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Abstract

Let G be a graph of order n. The binding number of G is defined
as bind(G) := min {Jﬁ,e,gﬂlq 0 # X CV(G) and No(X) # V(a)}.
A (g, f)-factor is called a connected (g, f)-factor if it is connected.
A (g, f)-factor F is called a Hamilton (g, f)-factor if F' contains a
Hamilton cycle. In this paper, several sufficient conditions related to
binding number and minimum degree for graphs to have connected
(g, f + 1)-factors or Hamilton (g, f)-factors are given.

Keywords: graph, (g, f)-factor, connected factor, neighbor set
Mathematics Subject Classification 2000: 05C70

1. Introduction

All graphs under considering are finite, undirected and simple. We denote
by V(G) and E(G) the set of vertices and the set of edges, respectively. For
z € V(G), we denote by dg(z) the degree of z in G and by Ng(z) the set
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of vertices adjacent to = in G. The minimum degree of V(G) is denoted by
8(G). For any subset S C V(G), we denote by Ng(S) the union of Ng(x)
for every = € S, and by G|[S] the subgraph of G induced by S, by G— S the
subgraph obtained from G by deleting the vertices in S together with the
edges incident to the vertices in S. If S,T C V(G), then we write eg(S,T)
for the number of edges in G joining a vertex in S to a vertex in T". The
binding number of G is defined as

|Ne(X)|

20119 X € V(G) and No(X) # V(G) |

bind(G) := min{

Let g(z) and f(z) be two nonnegative integer-valued functions from
V(G) to Z* such that g(z) < f(x) < dg(z) for all z € V(G). Then a
spanning subgraph F of G is called a (g, f)-factor if g(z) < dr(z) < f(x)
holds for each z € V(G). If g(z) = f(z) for every = € V(G), we say the
(g, f)-factor to be an f-factor. For two constants a and b, if g(z) = a and
f(z) = b for all z € V(G), then a (g, f)-factor is called an {a, b]-factor. An
[a, b]-factor is called a k-factor if @ = b = k, which is a regular factor. A
(g, f)-factor is called a connected (g, f)-factor if it is connected. A (g, f)-
factor F is called a Hamilton (g, f)-factor if F' contains a Hamilton cycle.
Obviously a Hamilton (g, f)-factor is a connected (g, f)-factor. The other
terminologies and notations can be found in [1].

2. Binding number and connected (g, f + 1)-
factors

Many authors have investigated (g, f)-factors [6, 7, 8, 9] and factor criti-
cal graphs [14, 15]. The concept of the connected factors of a graph was
first proposed by M. Kano. The problem is closely related to hamiltonian
problem since a connected 2-factor is just a Hamiltonian cycle. By now
there are no non-trivial necessary and sufficient conditions for a connected
graph to contain a connected (g, f)-factor in general. Cai and Liu [2] gave
a degree and stability number condition for the existence of connected fac-
tors in graphs. Cai, Liu and Hou [3] studied the stability number condition
for connected [k, k + 1}-factor in graphs. Zhou [16) gave a minimum degree
condition for a graph to have a connected (g, f)-factor. In [17], Zhou gave
two neighborhood conditions for a Hamilton graph G to have a Hamilton
factor.

Tokushige [11] gave the following sufficient conditions in terms of bind-
ing number and minimum degree for the existence of k-factors.
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Theorem A. Let G be a graph of order n, k > 2 be an integer, n >
4k +1—4vk +2 and kn = 0(mod2). Suppose that G satisfies conditions
(A.1) and (A.2). Then G has a k-factor.

(A.1) bind(G) 22— 1.

(A2) 6(G) # lﬁk_—_l)L"’k-_I*j_

2k—1

In [4], Chen showed the following result on binding number and mini-
mum degree for the existence of [a, b]-factors.

Theorem B. Let G be a graph of order n, a and b be integers such that
1<a<b andn > MM. Suppose that G satisfies conditions
(B.1) and (B.2). Then G has an [a, b]-factor.

(B.1) bind(G) > 1 + 251,

(B.2) §(G) # | {ezlntadb=2 |

a+b—-1

Furthermore, it is pointed out that the result is best possible in some
sense in [4].

Li [5] gave a sufficient condition for a graph to have a connected (g, f +
1)-factor.

Theorem C. Let G be a graph, and g(z) and f(z) be two positive in-
tegral functions from V(G) to Z*+ such that 2 < g(z) < f(z) < dg(z) for
all z € V(G). If G has both a (g, f)-factor and a hamilton path, then G
contains a connected (g, f + 1)-factor.

We now prove the following result, which is a binding number and min-
imum degree condition for a graph to have a connected (g, f + 1)-factor.

