion
determined by Q, allows to express any row of the ECO matrix in terms of

the previous one. Therefore, if a3, as,...,a, is the | — 1-th row, we have:

Br=aaV +- ta, (™

ﬁﬂ = alagl) + cee + anasln)

The unimodality hypotheses on the sequences (a,(k) , vy aﬁ,k)) im-
mediately implies that ) <+ - < 8i-1 < Bi 2> Biy1 2> - Z Bn. .

Remark. We wish to point out that, in the above theorem, the hy-
pothesis concerning the position of the maximum is essential. Indeed, con-
sider the following family of finite succession rules:

(1)~ (3)
0. @~@O)
R RORIOAN
(4) ~ MOR)(2)

One immediately notices that, for each k < 4, the sequence of the
productions of (k) is unimodal. However, it is not difficult to realize that
none of the succession rules Q® is unimodal (for b < 4).
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