Theorem 2.1. Let G be a connected graph of order n, and let a,b and
n be nonnegative integers such that 2 < a < b and n > L“—"'m:"'—b'll. Let
9(z) and f(z) be two nonnegative integer-valued functions defined on V(G)
such that a < g(z) < f(z) < b for any x € V(G) and f(V(G)) is even. If
bind(G) > #2=1 4nd §(G) > 1+ ;T”b"_—l, then G has a connected (g, f +1)-
factor.

In Theorem 2.1, if g(x) = a and f(x) = b, then we obtain the following
corollary.

Corollary 2.1. Let G be a connected graph of order n, and let a,b and n
be nonnegative integers such that 2 < a < b, n > L""—bxt‘:—"'b—'—ll and bn is
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even. If bind(G) > ¢32=1 and §(G) > 1+ rbb”_—l, then G has a connected
[a, b+ 1]-factor.

In Theorem 2.1, if g(z) = f(z) = k, then we obtain the following corol-
lary.
Corollary 2.2. Let G be a connected graph of order n, and let k and
n be nonnegative integers such that k > 2, n > 4k — 2 and kn is even. If
bind(G) > 2 — -,1; and 6(G) > 1+ ﬁ‘f—l, then G has a connected [k, k + 1]-
factor.

Now we prove Theorem 2.1. The following three lemmas are very useful
to our proof. Lemma 2.1 and Lemma 2.2 are fundamental results in factor

theory due to Lovdsz [10).

Lemma 2.1 Let G be a graph, and g(z) and f(z) be two integer-valued
functions defined on V(G) such that g(z) < f(z) for all z € V(G). Then
G has a (g, f)-factor if and only if for all disjoint subsets S and T of V(G)

JG(Q’f’ SsT) = f(S) - g(T) + dG—S(T) - hG(gi f’ S)T) 2 Oa

where hg(g, f, S, T) denotes the number of components C of G—(SUT') such
that g(z) = f(z) for all z € V(C) and f(V(C) + ec(V(C),T) = 1(mod 2).

We call hg(g, f,S,T) the number of odd components of G — (SUT)
when g(z) = f(z) for all z € V(G) and write hg(g, f,5,T) = ha(f,S,T).

Lemma 2.2 (1) Let G be a graph and f be a non-negative integer-valued
function defined on V(G). Then G has an f-factor if and only if for all
disjoint subsets S and T of V(G)

JG(f» S’T) = f(S) - f(T) +dG-S(T) - hG(f)S)T) >0,
where ha(f,S,T) denotes the number of odd components of G — (SUT).
(2) 6c(f, S, T) = f(V(G)) (mod 2).

Lemma 2.3 [12]. Let G be a simple graph of order n. If bind(G) > t,

then (t-1 %
Ne(x)) > Lo tn X

for all® # X C V(G), and in particular,

5G) 2 n- "t




The proof of Theorem 2.1. Suppose that G satisfies the hypothesis of
Theorem 2.1. Since §(G) > 1+ -—5— 2 %, graph G has a Hamilton cycle.
Thus according to Theorem C, to prove Theorem 2.1, it suffices to prove
that graph G also has a (g, f)-factor.

By contradiction, we assume that graph G has no (g, f)-factors. Then
by Lemma 2.1, there exist disjoint subsets S and T of V(G) such that

06(9, f,5,T) = f(S) + do-s(T) — g(T) — ha(g, ,5,T) <0. (1)

Let s = |S| and ¢t = |T|. Then by (1) we get
as+de_s(T)—bt —w < -1, (2)
where w denotes the number of components of G — (SUT). It is clear that
w<n—s~t. (3)

Let m denote the minimum order of components of G — (SUT). Then we
get that

n—s-~t
< -
mg 222 @
In view of the definition of m, we obtain
(G <m-—-1+4s+t. (5)

We first prove that the following claim holds.

Claim 1. T # 0.

Proof. We prove Claim 1 by contradiction. Suppose that T = 0. We
shall consider two cases and derive a contradiction in each case.

Case 1. S =¢.

As G is connected and dg(g, f,S,T) <0, then hg(g, f,S,T) = 1. Con-
sidering the definition of hg(g, f, S,T), we can easily get that f(z) = g(z)
for every x € V(G). Therefore dg(g, f,S,T) = —1. On the other hand,
since f(V(G)) is even, according to Lemma 2.2, we have that é¢(g, f, S, T)
is even. This is a contradiction.

Case 2. S #0.
By (2) and (3), we obtain

as+1l<w<n—s (6)

Hence according to (4), (5) and (6), we know that
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bn n—s
1+ —m—— < § <m-— < —_
+a+b-1 < d{G)<m-1+s< » 1+s
n—s
< —
- as+1 1+s
< n—1 (n-1l-as—s)(s—1)
= a as+1 '

Combining this inequality with (6), we get
bn <m= 1.
a+b-1" a

n
—-<1
5 = +

This is a contradiction since @ > 2. Thus T # 0.

As T # @ by Claim 1, we define h = min{dg_-s(z) | z € T}.
Thus

(7)

5(G) L h+s.
We shall consider various cases according to the value of h and derive
contradictions.
Case 1. h=0.

We define I = {z € T| dg—s(z) = 0}. Then I is an independent vertex

subset of G and I # 0. By Lemma 2.3, we have

(b—-1)n+a|l
INg(n)| 2 222
On the other hand, by (2) and (3), we get
as=bI|l+(1=-b)(t—-|I)-(b-1)(n—-s—t) < -1.

It follows that

< (b—l)n+lIl—1.
- a+b-1
Combining this inequality with (8), we get

(b—Un+all] _ - (b—n+|I]-1
arb-1 SNeWDIsISI<— 37—

This inequality implies 0 < (a — 1)|I| < —1. This is a contradiction.

Case 2. 1<h<b-1.
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By (2), (3) and b— h > 1, we have
as+ (h—=b)t—(b—h)(n—s—t) < -1,

implying

(b—-hn-1
a+b—-h °

Then using (7) and the above inequality, we obtain

s<

bn (b—h)n—-1
—_— < < _— .
1+a+b_1_5(G)_s+h$ Py +h

Let f(h) = Qf_,—f‘;}g,"'—l + h. Then in view of n > M—?’Lll, SF(h) attains

its maximum value at A = 1 since
-n{a+b—h)+(b—-h)n—1

, a—
fiih) = (@t b—h) 1
—na—1
= m +1<0.
Thus b G-l)n—1
— n—
< .
1+a+b—1 T a+b-1 +1

This inequality implies n < —1. That is a contradiction.

Case 3. h>b.

Subcase 3.1. m > 2.

By (2), it follows that

as+ (h - b}t —w < —1.
Thus
w2>as+t+1. (9)

Since T' # @ by Claim 1, we have w > 2.

According to (5) and (9), we get

bn
- < < - -
1+a+b—1 <6G) £ m—-1l+s+t<m+w-—-2
< miw—2+ w
- Mwrn
2 -2
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This is a contradiction.
Subcase 3.2. m = 1.
By (3) and (9), we have

n—1
t< .
s+t < )

Let C) be the least component of G — (SUT). Then C} contains only one
vertex z. Hence
bn n—1
—_—< < < & —_—
1+a+b—1 <HG@)<d(z) L s+t < 5
which is a contradiction.
Case 4. h=b.

By (2) we have
w2as+1

Combining this with (4), we get that
n—s$—t _mn—s—-t _mn-—s
as+1 “as+1’

1<m< (10)
By (7), we know that

bn
—_—< < = .
1+ —— SHG) Shts=b+s

On the other hand, by (10) we have

Thus

bn
- < - -
1+a.+b—-1"b+a.+1

It follows that n < (=028 < 2(a +b—1) < (D, This
contradicts the assumption that n > (e®(@¥b=1),

From all the argument above, we deduce contradictions. Hence we con-
clude that G has a (g, f)-factor. Since G has both a Hamilton path and a
(g, f)-factor, according to Theorem C, graph G has a connected (g, f + 1)-
factor. Completing the proof of Theorem 2.1. m]




3. Binding number and Hamilton (g, f)-factors

In this section, we prove the following theorem, which shows a binding
number and minimum degree condition for the existence of a Hamilton
(g, f)-factor.

Theorem 3.1. Let G be a graph of order n, and let a,b and n be non-
negative integers such that 2 < a < b and n > S‘—""—b‘—zx%’i_—l Let g(z)
and f(z) be two nonnegative integer-valued functions defined on V(G) such
that a < g(z) < f(z) < b for any z € V(G). If bind(G) > <=3 and
§(G)=21+ é%, then G has a Hamilton (g, f)-factor.

In Theorem 3.1, if g(z) = a and f(z) = b, then we obtain the following
corollary.

Corollary 3.1. Let G be a graph of order n, and let a,b and n be nonneg-
ative integers such that 2 < a < b and n > ﬁ“—"'—b'—?é%*—'ﬂ. If bind(G) 2

%— and §(G) > 1+ ﬁ-,,zlg, then G has a Hamilton |a, b]-factor.

In Theorem 3.1, if g(z) = k and f(z) = k + 1, then we obtain the fol-
lowing corollary.

Corollary 3.2. Let G be a graph of order n, and let k and n be non-
negative integers such that k > 2 and n > 4k — 2. If bind(G) > 2 and
6(G) > 1+ %, then G has a Hamilton [k, k + 1]-factor.

We use the following Lemma in our proof. Lemma 3.1 provides a nec-
essary and sufficient condition for a graph to have a (g, f)-factor, which is
a special case of Lovdsz’s (g, f)-factor theorem.

Lemma 3.1 [10]. Let G be a graph, and let g(z) and f(z) be two nonneg-
ative integer-valued functions defined on V(G) such that g(x) < f(z) for
each x € V(G). Then G has a (g, f)-factor if and only if

JG(gva S,T) = f(S) + dG—S(T) - g(T) >0
for all disjoint subsets S and T of V(G).

Proof of Theorem 3.1. We shall use a different technique from The-
orem 2.1 to prove Theorem 3.1. Suppose that G satisfies the assumption
n

of Theorem 3.1. Since §(G) > 1 + b—2_3 2> %, graph G has a Hamil-
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ton cycle C. Let G’ = G — E(C). In order to prove Theorem 3.1, we
need only to show that G’ has a (g — 2, f — 2)-factor. For convenience,
let f'(z) = f(z) — 2,¢'(z) = g(z) —2,c=a—2and d = b—2. Thusin
the following we need only to prove that G’ has a (g’, f’)-factor such that
¢ < g'(z) < f'(z) < d for each z € V(G), where ¢ > 0 and d > c. We
prove this by contradiction. Suppose that G’ satisfies the assumption of
Theorem 3.1, but has no (g', f)-factor. Then, by Lemma 3.1, there exist
two disjoint subsets S and T of V(G’) such that

8¢/ (S, T) = f'(S) + der-s(T) — ¢'(T) < -1 (11)
We choose such subsets S and T which satisfy |T'| is minimum.
We first prove the following claims.

Claim 2. dg'—s(z) < g'(z) £d—1forallz € T.

Proof. If dg:_s(z) > g'(z) for some z € T, then the subsets S and
T \ {z} satisfy (11). This contradicts the choice of S and T'. Therefore,

do-s(z) < g'(z)<d-1

for all v:z: € T holds. o
Claim 3. T # ¢.
Proof. If T = ¢, then d¢/(S,T) = f'(S) > 0. This contradicts (11).
Therefore T # ¢. O

Claim 4. dg_s(z) < dcl_s(x) +2<dforallzeT.

Proof. Note that G = G' U E(C). Thus by Claim 2 dg-s(z) <
dgr-s(x) +2 < d for all z € T holds. o

Since T # ¢, define
h = min{dg_s(z)| z € T}.

By Claim 4, we have
0<h<d.

In the following we shall consider two cases and derive a contradiction
in each case.

Case 1. h =0.

We define I = {x € T'| dg—s(z) = 0}. Then I is an independent vertex
subset of G and I # 0. By Lemma 2.3, we have

(b—2)n+(a—1)|I|.

a+b-3 (12)

[Ne(D) >
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By (11) and Claim 4 we have

¢ (S, T) = f’(S) +de_s(T) - g'(T)
(c+1)|S| +de_s(T) - 2|T| — (d - 1)|T
(c+D1|S|+|T—-I|-(d+1)|T]
(e+1|S| - (d+ 1| -d|T -1
(e+1IS| ~ (d+ DI| - d(n ~|S]| - |1])
(c+d+1)|S| - |I| -dn.

-1

v laviIvv

Thus
| +dn

crdT 1 (13)

5] <
By (12) and (13) we have

(b—2)n+ (a —1)|I| Hl+dn |I|4+(b—2)n
a+b—3 c+d+1 a+b-3 °

This inequality implies 0 < (a — 2){I| < 0, which is a contradiction.
Case 2. 1<h<d.

< INe(D)| £15] <

Since

-1 > 6a(S,T) = f'(S) + dg_s(T) = ¢'(T)

2 (e+1)IS| +de-s(T) - 2{T| - (d - 1)|T|
2 (c+1)|S|+(h=d—-1)(n—|[S])=(c+d—-h+2)|S|-(d+1-h)n,
we obtain (d+1—h)
—h)n
151 < ct+d—-h+2
By considering a vertex v € T with dg_g(v) = h, we get
d+1-h)n
< _—
0(G) Ldg(v) < h+|S|<h+ crd—T13
Define (d+1—h)
—h)n
f(h)=h+c+—d_—h+—2, 1<h<d.

Considering n > i‘&‘ﬁé‘;*—"-ﬂ and h > 1, f(h) attains its maximum value
at h =1 since its derivative
+1)
h) = 1--™Metl)
) = - hioe
nc+1)

< 1-——"1_ <.

s I Grdre <0



Therefore 1 + &52% < §(G) < f(h) = h+ .E:j__’*;{l_;h':)_% SF)=1+%=

1+ f,b—_;bg_Lg, which implies 0 < 0. That is a contradiction.

From all the argument above, we deduce contradictions. So we conclude
that G’ has a (¢’, f')-factor. Therefore the union of C and (g¢’, f)-factor
is the desired Hamilton (g, f)-factor. This completes the proof of Theorem
3.1. o
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